API src

Found 48119 results.

Related terms

Waterbase - Biology, 2024

Waterbase serves as the EEA’s central database for managing and disseminating data regarding the status and quality of Europe's rivers, lakes, groundwater bodies, transitional, coastal, and marine waters. It also includes information on the quantity of Europe’s water resources and the emissions from point and diffuse sources of pollution into surface waters. Specifically, Waterbase - Biology focuses on biology data from rivers, lakes, transitional and coastal waters collected annually through the Water Information System for Europe (WISE) – State of Environment (SoE) reporting framework. The data are expected to be collected within monitoring programs defined under the Water Framework Directive (WFD) and used in the classification of the ecological status or potential of rivers, lakes, transitional and coastal water bodies. These datasets provide harmonised, quality-assured biological monitoring data reported by EEA member and cooperating countries, as Ecological Quality Ratios (EQRs) from all surface water categories (rivers, lakes, transitional and coastal waters).

Pictorial information (Binary coded) - Radar data Flechtdorf

High resolution radar data (lmax) of Flechtdorf

Project OTC-Genomics: Environmental and microbial time series data from the Warnow estuary and the Baltic Sea coast

Estuaries and coasts are characterized by ecological dynamics that bridge the boundary between habitats, such as fresh and marine water bodies or the open sea and the land. Because of this, these ecosystems harbor ecosystem functions that shaped human history. At the same time, they display distinct dynamics on large and small temporal and spatial scales, impeding their study. Within the framework of the OTC-Genomics project, we compiled a data set describing the community composition as well as abiotic state of an estuary and the coastal region close to it with unprecedented spatio-temporal resolution. We sampled fifteen locations in a weekly to twice weekly rhythm for a year across the Warnow river estuary and the Baltic Sea coast. From those samples, we measured temperature, salinity, and the concentrations of Chlorophyll a, phosphate, nitrate, and nitrite (physico-chemical data); we sequenced the 16S and 18S rRNA gene to explore taxonomic community composition (sequencing data and bioinformatic processing workflow); we quantified cell abundances via flow cytometry (flow cytometry data); and we measured organic trace substances in the water (organic pollutants data). Processed data products are further available on figshare.

Industrial Emissions Directive 2010/75/EU and European Pollutant Release and Transfer Register Regulation (EC) No 166/2006 - ver. 15.0 Dec. 2025 (Tabular data)

This metadata refers to the geospatial dataset representing the status of the EEA Industrial Reporting database as of 15 December 2025 (version 15). The release and emissions data cover the period 2007-2024 as result of the data reported under the E-PRTR facilities, 2017-2024 for IED installations and WI/co-WIs, and 2016-2024 for LCPs. These data are reported to EEA under Industrial Emissions Directive (IED) 2010/75/EU Commission Implementing Decision 2018/1135 and the European Pollutant Release and Transfer Register (E-PRTR) Regulation (EC) No 166/2006 Commission Implementing Decision 2019/1741. The dataset brings together data formerly reported separately under E-PRTR Regulation Art.7 and under IED Art.72. Additional reporting requirements under the IED are also included.

Gridded habitat ranges of Atlantic salmon (Salmo salar) gathered from historical sources

Until the middle of the 20th century, the Atlantic salmon (Salmo salar) was an important migratory fish species in the Elbe River. Its decline and disappearance from the river and its tributaries during the last century can be seen as an indication of changes in the river habitat. Here we provide historical habitat ranges of Atlantic salmon mapped out of catch records gathered from historical sources and recent data in a simplified presence/absence approach for the Elbe River system. We used a standardized 16 km² grid approach created for data synthesis within SPP 2361 "On the Way to the Fluvial Anthroposphere" for mapping habitat ranges. Time slices for presence data are 1300-1500, 1501-1600, 1601-1700, 1701-1800, 1801-1850, 1851-1900, 1901-1947 and 1996-2021. Between 1947 and 1995 the Salmon was considered extinct in the Elbe River system.

RS92 GRUAN Data Product (beta)

This product is based on Vaisala RS92 radiosonde measurements of temperature, humidity, wind and pressure that have been processed following the requirements of the GCOS Reference Upper Air Network (GRUAN) that were described in Immler et al. [2010]. The GRUAN data product file comply to the requirements of GRUAN in particular by providing a full uncertainty analysis. The uncertainty is calculated according to the recommendations of the “Guide for expressing uncertainty in measurement” [GUM2008]. The total uncertainty is assessed from estimates of the calibration uncertainty, the uncertainty of corrections and statistical standard deviations. Corrections are applied such that the data is bias free according to current knowledge.

Area and volume change of glaciers in the Salzburg region, Austria: a new inventory (2008-2018)

For this update of the glacier inventory of the Salzburg region (Austria), 172 glaciers across 7 mountain groups in the state of Salzburg were mapped. Two datasets are presented here: one derived from orthophotos and one from hillshaded digital elevation models (DEMs). The most recent glacier boundaries were primarily derived from orthophotos taken in 2018. Exceptions include glaciers No. 5016 and 5017, for which mapping is based on data from 2013, and several glaciers in the Zillertal Alps (Nos. 5148, 5150, 5152, 5153, 5154, 9002, 9003, 9004, 9005), which were mapped using data from 2016 (see Fig. 4, and table "GI5_Salzburg_Gletscherliste_Orthofotos" in Bertolotti and Fischer, 2020 and 2021, attached). These boundaries were used to calculate area changes. For volume change calculations, glacier boundaries correspond to the most recent available LiDAR flight years: 2008, 2009, 2012, 2013, or 2018, depending on the glacier (see Figs. 1–3 and table "GI5_Salzburg_Gletscherliste_DGM" in Bertolotti and Fischer, 2020 and 2021). The updated glacier outlines were mapped based on the 2009 inventory (GI3, Fischer et al., 2015), digital elevation models from the latest survey years (Figs. 1–3), and orthophotos from 2018 (or 2013/2016 in the exceptions noted above). Volume changes were calculated using elevation models from 1998 (GI2). Area changes were also compared with earlier inventories: GI1 (Groß, 1987) and GI2 (Lambrecht and Kuhn, 2007). Almost all glaciers are located along the main Alpine ridge and are distributed across seven mountain groups: Ankogel-Hochalmspitz Group, Glockner Group, Granatspitz Group, Hochkönig Group (also known as the Salzburg Limestone Alps), Sonnblick Group (also known as the Goldberg Group), Venediger Group, and Zillertal Alps. Only the three glaciers in the Hochkönig Group are located outside the main Alpine ridge.

Natural variation of flowering time due to cis-regulatory evolution of FLOWERING LOCUS T and its orthologs and paralogs in Brassica napus

In many plant species, FLOWERING LOCUS T and related proteins are the mobile signal that communicates information on photoperiod from the leaves to the shoots, where the transition to flowering is realized. FT expression is tightly controlled at the transcriptional level so that it is restricted to leaves, occurs only in appropriate photoperiods, and integrates ambient temperature and developmental cues, as well as information on biotic and abiotic stress. We previously established that FT transcription in the model plant Arabidopsis thaliana requires proximal promoter cis-elements and a distal enhancer, both evolutionary conserved among Brassicacea species. In addition, FT transcription is blocked prior vernalization in biannual accessions and vernalization-dependency of FT is controlled through a CArG-box located in the first intron that binds the transcriptional repressor FLOWERING LOCUS C (FLC). Chromatin-mediated repression by the Polycomb Group (PcG) pathway is required for photoperiod-dependent FT regulation and participates in FT expression level modulation in response to other cues.In this project, I propose to explore the available sequence data from the 1001 genome project in Arabidopsis to evaluate how often changes in regulatory cis-elements at FT have occurred and how these translate into an adaptive value. Allele-specific FT expression pattern will be measured in F1 hybrids of different accessions in response to varying environmental conditions. FT alleles that show cis-regulatory variation will be further analyzed to pinpoint the causal regulatory changes and study their effect in more detail. The allotetrapolyploid species Brassica napus is a hybrid of two Brassiceae species belonging to the A- and C-type genome, which are in turn mesopolyploid due to a genome triplication that occurred ca. 10x106 years ago. We will determine allele-specific expression of FT paralogs from both genomes of a collection of B. napus accessions. The plants will be grown in the field in changing environmental conditions to maximize the chance to detect expression variation of the paralogs. We will compare the contribution of the founder genomes to the regulation of flowering time and asses variation in this contribution. A particular focus will be to study the impact of chromatin-mediated repression on allele selection in B. napus.

Air Quality e-Reporting: Air quality modelling results processed by the EEA (data flow E1b)

European air quality information reported by EEA member countries, including all EU Member States, as well as EEA cooperating and other reporting countries. The EEA’s air quality database consists of a multi-annual time series of air quality measurement data and calculated statistics for a number of air pollutants. It also contains meta-information on the monitoring networks involved, their stations and measurements, air quality modelling techniques, as well as air quality zones, assessment regimes, compliance attainments and air quality plans and programmes reported by the EU Member States and European Economic Area countries.

METOP GOME-2 - Nitrogen Dioxide (NO2) - Global

The Global Ozone Monitoring Experiment-2 (GOME-2) instrument continues the long-term monitoring of atmospheric trace gas constituents started with GOME / ERS-2 and SCIAMACHY / Envisat. Currently, there are three GOME-2 instruments operating on board EUMETSAT's Meteorological Operational satellites MetOp-A, -B, and -C, launched in October 2006, September 2012, and November 2018, respectively. GOME-2 can measure a range of atmospheric trace constituents, with the emphasis on global ozone distributions. Furthermore, cloud properties and intensities of ultraviolet radiation are retrieved. These data are crucial for monitoring the atmospheric composition and the detection of pollutants. DLR generates operational GOME-2 / MetOp level 2 products in the framework of EUMETSAT's Satellite Application Facility on Atmospheric Chemistry Monitoring (AC-SAF). GOME-2 near-real-time products are available already two hours after sensing. The operational NO2 total column products are generated using the algorithm GDP (GOME Data Processor) version 4.x integrated into the UPAS (Universal Processor for UV / VIS Atmospheric Spectrometers) processor for generating level 2 trace gas and cloud products. The total NO2 column is retrieved from GOME solar back-scattered measurements in the visible wavelength region (425-450 nm), using the Differential Optical Absorption Spectroscopy (DOAS) method. For more details please refer to relevant peer-review papers listed on the GOME and GOME-2 documentation pages: https://atmos.eoc.dlr.de/app/docs/

1 2 3 4 54810 4811 4812