API src

Found 55705 results.

Similar terms

s/dalen/Daten/gi

Multibeam bathymetry processed data (EM 1002 echosounder entire dataset) of RV MARIA S. MERIAN during cruise MSM62/2

Swath sonar bathymetry data used for that dataset was recorded during RV MARIA S. MERIAN cruise MSM62/2 using Kongsberg EM1002 multibeam echosounder. The cruise took place between 23.03.2017 and 27.03.2017 in the Baltic Sea. The cruise aimed to investigate the impact of the Littorina transgression on the inflow of saline waters into the western Baltic and assessed the potential for future diminution of ventilation in the central and northern deeper basins due to isostatic uplift [CSR]. CI Citation: Paul Wintersteller (seafloor-imaging@marum.de) as responsible party for bathymetry raw data ingest and approval. During the MSM62/2 cruise, the moonpooled KONGSBERG EM1002 multibeam echosounder (MBES) was utilized to perform bathymetric mapping in shallow depths. The echosounder has a curved transducer in which 111 beams are formed for each ping while the seafloor is detected using amplitude and phase information for each beam sounding. For further information on the system, consult https://www.km.kongsberg.com/. Postprocessing and products were conducted by the Seafloor-Imaging & Mapping group of MARUM/FB5, responsible person Paul Wintersteller (seafloor-imaging@marum.de). The open source software MB-System (Caress, D. W., and D. N. Chayes, MB-System: Mapping the Seafloor, https://www.mbari.org/products/research-software/mb-system, 2017) was utilized for this purpose. A sound velocity correction profile was applied to the MSM62/2 data; there were no further corrections for roll, pitch and heave applied during postprocessing. A tide correction was applied, based on the Oregon State University (OSU) tidal prediction software (OTPS) that is retrievable through MB-System. CTD measurements during the cruise were sufficient to represent the changes in the sound velocity throughout the study area. Using Mbeditviz, artefacts were cleaned manually. NetCDF (GMT) grids of the edited data as well as statistics were created with mbgrid. The published bathymetric EM1002 grid of the cruise MSM62/2 has a resolution of 15 m. No total propagated uncertainty (TPU) has been calculated to gather vertical or horizontal accuracy. A higher resolution is, at least partly, achievable. The grid extended with _num represents a raster dataset with the statistical number of beams/depths taken into account to create the depth of the cell. The extended _sd -grid contains the standard deviation for each cell. The DTMs projections are given in Geographic coordinate system Lat/Lon; Geodetic Datum: WGS84.

GTS Bulletin: ISXD94 EDZW - Observational data (Binary coded) - BUFR (details are described in the abstract)

The ISXD94 TTAAii Data Designators decode as: T1 (I): Observational data (Binary coded) - BUFR T1T2 (IS): Surface/sea level T1T2A1 (ISX): Other surface data A2 (D): 90°E - 0° northern hemisphere (The bulletin collects reports from stations: 10022;Leck;10028;Sankt Peter-Ording;10033;Glücksburg-Meierwik;10037;Schleswig-Jagel;10038;Hohn;10042;Schönhagen (Ostseebad);10067;Marienleuchte;10093;Putbus;10097;Greifswalder Oie;10126;Wittmundhafen;10129;Bremerhaven;10130;Elpersbüttel;10136;Nordholz (Flugplatz);10139;Bremervörde;10142;Itzehoe;10146;Quickborn;10150;Dörnick;10152;Pelzerhaken;10156;Lübeck-Blankensee;) (Remarks from Volume-C: SYNOP HALF HOURLY H+30)

Climate Simulation with CLM, Scenario B1 run no.1, North Atlantic region

[ Derived from parent entry - see the respective metadata entry ] The experiment CLM_B1_ZS contains Northern European regional climate simulations of the years 2070-2099 on a rotated grid (CLM non hydrostatic, 0.44 deg. hor. resolution, see http://www.clm-community.eu ). It is forced by the first (_1_) run of the global IPCC SRES B1 (EH5-T63L31_OM-GR1.5L40_B1_1_6H), which describes a storyline with rapid change in economic structures toward a service and information economy, with reductions in material intensity and the introduction of clean and resource-efficient technologies. The model region starts at -19.36/-40.48 (lat/lon in rotated coordinates; centre of lower left corner of the domain) with rotated North Pole at 21.3/-175.0 (lat/lon). The number of grid points is 80/146 (lat/lon). The sponge zone (numerically unreliable boundary grid points) consists of 8 gridboxes at each border. EH5-T63L31_OM-GR1.5L40_B1_1_6H were nudged during the simulations (spectral nudging,von Storch, H., A spectral nudging technique for dynamical downscaling purposes. Mon. Wea. Rev, 2000 ) The regional model variables include two-dimensional near surface fields and atmospheric fields on 6 pressure levels (200, 500, 700, 850, 925 and 1000 hPa) for zonal and meridional wind, temperature and pressure. The time interval of the output fields is 3 hours. Please contact sga"at"dkrz.de for data request details. The output format is netCDF. Experiment with CLM 2.4.6 on HPC Cluster ( blizzard ).

Global filtered tropospheric NO2 slant column densities derived from 6-year averages of TROPOMI measurements over water for shipping signal detection

This dataset contains 6-year averages of global filtered tropospheric NO2 slant column densities (tSCDs) retrieved from the Sentinel-5 Precursor (S5P) satellite sensor TROPOMI (Tropospheric Monitoring Instrument) for the period from 1 May 2018 to 30 April 2024. All data are available on a 0.03° x 0.03° grid. The NO2 tSCDs are derived from the total slant columns by subtracting the across-track NO2 slant column stripe offset and spatially averaged stratospheric vertical column densities (VCDs) multiplied with the stratospheric air mass factor (AMF), provided in the TROPOMI NO2 product. The filtered NO2 tSCDs are developed to detect global shipping signals in the NO2 TROPOMI data. Therefore, only pixels over water are available in this dataset. The filtering methods include a high-pass filter with different box sizes (1°, 0.5°, 0.25°) and a Fourier filter. In addition, different flagging criteria are applied to the data with the standard box size of 1° for the high-pass filtering: no flagging, quality (qa) flagging, cloud fraction (CF) flagging, cloud height (CH) flagging, wind speed (wind) flagging, and sun glint (sg) flagging.

Pan-Arctic Visualization of Landscape Change (2005-2024), Arctic PASSION Permafrost Service

This raster dataset, in Cloud Optimized GeoTIFF format (COG), provides information on land surface changes at the pan-arctic scale. Multispectral Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI, and Landsat-9 OLI-2 imagery (cloud-cover less than 70%, months July and August) was used for detecting disturbance trends (associated with abrupt permafrost degradation) between 2005 and 2024. For each satellite image, we calculated the Tasseled Cap multi-spectral index to translate the spectral reflectance signal to the semantic information Brightness, Greenness, and Wetness. In order to characterize change information, we calculated the linear trend of Brightness, Greenness, and Wetness over two decades at the individual pixel level, based on annually aggregated data. The final map product therefore contains information on the direction and magnitude of change for all three Tasseled Cap parameters at 30 m spatial resolution across the pan-arctic permafrost domain. Features detected include coastal erosion, lake drainage, infrastructure expansion, and fires. The general processing methodology was developed by Fraser et al. (2014) and adapted and expanded by Nitze et al. (2016, 2018). Here, we upscaled the processing to the circum-arctic permafrost region and applied it to the recent 20-year period from 2005 through 2024. The service covers the permafrost region up to 81° North: Alaska (USA), Canada, Greenland, Iceland, Norway, Sweden, Finland, Russia, Mongolia, and China. For Russia and China, regions not containing permafrost were excluded. The data have been processed in Google Earth Engine as part of the research projects ERC PETA-CARB, ESA CCI+ Permafrost, NSF Permafrost Discovery Gateway, and EU Arctic PASSION. The dataset is a contribution to the 'Pan-Arctic Requirements-Driven Permafrost Service' of the Arctic PASSION project (see References). Changes in the Tasseled Cap indices – Brightness, Greenness, and Wetness – are displayed in the image bands red, green, and blue, respectively. Here, coastal erosion (a trend of a land surface transitioning to a water surface) is depicted in dark blue tones, while coastal accretion (a trend of a water surface transitioning to a land surface) is depicted in bright orange colors. Drained lakes are shown in bright yellow or orange colors, depending on the soil conditions and vegetation regrowth. Fire scars are a further common feature, appearing in different colors depending on the time of the fire and the pre-fire land cover. The data can be explored via the Arctic Landscape EXplorer (ALEX; see References) and are available as a public web map service (WMS; see References), both hosted by Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research.

Sentinel-5P TROPOMI Surface Nitrogendioxide (NO2), Level 4 – Regional (Germany and neighboring countries)

The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Field based and laboratory data of sediment cores from the Lower Havel Inner Delta near Lake Gülpe, Brandenburg (Germany)

Sediment cores were recovered using a hand-held Cobra Pro (Atlas Copco) core drilling system with a 60 mm diameter open corer. One-meter segments were retrieved and assessed in the field for sedimentological features, including estimations of grain size, carbonate content, humus content, and redox features (AG Boden 2005, 2024). Colour descriptions were carried out using the Munsell Soil Color Chart. The exact positions of the drilling points were recorded using a differential GPS device (TOPCON HiPer II). The cores were photographed, documented and sampled at 5–10 cm intervals for subsequent laboratory analyses. Bulk samples from five selected cores (RK1, RK3, RK13, RK15, RK17) were freeze-dried, sieved (2 mm), and weighed. Total carbon (TC), total nitrogen (TN), and total sulfur (TS) contents were measured using a CNS analyzer (Vario EL cube, Elementar). Inorganic carbon (TIC) was determined using calcimeter measurements (Scheibler method, Eijkelkamp). Organic carbon (TOC) was calculated as TOC = TC − TIC. For the grain size analyses, sediment samples were first sieved to <2 mm and subsamples of 10 g were treated with 50 ml of 35% hydrogen peroxide (H₂O₂) and gently heated to remove organic matter. Following this, 10 ml of 0.4 N sodium pyrophosphate solution (Na₄P₂O₇) was added to disperse the particles, and the suspension was subjected to ultrasonic treatment for 45 minutes. The sand fraction was analysed by dry sieving and classified into four size classes: coarse sand (2000–630 µm), medium sand (630–200 µm), fine sand (200–125 µm), and very fine sand (125–63 µm). Finer fractions were determined using X-ray granulometry (XRG) with a SediGraph III 5120 (Micromeritics). These included coarse silt (63–20 µm), medium silt (20–6.3 µm), fine silt (6.3–2.0 µm), coarse clay (2.0–0.6 µm), medium clay (0.6–0.2 µm), and fine clay (<0.2 µm).

Sentinel-5P TROPOMI – Ozone (O3), Level 3 – Global

Ozone vertical column density in Dobson Units as derived from Sentinel-5P/TROPOMI observations. The stratospheric ozone layer protects the biosphere from harmful solar ultraviolet radiation. Ozone in troposphere can pose risks to the health of humans, animals, and vegetation. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Daily observations are binned onto a regular latitude-longitude grid. Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI – Cloud Optical Thickness (COT), Level 3 – Global

This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI – Cloud Fraction (CF), Level 3 – Global

Global Cloud Fraction (CF). Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The radiometric cloud fraction is retrieved from the UV using the OCRA algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

1 2 3 4 55569 5570 5571