The thermal conductivity on cores is measured in two steps (see Pribnow 1994). First, one face end of the core is sawed and polished. The half space line source is pressed against this preparated face (without further contact medium like water) by a computerized device. The position of the heat source is varied in 15 degree intervals around one semicircle. At each position, 3 repeating measurements are performed. The line source azimuth of the lowest measured thermal conductivity is the strike of the foliation plane. On the other hand, the thermal conductivity is maximal parallel to that direction. This apparent paradox can be explained by the experimental method, because the measurement plane is perpendicular to the orientation of the line source (Pribnow 1994).In a second step a calotte plane perpendicular to the strike of foliation is prepared. A second series of thermal conductivity measurements in 15 degree intervals ...
In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.
The thermal conductivity on cores is measured in two steps (see Pribnow 1994). First, one face end of the core is sawed and polished. The half space line source is pressed against this preparated face (without further contact medium like water) by a computerized device. The position of the heat source is varied in 15 degree intervals around one semicircle. At each position, 3 repeating measurements are performed. The line source azimuth of the lowest measured thermal conductivity is the strike of the foliation plane. On the other hand, the thermal conductivity is maximal parallel to that direction. This apparent paradox can be explained by the experimental method, because the measurement plane is perpendicular to the orientation of the line source (Pribnow 1994).In a second step a calotte plane perpendicular to the strike of foliation is prepared. A second series of thermal conductivity measurements in 15 degree intervals ...
In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.
In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.
In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.
In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.
In the complete KTB-VB and in in the KTB-HB down to a depth of 3003 m the gas phase was released and collected by twirl degassers attached in front of the mud shakers. This open system led to gas losses as well as air contamination. Therefore results obtained down to this depth have only qualitative character. After casing the KTB-HB to a depth of 3003 m a bypass system was installed at the BOP (blow-out preventer) 50 cm below the flow line. A constant part (about 100 l/min) of gas-bearing drill mud is pumped through the bypass directly to a twirl degasser which is isolated against atmosphere. To prevent air contamination or sucking off drill mud the pressure in the gas trap is balanced by charging argon. The released gas phase is completely sucked off and led through a heated hose (in order to prevent water condensation or freezing) to the logging unit and there parallel to the measuring systems gaschromatograph, mass spectrometer and radon logging device.
Origin | Count |
---|---|
Wissenschaft | 165 |
Type | Count |
---|---|
unbekannt | 165 |
License | Count |
---|---|
unbekannt | 165 |
Language | Count |
---|---|
Englisch | 165 |
Resource type | Count |
---|---|
Keine | 165 |
Topic | Count |
---|---|
Boden | 40 |
Lebewesen und Lebensräume | 144 |
Luft | 49 |
Mensch und Umwelt | 160 |
Wasser | 63 |
Weitere | 165 |