API src

Found 26 results.

Biotoptypenkarten 2020 Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050

Die Biotoptypenkarten 2020 für die Pilotstrecken (P) und Referenzstrecken (R) Masterplan Ems 2050 basieren auf hochauflösenden RGBI-Luftbildern (räumliche Auflösung 2 cm) für die Uferbereiche Nendorp (linkes Ufer, Unterems-km 30,1-31,6), Nüttermoor (rechtes Ufer, UE-km 18,100 - 19,150 u. 22,000 - 22,500) sowie Brahe (linkes Ufer DEK 218,050 - 219,125 und 220,900 - 221, 400), Aschendorf (linkes Ufer, DEK 214,000 - 215,050 und 215,10 - 215,60). Auf Basis der Spektralkanälen der Luftbilder sowie auf den Berechnungen von Vegetationsindex, Oberflächenrauhigkeit und Oberflächenhöhe wurde zunächst eine überwachte Klassifikation durchgeführt. Die hierdurch vordefinierten Vegetationsklassen dienten im Feld, um nach dem Niedersächsischen Kartierschlüssel Drachenfels 2020 die Biotoptypen inkl. Untereinheiten zu kartieren. Die Biotoptypenklassen sind in den BfG-Kartierschlüssel übersetzt worden. Ebenso enthält die Attributtabelle die zwei dominantesten Pflanzenarten pro Biotopfläche. Herausgeber: BfG Auftragnehmer: IBL Umweltplanung GmbH Zitiervorschlag: BfG (2022): Biotoptypenkarten 2020 der Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050 im Auftrag des WSA Ems-Nordsee. DOI: 10.5675/Btty2020_MPEms_Ufer Weitere Informationen zu Dominanzbeständen oder Biotoptypen siehe Metadatensatz unter „Biotoptypenkarten 2020 Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050“ Weitere Informationen zum Projekt siehe unter https://www. masterplan-ems.info/massnahmen/uferentwicklung Folgende Dateien sind im Download enthalten: - 2020_Btty_Asd_P_V4m.shp -2020_Btty_Asd_R_V4m.shp -2020_Btty_Bra_P_V4m.shp -2020_Btty_Bra_R_V4m.shp -2020_Btty_Nen_P_V4m.shp -2020_Btty_Nen_R_V4m.shp -2020_Btty_Nue_P_V4m.shp -2020_Btty_Nue_R_V4m.shp -2020_BTTY_Drachenfels_gesamt.lyr -2020_BTTY_Bericht_V2.pdf The biotope type maps 2020 for the pilot stretches (P) and reference stretches (R) are based on high-resolution RGBI aerial photographs (spatial resolution 2 cm) for the riparian areas Nendorp (left bank, Unterems-km 30.1-31.6), Nüttermoor (right bank, UE-km 18.100 - 19.150 u. 22.000 - 22.500) as well as Brahe (left bank DEK 218.050 - 219.125 and 220.900 - 221.400), Aschendorf (left bank, DEK 214.000 - 215.050 and 215.10 - 215.60). Based on the spectral channels of the aerial photographs and on the calculations of vegetation index, surface roughness and surface height, a supervised classification was first carried out. The vegetation classes predefined by this were used in the field to map the biotope types according to the Lower Saxony mapping key Drachenfels 2020. The biotope type classes have been translated into the BfG mapping key. Likewise, the attribute table contains the two most dominant plant species per biotope area. For further information on dominant stands or biotope types, see metadata record under "Biotope type maps 2020 pilot and reference stretches banks Masterplan Ems 2050". For more information on the project, see https://www.masterplanems. info/massnahmen/uferentwicklung

Digitale Übersichtskarte 1:750 000 - DUEK750 MV

Topographische Gebietskarten stellen landesspezifische Strukturen und Aussagen in besonderen Kartenzeichen dar und werden in der Regel in Zusammenarbeit mit bzw. auf Anforderung von Landesverwaltungen bearbeitet und herausgegeben.

Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050, Verortung

Der Datensatz besteht aus einem Polygonshape mit Flächenpolygonen der Pilotstrecken (P) und Referenzstrecken (R) Masterplan Ems 2050 beinhaltet. Die laterale Flächenbegrenzung vom Wasser Richtung Land erfolgte auf Grundlage der MTnw-Linie (Verschneidung des DGM-W 2005 und der entlang der Gewässerachse interpolierten Pegelwerte MTnw 2006-2015) und der Deichkrone. Die longitudinale Abgrenzung wurde wie folgt entlang von semiterrestrischen Querprofilspuren definiert: Nendorp (linkes Ufer, Unterems-km 30,1-31,6), Nüttermoor (rechtes Ufer, UE-km 18,100 - 19,150 u. 22,000 - 22,500) sowie Brahe (linkes Ufer DEK 218,050 - 219,125 und 220,900 - 221, 400), Aschendorf (linkes Ufer, DEK 214,000 - 215,050 und 215,10 - 215,60). Das Shape umfasst Informationen (Attribute) zu den Gebietsnamen (s.o.), eine NordSüdID, die die relative Lage aller Strecken zwischen Norden und Süden beschreibt (1 = nördlichste Strecke, 9 = südlichste Strecke), Streckentyp (Pilot- oder Streckentyp, Verbindungsstück wird nicht direkt untersucht, aber Grundlagendaten wie Luftbilder oder Oberflächenmodelle liegen hier vor), Umfang [m], und Fläche [m²] Weitere Informationen zum Projekt siehe unter https://www.masterplan-ems.info/massnahmen/uferentwicklung Zitiervorschlag für den Datensatz: BfG (2022): Verortung der Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050. DOI: 10.5675/Flaechen2020_MPEms_Ufer. Der Download enthält folgendes Shapefile MP_EMS_UferflaechenV2.shp

Hydrogeologische Übersichtskarte 1:250.000 von Deutschland (HÜK250)

Die Hydrogeologische Übersichtskarte von Deutschland (HÜK250) beschreibt hydrogeologische Eigenschaften der oberen, großräumig zusammenhängenden Grundwasserleiter in Deutschland im Maßstab 1:250.000. Erfasst sind neben Lithologie, Stratigraphie und Leitercharakter fünf hydrogeologische Attribute, die in den Themenkarten Verfestigung, Gesteinsart, Art des Hohlraums, Durchlässigkeit und Geochemischer Gesteinstyp dargestellt werden. Die jeweiligen Systematiken und Klassifizierungen basieren unter anderem auf der Hydrogeologischen Kartieranleitung der Staatlichen Geologischen Dienste (SGD) aus dem Jahr 1997. Bei der HÜK250 handelt es sich um ein digitales Kartenwerk. Die HÜK250 ist ein Gemeinschaftsprojekt der SGD unter Federführung der BGR, das im Jahr 2000 als HÜK200 anlässlich der Umsetzung der EU-Wasserrahmenrichtlinie (EU-WRRL) ins Leben gerufen wurde. Grundlage bildeten die Informationen der Geologischen Übersichtskarte 1:200.000 (GÜK 200) zur Lithologie, Stratigraphie und Genese sowie regionale Karten und Fachkenntnisse der SGD. Im Projektverlauf wurden länderübergreifend abgestimmte hydrogeologische Informationen bundesweit erarbeitet und schließlich mit einer einheitlichen Generallegende blattschnittfrei digital zur Verfügung gestellt. Im Jahr 2019 erfolgte die Maßstabsmigration von 1:200.000 auf 1:250.000.

Nitrataustragsgefährdung nach § 7 AVV GeA der Referenzparzellen in NRW Stand 01/2022

Dargestellt wird der „maximal tolerierbare N-Saldo in kg N/(ha*a) zur Einhaltung des Grundwasserschwellenwertes von maximal 50 mg/L im Sickerwasser unterhalb der durchwurzelbaren Bodenzone“ pro Feldblock. Es handelt sich dabei um den Medianwert pro Feldblock aus dem Rechenmodell GROWA+ NRW 2021, berechnet entsprechend der Vorschrift gemäß § 7 AVV GeA und Anlage 3. Das Modellergebnis wurde im Rahmen des Projektes GROWA+ NRW 2021 durch das Forschungszentrum Jülich in einem 100 x 100 m-Raster entsprechend der in Anlage 3 der AVV GeA beschriebenen Methodik berechnet. Ausgehend von den Werten pro Rasterzelle wurden die Medianwerte pro Feldblock ermittelt. Die Medianwert-Berechnung erfolgte durch das LANUK. Der Berechnung liegen folgende Eingangsdaten zu Grunde: • Denitrifikationsbedingungen im Boden entsprechend Bodenkarte 1:50.000 (GD NRW) • nutzbare Feldkapazität entsprechend Bodenkarte 1:50.000 (GD NRW) • Durchwurzelungstiefe entsprechend Bodenkarte 1:50.000 (GD NRW) • Raster (100 x 100 m) der Landnutzung erstellt auf Basis von ATKIS-DLM und INVEKOS 2016/2017 im Rahmen des Projekts GROWA+ NRW 2021 (Thünen-Institut / Landwirtschaftskammer NRW), Stand 2019 • Langjährige mittlere Sickerwasserrate berechnet mit dem Wasserhaushaltsmodell mGROWA (FZ Jülich) pro Rasterzelle 100 x 100 m für die Zeitreihe 1991-2010, Stand 2019 • Aktuellste verfügbare landnutzungsspezifische atmosphärische N-Deposition als Hintergrundwert aus dem PINETI3-Projekt des Umweltbundesamtes, basierend auf der Zeitreihe 2010-2015 Der Datensatz enthält die Feldblöcke gemäß Feldblockstatistik NRW 2021 als Polygone (Feature in geodatabase „GLDN-Nitrataustragsgefaehrdung-nach-Par-7-AVV-GeA_EPSG25832_Geodatabase.gdb“ bzw. shape „GLDN-Nitrataustragsgefaehrdung-nach-Par-7-AVV-GeA_EPSG25832“).

Potenzielle Nitratausträge in kg N/(ha*a) nach § 8 AVV GeA der Referenzparzellen in NRW, Stand 01/2022

Dargestellt wird der aktuelle landwirtschaftliche N-Bilanzüberschuss in kg N/(ha*a) als 4-Jahresmittelwert des Zeitraums 2016-2019 pro Referenzparzelle. Datengrundlage sind die nach Anlage 4 AVV GeA durch den DLWK ermittelten landwirtschaftlichen N-Bilanzüberschüsse pro Gemeinde aus dem Zeitraum 2016-2019 (arithmetischer Mittelwert). Die Umrechnung der N-Bilanzüberschüsse pro Gemeinde auf die landwirtschaftlichen Nutzungsflächen im Modellraster (100 x 100 m) des hydrologischen Stoffeintragsmodelles GROWA+ NRW 2021 erfolgt entsprechend der Schnittstelle RAUMIS / mGROWA-DENUZ-WEKU (s. Anlage 4) durch das LANUK NRW. Die auf diese Weise ermittelten aktuellen N-Salden (2016-2019) pro Referenzparzelle werden pro Feldblock gemäß Feldblockstatistik NRW 2021 ausgegeben. Der Datensatz enthält die Feldblöcke gemäß Feldblockstatistik NRW 2021 als Polygone (Feature in geodatabase „GLDN-Potenzielle Nitrataustraege-nach-Par-8-AVV-GeA_EPSG25832_Geodatabase.gdb“ bzw. shape „GLDN-Potenzielle_Nitrataustraege-nach-Par-8-AVV-GeA_EPSG25832“)

Ausweisungsmessnetz zu den mit Nitrat belasteten Gebieten nach § 13a DüV (12/2022) und gemäß § 4 AVV GeA

Die Excel-Tabelle listet alle Grundwassergütemessstellen des WRRL- und EUA- /Nitratmessnetzes NRW, die für die Ausweisung der mit Nitrat belasteten "roten" Gebiete und zur immissionsbasierten Abgrenzung belasteter / unbelasteter Teilgebiete innerhalb der betroffenen Grundwasserkörper herangezogen worden sind (Stand: 12/2022). Messstellen ohne landwirtschaftlichen Einfluss, die eine Nitrat- oder Nitrateintragskonzentration oberhalb des Grundwasserschwellenwertes oder einen steigenden Nitrattrend aufweisen, sind nicht in der Tabelle enthalten, da sie gemäß AVV GeA bei der Gebietsausweisung keine Berücksichtigung finden. Als Angaben enthält das Tabellenblatt: - 9-stellige amtliche Messstellennummer und Name der Messstelle - Gemeinde und Kreis in der bzw. dem die Messstelle liegt - Grundwasserkörper (ID und Name), dem die Messstelle beim Monitoring zugeordnet ist - Lagekoordinaten (aus Datenschutzgründen unterbleiben die beiden letzten Stellen) - dominierender Landnutzungseinfluss im Zustromgebiet der Messstelle - Information, ob ein anhaltend steigender Nitrattrend aktuell im Zeitraum 2009-2018 gemäß GrwV an der Messstelle vorliegt (ja/nein) und ob gleichzeitig ein Nitratwert > 37,5 mg/l vorliegt - Mittelwert der Maximalwerte MWMxJW1619 (Nitrat; mg/l) der Jahre 2016-2019 zu der Messstelle - Nitrateintragskonzentration (mg/l) im Zeitraum 2016-2019, soweit vorhanden (bei mehreren Messungen wird der Mittelwert verwendet). Grundlage sind Messungen des Parameters „Exzess-N2 (umgerechnet in Nitrat in mg/L)“ und die „Nitratkonzentration“ als Summenwert aus jeweils derselben Grundwasserprobe. Die Daten stehen in ELWAS-web. Die Nitrateintragskonzentration entspricht der Nitratkonzentration vor Denitrifikation im Grundwasser. Der Exzess-N2 (durch Nitratabbau im Überschuss gebildetes N2) wird mit der N2/Ar-Methode bestimmt. - Maßgeblicher Wert, aus welchem die Information abzuleiten ist, ob bei der Abgrenzung belasteter / unbelastete Teilgebiete MWMxJW1619 oder Nitrateintragskonzentration ausschlaggebend ist. - Information, ob die Messstelle für die Ausweisung „roter Feldblöcke“ relevant ist oder nicht. Dies ist der Fall bei landwirtschaftlich beeinflussten Messstellen, bei denen der Nitratwert (MWMxJW1619) oder die Nitrateintragskonzentration größer als 50 mg/l ist, sowie bei landwirtschaftlich beeinflussten Messstellen, bei denen ein steigender Nitrattrend vorliegt und der Nitratwert (MWMxJW1619) 37,5 mg/l oder größer ist. In der Excel-Datei sind neben der Datentabelle (Tabellenblatt „AWMN_2022_11“) ein Tabellenblatt zur Erläuterung der Attribute (Tabellenblatt „Dateninformation“) sowie ein Tabellenblatt mit Informationen zu den Grundwasserkörpern (Tabellenblatt „GWK-Tabelle“) enthalten.

Immissionsbasierte Abgrenzung nach § 5 AVV GeA: Teilgebiete der GWK

Teilgebiete der GWK bei der immissionsbasierten Abgrenzung nach § 5 AVV GeA. Die Teilgebiete wurden nach § 5 AVV GeA auf Basis hydrogeologischer und/oder hydraulischer Grenzen abgeleitet.

Luftbilder (Digitale Orthophotos und Oberflächenmodelle) 2020 Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050

Hochgenaue TrueOrthophotos (4-Kanal-Bilder (RGBI)) mit einer Bodenauflösung von 2 cm wurden unter folgenden Bedingungen erhoben: Ground sampling distance: 2 cm Einzuhaltende Wasserstände: Wasserstand kleiner gleich MTnw Ausführungszeitraum: 24.06.2020 mit folgenden Eigenschaften DOP Digitales, georeferenziertes, verzerrungsfreies und maßstabsgetreues Bild der Erdoberfläche 4-Kanal-Orthophoto, 8 Bit Farbtiefe, Lagegenauigkeit UX = UY kleiner gleich 5 cm, Koordinatenreferenzsysteme: Lage: ETRS89/DREF91 in der Realisierung 2016, UTM-Abb., Zone 32 (6-stellig), Höhe: DHHN2016 (GCG2016) Abgabeeinheiten Kacheln: 200 m x 200 m Datenformate: GeoTIFF (lzw-komprimiert) Daraus wurden photogrammetrisch Oberflächenmodelle erzeugt: DOM Digitales, photogrammetrisches Modell der Oberflächenhöhen und -formen der Erdoberfläche samt allen darauf befindlichen Objekten wie Wattflächen, Bewuchs und Gebäude. Lage-/Höhengenauigkeit; UX = UY kleiner gleich 5 cm, UH kleiner gleich 10 cm, Variation kleiner gleich 15 cm, Koordinatenreferenzsysteme: Lage: ETRS89/DREF91 in der Realisierung 2016, UTM-Abb., Zone 32 (6-stellig), Höhe: DHHN2016 (GCG2016) Abgabeeinheiten Kacheln 200 m x 200 m Datenformate GeoTIFF (32-bit floating point, lzw-komprimiert) mit tfw Weitere Ausführungen siehe technischer Bericht Quicklooks liegen als jpg-Formate vor. Schrägluftbilder und 3D-Punktwolke auf Anfrage Auftraggeber: BfG Auftragnehmer: Firma geoplana Ingenieurgesellschaft GmbH aus Marbach Zitiervorschlag: BfG (2022): Digitale Orthophotos und Oberflächenmodelle) 2020 Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050. DOI: 10.5675/DOP_DOM_2020_MPEms_Ufer Weitere Informationen zu Dominanzbeständen oder Biotoptypen siehe Metadatensatz unter „Biotoptypenkarten 2020 Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050“ Weitere Informationen zum Projekt siehe unter https://www. masterplan-ems.info/massnahmen/uferentwicklung Highly accurate TrueOrthophotos (4-channel images (RGBI)) with a ground resolution of 2 cm

Immissionsbasierte Abgrenzung nach § 5 AVV GeA (12/2022)

Dokumentation Immissionsbasierte Abgrenzung („Binnendifferenzierung“) nach § 5 AVV GeA: Unterteilung der nach § 3 AVV GeA betroffenen GWK in hydraulisch bzw. hydrogeologisch abgrenzbare Teilgebiete, Stand 12/2022: Dokumentation als pdf-Dokument In der Dokumentation ist eine Beschreibung der bei der Abgrenzung verwendeten Datengrundlagen und Methodik vorangestellt. Nachfolgend wird für jeden einzelnen Grundwasserkörper die Abgrenzung in belastete / unbelastete Teilgebiete dokumentiert. Anhand dieser Dokumentationen kann die Abgrenzung innerhalb der GWK anhand der verwendeten hydraulischen bzw. hydrogeologischen Kriterien und anhand der ausweisungsrelevanten Grundwassermessstellen hinsichtlich ihrer räumlichen Lage innerhalb der GWK nachvollzogen werden. Die GWK sind dabei nach ihrer ID sortiert. Dokumentation Immissionsbasierte Abgrenzung („Binnendifferenzierung“) nach § 5 AVV GeA: Unterteilung der nach § 3 AVV GeA betroffenen GWK in hydraulisch bzw. hydrogeologisch abgrenzbare Teilgebiete, Stand 12/2022: Dokumentation als pdf-Dokument In der Dokumentation ist eine Beschreibung der bei der Abgrenzung verwendeten Datengrundlagen und Methodik vorangestellt. Nachfolgend wird für jeden einzelnen Grundwasserkörper die Abgrenzung in belastete / unbelastete Teilgebiete dokumentiert. Anhand dieser Dokumentationen kann die Abgrenzung innerhalb der GWK anhand der verwendeten hydraulischen bzw. hydrogeologischen Kriterien und anhand der ausweisungsrelevanten Grundwassermessstellen hinsichtlich ihrer räumlichen Lage innerhalb der GWK nachvollzogen werden. Die GWK sind dabei nach ihrer ID sortiert.

1 2 3