Im Lavanttal, St. Andrae ist ein Dampfkraftwerk auf Kohlebasis geplant, das die bestehenden Anlagen DA1 und DA2 ersetzen soll. Die volksgesundheitlichen Auswirkungen, bedingt durch zu erwartende Immissionsbelastungen, sind zu beurteilen. Dazu wurde bzw. wird ein umfassendes Immissionsmessnetz mit dauerregistrierenden Messgeraeten installiert, entsprechende EDV-Auswertungssysteme erarbeitet. Abgrenzungen zu sonstigen Emittenten und dem 'sauren Regen' sind vorzunehmen, Immissionsprognosemodelle zu beruecksichtigen.
<p>Kraft-Wärme-Kopplung ist die gleichzeitige Umwandlung von Energie in mechanische oder elektrische Energie und nutzbare Wärme innerhalb eines thermodynamischen Prozesses. Die parallel zur Stromerzeugung produzierte Wärme wird zur Beheizung und Warmwasserbereitung oder für Produktionsprozesse genutzt. Der Einsatz der KWK mindert den Energieeinsatz und daraus resultierende Kohlendioxid-Emissionen.</p><p>KWK-Anlagen</p><p>KWK-Anlagen unterscheiden sich in ihren Techniken, den eingesetzten Brennstoffen, hinsichtlich ihrer Leistung und bezüglich ihrer Versorgungsaufgaben. In den vergangenen Jahren wurde im Interesse der Energieeinsparung sowie des Umwelt- und Klimaschutzes durch verschiedene energiepoltische Instrumente (insbesondere KWKG und EEG) der Ausbau der KWK angereizt und unterstützt. Der wesentliche <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> des KWK-Ausbaus ist die KWK-Nettostromerzeugung, dessen Entwicklung durch eine energiepolitische Zielstellung flankiert ist. Neben der KWK-Stromerzeugung ist auch die damit korrespondierende KWK-Nettowärmeerzeugung eine im Fokus stehende Größe. Auf die Veränderung dieser beiden wesentlichen KWK-Kenngrößen konzentrieren sich die nachfolgenden Darstellungen.</p><p>KWK-Stromerzeugung</p><p>Die KWK-Nettostromerzeugung – gezeigt werden hier die Daten unter Berücksichtigung des Eigenwärmebedarfs des Biogasanlagenfermenters – ist im Zeitraum von 2003 bis 2017 kontinuierlich gestiegen (siehe Abb. „KWK: Nettostromerzeugung nach Energieträgern“). Der Zuwachs ist insbesondere auf den verstärkten Einsatz von <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> sowie auf den Zubau und einer besseren Auslastung erdgasbasierter KWK-Anlagen zurückzuführen. Die auf Steinkohle- und Mineralölen basierende KWK-Stromerzeugung ist im Zeitverlauf dagegen zurückgegangen.</p><p>Die Minderung im Jahr 2018 gegenüber 2017 ist im Wesentlichen die Folge einer verbesserten energiestatistischen Erfassung der KWK(-Anlagen) ab 2018. Der moderate Rückgang seit 2018 bis 2020 spiegelt die reduzierte Nachfrage nach Strom in diesem Zeitraum wider. Dieser basiert hauptsächlich auf der Stilllegung von KWK-Anlagen, welche mit Stein- oder Braunkohle betrieben wurden. Im gleichen Zeitraum ist die gesamte Nettostromerzeugung um rund 10 Prozent zurückgegangen. 2021 ist die KWK-Stromerzeugung um rund 3 Prozent gegenüber 2020 gestiegen.</p><p>KWK-Wärmeerzeugung</p><p>Die Abbildung „KWK: Nettowärmeerzeugung nach Energieträgern“) zeigt von 2003 bis 2021 mit einem fast kontinuierlichen Anstieg ein ähnliches Bild wie im Strombereich (unter Berücksichtigung des Eigenwärmebedarfs der Biogasanlagen). Die im Vergleich zur KWK-Nettostromerzeugung prozentual geringere Erhöhung der KWK-Nettowärmeerzeugung im Zeitverlauf bis zum Jahr 2017 ist die Folge der Errichtung zahlreicher Gas-und-Dampf (GuD)-Anlagen, die eine überdurchschnittlich hohe <a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Stromkennzahl#alphabar">Stromkennzahl</a> aufweisen. Zwischen den Jahren 2017 und 2018 wurde die Erfassungsmethodik auf eine bessere Datengrundlage gestellt. Der Rückgang seit 2018 korrespondiert mit der jeweiligen Verringerung der KWK-Stromerzeugung (siehe Abschnitt „KWK-Stromerzeugung). 2021 stieg die KWK-Wärmeerzeugung um rund 4 Prozent. Infolge der Einsparanstrengungen von Erdgas infolge des russischen Angriffskriegs auf die Ukraine ist die KWK-Wärmeerzeugung 2022 um sieben Prozent und 2023 um fünf Prozent gegenüber dem jeweiligen Vorjahr gefallen.</p><p>Ziel der Bundesregierung für die KWK-Stromerzeugung</p><p>Bis zur Novellierung des Kraft-Wärme-Kopplungsgesetzes (KWKG) bezog sich das Ausbauziel der Politik auf die Gesamtnettostromerzeugung: Der KWK-Anteil an der gesamten Nettostromerzeugung sollte bis 2020 25 % betragen. Dieses wurde mit der Novellierung zum 1.1.2016 durch ein absolutes Mengenziel ersetzt. Die KWK-Nettostromerzeugung sollte demnach im Jahr 2020 mindestens 110 Terawattstunden und im Jahr 2025 mindestens 120 Terawattstunden betragen (§ 1 KWKG 2016) (siehe Abb. "KWK: Nettostromerzeugung nach Energieträgern" im ersten Abschnitt). Das Ziel für 2020 wurde nach vorläufigen Daten mit einer KWK-Nettostromerzeugung von 113 Terawattstunden erreicht.</p>
<p>Die wichtigsten Fakten</p><p><ul><li>Die durch Kraft-Wärme-Kopplung (KWK) erzeugte Strommenge ist bis 2017 fast kontinuierlich gestiegen.</li><li>Der Rückgang der KWK-Stromerzeugung zwischen 2017 und 2018 liegt an der Änderung der Energiestatistik: Seit 2018 werden KWK-Anlagen genauer erfasst.</li><li>Im KWK-Gesetz ist festgeschrieben, dass im Jahr 2025 durch KWK 120 Terawattstunden (<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a>) Strom erzeugt werden sollten.</li><li>Das Ziel von 110 TWh für das Jahr 2020 wurde mit 112 TWh erreicht.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Bei der Stromerzeugung entsteht üblicherweise auch Wärme, die in konventionellen Kraftwerken in der Regel ungenutzt bleibt. Bei der Kraft-Wärme-Kopplung wird diese verwendet. KWK-Systeme haben somit einen deutlich höheren Brennstoffausnutzungsgrad im gekoppelten Betrieb. Sie nutzen einen deutlich größeren Teil der in den Brennstoffen enthaltenen Energie als herkömmliche Systeme. Im Vergleich zu einer Anlage auf dem neuesten Stand der Technik, die Strom und Wärme separat erzeugt, sind bis zu 20 % Einsparungen an <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> möglich.</p><p>Verringert sich der Energiebedarf, sinken auch die mit der Energiebereitstellung und -wandlung verbundenen Umweltbelastungen. Beispielsweise lässt sich der Ausstoß von Treibhausgasen verringern, wenn verstärkt auf KWK gesetzt wird. Auch der Bedarf an Energieträgern nimmt ab. Der Einsatz von KWK kann so zu einer ressourcensparenden Wirtschaftsweise beitragen.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Die Stromerzeugung aus Anlagen der Kraft-Wärme-Kopplung hat sich positiv entwickelt: Die erzeugte Elektrizität stieg von 78 <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TWh#alphabar">TWh</a> im Jahr 2003 auf 103 TWh im Jahr 2023. Dieser Zuwachs wurde vor allem durch den Ausbau der Nutzung von <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a> zur Energieerzeugung sowie durch den Zubau der Erdgas-KWK getragen. Der Rückgang von 2017 auf 2018 ist im Wesentlichen auf eine verbesserte energiestatistische Erfassung der KWK-Anlagen ab 2018 zurückzuführen (für weitere Informationen siehe <a href="https://www.oeko.de/publikationen/p-details/korrektur-der-kwk-stromerzeugung-in-der-amtlichen-statistik/">Gores, Klumpp 2018</a>). Der moderate Rückgang seit 2018 bis 2020 um etwa 1,8 % auf 112 TWh spiegelt die reduzierte Nachfrage nach Strom in diesem Zeitraum wider. Der Rückgang basiert hauptsächlich auf der Stilllegung von KWK-Anlagen, die auf Basis von Stein- und Braunkohle betrieben wurden. Im gleichen Zeitraum ist die gesamte Nettostromerzeugung um 9,8 % zurückgegangen.</p><p>Mit der Novellierung des <a href="http://www.kwkg2016.de/">Kraft-Wärme-Kopplungsgesetzes</a> KWKG) zum 01.01.2016 wurde als Ziel festgeschrieben, dass im Jahr 2020 Strom im Umfang von 110 TWh und im Jahr 2025 120 TWh aus KWK-Anlagen erzeugt werden soll. Mit den Regelungen des neuen Gesetzes sollen die Rahmenbedingungen für KWK verbessert werden. Insgesamt zeigt das Gesetz positive Wirkungen. Die KWK-Stromerzeugung im Jahr 2020 lag 7 TWh über dem Zielwert für dieses Jahr. </p><p>Wie wird der Indikator berechnet?</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> basiert auf Daten des Statistischen Bundesamtes für öffentliche und industrielle Kraftwerke (<a href="https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Erzeugung/Tabellen/bilanz-elektrizitaetsversorgung.html">Monatsbericht über die Elektrizitätsversorgung</a> sowie <a href="https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Energie/Erzeugung/Publikationen/Downloads-Erzeugung/stromerzeugungsanlagen-2040640197004.pdf">Fachserie 4, Reihe 6.4</a>). Durch diese Erhebungen werden jedoch nicht alle Anlagen erfasst. Deshalb wurden Modelle entwickelt, um auch die Stromerzeugung durch weitere Anlagen einbeziehen zu können: In <a href="https://www.umweltbundesamt.de/publikationen/kwk-ausbau-entwicklung-prognose-wirksamkeit-im-kwk">Gores et al. 2014</a> sowie <a href="http://eefa.de/Baten_et_al_ET_5_2014.pdf">Baten et al. 2014</a> werden die Modelle und Berechnungsverfahren näher beschrieben.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel <a href="https://www.umweltbundesamt.de/daten/energie/kraft-waerme-kopplung-kwk">"Kraft-Wärme-Kopplung (KWK)"</a> </strong>sowie im Themen-Artikel<strong> „<strong><a href="https://www.umweltbundesamt.de/themen/klima-energie/energieversorgung/kraft-waerme-kopplung-kwk-im-energiesystem">Kraft-Wärme-Kopplung (KWK) im Energiesystem</a></strong>“<strong>.</strong><br></strong></p>
Im Projekt werden die Gestehungskosten fuer die in einer GuD - Anlage parallel erzeugte Waerme und Elektroenergie unter den Randbedingungen sich liberalisierender Energiemaerkte fuer die Landeshauptstadt Erfurt grundsaetzlich analysiert und Vorschlaege fuer eine thermodynamisch korrekte und betriebswirtschaftlich sinnvolle Aufteilung der Kosten auf die beiden Koppelprodukte abgeleitet.
Ausgangssituation: Das Dampfkraftwerk Dürnrohr ist mit einer SCR (Selectiv Catalytic Reduction) Entstickungsanlage im Rauchgasstrom ausgestattet. Durch Alterung der Katalysatoren ist eine Erneuerung einer Katalysatorlage erforderlich. Zusammenfassung: Verfahren zur Reaktivierung (Waschen) der Katalysatoren sollen getestet und speziell für diese Anlage erprobt werden. Innovation: Durch die Vermeidung einer Nachladung können erhebliche Kosteneinsparungen erzielt werden. Bisher liegen bei keinem unserer Kraftwerke Erfahrungen mit der Reaktivierung des Katalysators vor. Nutzen: Der Verbund erwirbt Know-how auf dem Gebiet der Katalysatorreaktivierung, was auch für künftige Anwendungen eine bedeutende Verbesserung der Wirtschaftlichkeit darstellt.
Die Uniper Kraftwerke GmbH (im Folgenden UKW) betreibt am Standort Staudinger in Hessen, Hanauer Landstraße 150, 63538 Großkrotzenburg ein Kraftwerk bestehend aus den Kraftwerksblöcken 4 und 5 und drei Hilfskesseln. Die Blöcke 1 bis 3 sind bereits seit einigen Jahren stillgelegt. Der erdgasbefeuerte Block 4 (622 MWel Nettoleistung) und der kohlebefeuerte Block 5 (522 MWel Nettoleistung) werden auf Anforderung des Übertragungsnetzbetreibers TenneT TSO GmbH der-zeit als Netzreserve zur Deckung von Lastspitzen eingesetzt. Für das Anfahren des Blocks 5 und die Besicherung der Fernwärme werden zusätzlich drei Hilfskessel zur Dampferzeugung mit einer genehmigten Feuerungswärmeleistung (FWL) von jeweils 13,38 MW (insgesamt ca. 40,14 MWth) betrieben. Außerdem werden am Standort zwei weitere mobile Hilfskessel mit jeweils 11 MWth (befristet bis zum 31. Dezember 2030) für die Auskoppelung von Fernwärme betrieben. Die Uniper Kraftwerke GmbH (UKW) plant eine H2-Ready GuD Anlage (Block 8) am Standort des Kraftwerk Staudinger (Hanauer Landstraße 150, 63534 Großkrotzenburg). Das Vorhaben beinhaltet eine Gasturbine mit nachgeschaltetem Abhitzekessel und eine Dampfturbine (in Deutsch daher auch Gas- und Dampfturbinen Anlage oder „GuD Anlage“, und in Englisch auch als Combined-Cycle-Gas-Turbine oder „CCGT“ benannt) sowie diverse Nebeneinrichtungen und weist eine elektrische Leistung von 890 MWel bzw. eine FWL von ca. 1.470 MWth auf. Das immissionsschutzrechtliche Verfahren gemäß BImSchG (vorerst nur für den Brennstoff Erdgas) wird als gestuftes Verfahren durchgeführt. Mit dem hiermit vor-gelegten Antrag wird zunächst ein Vorbescheid gemäß § 9 BImSchG beantragt, in dessen Rahmen auch eine Öffentlichkeitsbeteiligung stattfindet. Entsprechend dem Planungsfortschritt soll dann im anschließenden Genehmigungsverfahren nach § 16 BImSchG die endgültige Zulassung für die Errichtung und den Betrieb der GuD Anlage beantragt werden. Für die GuD-Anlage (Block 8) am Standort Kraftwerk Staudinger soll im Rahmen des Vorbescheides nach § 9 BImSchG ab-schließend über den Standort und einzelne Genehmigungsvoraussetzungen wie folgt entschieden werden. Entscheidung über: - bauplanungs- und bauordnungsrechtlichen Zulässigkeit, - immissionsschutzrechtlichen Genehmigungsfähigkeit sowie - die Vereinbarkeit mit anderen öffentlich-rechtlichen Vorschriften. Im Einzelnen: i: für die Brennstoffe Erdgas und Wasserstoff A. Bauplanungsrechtliche Zulässigkeit und bauordnungsrechtliche Zulässigkeit des Vorhabens; es soll dabei entschieden werden über: den Standort des Vorhabens (Flächen für Gebäude und Komponenten mit maximalen Flächenbedarf und maximaler Höhe, maximale Höhe der Schornsteine, Zufahrtswege für den Lieferverkehr und die Brandbekämpfung, Feuerwehrflächen sowie Flucht und Rettungswege zu benachbarten Anlagen und öffentlichen Straßen); in bauordnungsrechtlicher Hinsicht soll explizit der Brandschutz geprüft werden. Vereinbarkeit mit den zugrundeliegenden Bebauungsplänen; Ausnahmen bzw. Befreiungen von den Festlegungen der für die temporären Baustelleneinrichtungsflächen zugrundeliegenden Bebauungspläne Nr. 30, 31 und 32, sofern erforderlich; Zulassung der Errichtung der gasisolierten Schaltanlage (GIS); B. Erfüllbarkeit der sich ergebenden rechtlichen Pflichten hinsichtlich des gewählten Anlagenkonzeptes (max. Feuerungswärmeleistung, Brennstoffart, effiziente Ener-gieverwendung, Kühlkonzept, Abwärmenutzung und -einleitung, Abwasser- und Niederschlagswassereinleitung, Brauchwasserbedarf, Abfallvermeidung und -entsorgung); C. Erfüllbarkeit der umweltrechtlichen Pflichten hinsichtlich der Emissionen und Immissionen von Lärm sowie der Anforderungen an die Lagerung von wasserge-fährdenden Stoffen etc.); D. Vereinbarkeit mit naturschutzrechtlichen Regelungen; E. Machbarkeit der Wasserentnahme aus und Kühlwasser- und Abwassereinleitung sowie der Wärmeeinleitung in den Main F. Vereinbarkeit mit naturschutzrechtlichen Regelungen und den wasserrechtlichen Vorschriften für die Entnahme von Oberflächenwasser und Einleitung von Kühlwasser, Abwasser und Niederschlagswasser; G. Ausnahme von den Orientierungswerten der Oberflächengewässerverordnung (OGewV); es wird die folgende Anzahl an Betriebsstunden beantragt, bei der die Orientierungswerte der OGewV für die Temperatur im Main überschritten werden dürfen: Monat März: 500 Stunden eine Aufwärmung des Mains von 1 K bei maximaler Misch-Temperatur von 13° C des Mains (die OGewV gibt einen Orientierungswert von 10°C vor); Sommermonate Juni bis August: insgesamt 1.000 Stunden eine Aufwärmung des Mains von 1 K bei maximaler Misch-Temperatur von 26° des Mains (die OGewV gibt einen Orientierungswert von 25°C vor; in der Vergangenheit und bisher gelten noch 28°C); H. Zulässigkeit der Errichtung der Regenwasserrückhaltung, die weitestgehend unter der künftigen Geländeoberkante (GOK) liegt, jedoch Geländer, bis zu 50 cm hohe Aufkantungen und eine Pumpstation über der GOK aufweisen kann, im nicht überbaubaren Teil der Versorgungsfläche 1 des Bebauungsplans Nr. 30, in Übereinstimmung mit § 23 Absatz 3 der BauNV (Zulassung von Ausnahmen) bzw. § 23 Absatz 5 der BauNV (Zulassung von Nebenanlagen); I. Erfüllbarkeit der Pflichten der Störfallverordnung; J. Ausnahmen gemäß § 32 der 44. BImSchV in Verbindung mit der Ausnahmeregelung der Technischen Anleitung Luft (Nr. 5.5.2.1 Absatz 9 TA Luft) hinsichtlich der Einzelfall-Betrachtung bei der Bestimmung der Schornsteinhöhen für Notstromaggregat, Gasvorwärmer, Hilfskessel und Gebäudeheizung; ii: für den Brennstoff Erdgas K. Erfüllbarkeit der umweltrechtlichen Pflichten hinsichtlich der Emissionen und Immissionen von Luftschadstoffen, der Pflichten im Hinblick auf Brandschutz, Explosionsschutz so-wie im Umgang mit wassergefährdenden Stoffen; L. Machbarkeit in Bezug auf die Betriebssicherheitsverordnung. Die jährlichen Betriebsdauer der geplanten Gas- und Dampfturbinen-Anlage Block 8 wird mit 8.760 Stunden (inkl. An- und Abfahrprozesse) beantragt. Für das Projekt wird die am Kraftwerksstandort bereits vorhandene Infrastruktur genutzt. So erfolgt zur Zuführung des Erdgases der Anschluss an eine bereits vorhandene Erdgasstichleitung des Standortes der Open Grid Europe (OGE). Im Zusammenhang mit dem Vorhaben ist zur Anbindung an das 380 kV-Netz der TenneT auch die Errichtung einer erdverlegten 380 kV-Verbindungsleitung am Standort mit oder ohne einer zusätzlichen gasisolierten, eingehausten Schaltanlage (GIS) vorgesehen. Hierzu wurde ein Antrag nach § 9 BImSchG und die zugehörigen Unterlagen eingereicht. Die GuD-Anlage (Block 8) befindet sich im Kraftwerk Staudinger, Hanauer Landstraße 150, 63538 Großkrotzenburg, Gemarkung Großkrotzenburg, Flur 23, 22, 21 und 20, Flurstück 269/22 (Flur 23), 42/1 (Flur 23), 269/16 und 269/20 (Flur 23) und 269/21 (Flur 23), 220/6 (Flur 22), 220/7 (Flur 22), 55/3 (Flur 21), 520/10 (Flur 20), 564 (Flur 20), 565 (Flur 20), 77/2 (Flur 21), 78/3 (Flur 21), 80/2 (Flur 21), 82/3 (Flur 21), 83/2 (Flur 21), 84/2 (Flur 21), 87/5 (Flur 21), 93/2 (Flur 21), 94/2 (Flur 21), 95/2 (Flur 21), 100/7 (Flur 21), 114/6 (Flur 21), 129/6 (Flur 21), 132/5 (Flur 21), 134/5 (Flur 21). Bei der Anlage handelt es sich um eine Anlage nach der Industrieemissionsrichtlinie. Zuständige Behörde für das beantragte Vorhaben ist das Regierungspräsidium Darmstadt, Abteilung Umwelt in Frankfurt. Für das Vorhaben besteht die Pflicht, nach § 6 i. V. m. Nr. 1.1.1 der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG) eine Umweltverträglichkeitsprüfung durchzuführen. Der dazu erforderliche UVP-Bericht wurde mit den Antragsunterlagen vorgelegt und ist dort im Kapitel 20 eingebunden.
Bei der Expansion von Dämpfen in Turbinen wird häufig in das Zwei-Phasen-Gebiet hinein expandiert, um hohe Prozesswirkungsgrade zu erreichen, so dass Kondensation einsetzt. Dieser Vorgang ist bereits von Dampfturbinen in fossil gefeuerten Kraftwerken bekannt, tritt aber auch genauso in Anlagen mit alternativen Fluiden wie CO2 oder Methan auf. Die Kondensation und die daraus resultierende tropfenbeladene Strömung führen zu zusätzlichen Verlusten bei der Expansion. Des Weiteren lagern sich Tropfen auf Oberflächen ab und bilden dort Kondensatfilme, aus denen durch Wiedereintrag und Zerstäubung größere Tropfen entstehen, welche die nachfolgenden Laufschaufeln durch Tropfenschlagerosion schädigen. Alle diese Prozesse können bislang nur unzureichend mit numerischen Strömungssimulationen abgebildet werden, da nach wie vor keine experimentellen Daten zur Validierung vorhanden sind. Im Rahmen des Vorhabens wird hierfür ein Dampfturbinenversuchsstand umfangreich mit Sensorik zur Detektion des Einsetzens der Kondensation, der Messung des dabei entstehenden Tropfenspektrums und der Untersuchung des Filmverhaltens auf Oberflächen ausgestattet. Da Druck und Temperatur im Zwei-Phasen-Gebiet gekoppelt sind, ist die Bestimmung des thermodynamischen Zustands am Austritt von Turbinen und damit die Wirkungsgradberechnung nur möglich, wenn zusätzlich der Nässeanteil im Dampf gemessen wird. Aktuell ist kein Messverfahren verfügbar, das eine solche Messung ohne Aufwand und mit hoher Genauigkeit erlaubt, so dass eine Zustandsüberwachung und Wirkungsgradbestimmung bei nass durchströmten Turbinen schwierig ist. Daher werden verschiedene Ansätze auf ihre Eignung zur stationären Messung des Nässeanteils hin untersucht. Die entwickelten Messverfahren werden anschließend für Wirkungsgradmessungen an einer optimierten Beschaufelung eingesetzt. Mit den Ergebnissen der experimentellen Untersuchungen sollen die verwendeten numerischen Verfahren zur Modellierung der Kondensation validiert werden.
Dieses Projekt konzentriert sich auf die Wirkung der Verbrennungsatmosphären während der Transformation des Energiemarktes bis zur vollständigen Substitution des Erdgases durch Wasserstoff. Der Übergang von Erdgas zu Wasserstoff als Treibstoff für Back-up Kraftanlagen, welche zukünftig Gasturbinen und Kombianlagen mit Gas- und Dampfturbine sein werden, verändert das Abgas der Anlage von CO2-H2O-O2-N2 zu H2O-O2-N2. Dabei ändert sich das Verhältnis (Mol(CO2)/(MolH2O)+Mol(O2)), wobei der Partialdruck des O2 in der Verbrennungsatmosphäre nahezu konstant bleibt. Das Verhältnis der Gase durchläuft während der Erhöhung des Wasserstoffanteils sowohl Bereiche in denen Fe-Basiswerkstoffe eine hohe Oxidationskinetik zeigen als auch den Bereich, der eine Aufkohlung der oberflächennahen Bereiche des Metalls ermöglicht. Der Werkstoff kann unter diesen Bedingungen entlang der Korngrenzen eines Austenits tief durch Oxidation der Korngrenzen geschädigt werden, was während der regelmäßigen Inspektionen zerstörungsfrei mit Ultraschall geprüft werden muss. Im Arbeitspaket zur zerstörungsfreien Prüfung wird das Verhalten des Werkstoffes evaluiert und die Prüftechnik entsprechend angepasst. Die Tiefe der Oxidationsschäden vergrößert die Wahrscheinlichkeit der Bildung von Anrissen und wirkt damit auf die mechanische Sicherheit. In welchem Ausmaß wird durch mechanische Tests an voroxidierten Werkstoffen untersucht. Letztendlich wird das Erreichen unserer Ziele, es ermöglichen, die Oxidationstiefe zerstörungsfrei zu bestimmen und aus diesen Daten zu entscheiden, ob das Bauteil noch sicher betreiben werden kann. Den zeitlichen Fortschritt der Oxidationsschädigung wird als Grundlage aller auf die Laufzeit der Anlage ausgerichteten Berechnungen der aktuellen Schädigung genutzt. Dazu wird ein Modell erstellt, welches die oxidative Schädigung beschreibt. Dieser Beitrag ermöglicht es, Fe-Basiswerkstoffe auf ihre Einsatzfähigkeit in der Wasserstofftechnologie einzuschätzen.
| Origin | Count |
|---|---|
| Bund | 629 |
| Land | 23 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 282 |
| Text | 342 |
| Umweltprüfung | 18 |
| unbekannt | 7 |
| License | Count |
|---|---|
| geschlossen | 28 |
| offen | 284 |
| unbekannt | 338 |
| Language | Count |
|---|---|
| Deutsch | 635 |
| Englisch | 25 |
| Resource type | Count |
|---|---|
| Archiv | 336 |
| Datei | 341 |
| Dokument | 356 |
| Keine | 162 |
| Webseite | 136 |
| Topic | Count |
|---|---|
| Boden | 524 |
| Lebewesen und Lebensräume | 342 |
| Luft | 346 |
| Mensch und Umwelt | 650 |
| Wasser | 460 |
| Weitere | 451 |