API src

Found 165 results.

Gas Mass Spectrometry of Gas Samples of the KTB Main Hole HB1g

In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.

Gas Mass Spectrometry of Gas Samples of the KTB Main Hole HB1a

In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.

Gas Mass Spectrometry of Gas Samples of the KTB Main Hole HB1d

In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.

Gas Mass Spectrometry of Gas Samples of the KTB Pilot Hole VB1b

In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.

Gas Mass Spectrometry of Gas Samples of the KTB Main Hole HB1

In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.

XRD of Cuttings of the KTB Main Hole HB1h

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cuttings of the KTB Pilot Hole HB1g

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

XRD of Cuttings of the KTB Main Hole HB1i

The qualitative and quantitative phase analyses were performed in the KTB field laboratory by x-ray powder diffraction using SIEMENS D 500 diffractometer. During early stages of the KTB project a new method for quantitative phase analysis was developed (see references below). The method is based on the comparison of the diffraction spectrum of the unknown sample with those of pure minerals. The powder diffraction data of the minerals are stored in a database built up of 250 natural minerals separated from various types of igneous and metamorphic rocks. The complete analyses (radiation: Cu K alpha, lambda: 1,5405Å, stepwidth: 0,01°, counting time 2 sec/step, angle 2-80°) was carried out automatically including computations. The results of this quantitative phase analysis were used e.g. to check thin section petrography (and vice versa) and to construct a \"mineralogical rock composition log\".

Geochemical Analysis of Cations of Mud Samples of the KTB Main Hole HB1g.

Geochemical Analysis of Cations of Mud Samples of the KTB Main Hole HB1h.

1 2 3 4 515 16 17