API src

Found 773 results.

Similar terms

s/dentrifikation/Denitrifikation/gi

Forschergruppe (FOR) 2337: Denitrifikation in landwirtschaftlichen Böden: Prozesssteuerung und Modellierung auf verschiedenen Skalen (DASIM), Teilprojekt: Bodeninkubationen zur Gewinnung von Modellvalidierungsdatensätzen und Experimente zur Quantifizierung des anaeroben Volumenanteils im Boden

Robuste Datensätze zur Validierung von N2 Flüssen aus Denitrifikationsmodellen sind rar, vor allem wegen der begrenzten Verfügbarkeit geeigneter Methoden, aber auch aufgrund der extremen raum-zeitlichen Heterogenität der Denitrifikation. Der anaerobe Volumenanteil im Boden, eine wesentliche Steuergröße der Denitrifikation, ist bekanntlich von der räumlichen Verteilung der Gasdiffusivität und der Respiration abhängig. Durch die begrenzte Messbarkeit seiner Regelfaktoren wurde der anaerobe Volumenanteil im Boden bisher kaum quantifiziert. Heute stehen jedoch besser geeignete Methoden zur Verfügung. Diese Aspekte werden wir in vier Abschnitten behandeln. 1. Neue und verbesserte Stabilisotopenmethoden sollen eingesetzt werden, um Datensätze zu erheben, die die Aktivität der Denitrifikation und ihre Regelung in hoher räumlichen und zeitlichen Genauigkeit und Auflösung abbilden. Diese Datensätze dienen der Validierung bestehender und Kalibrierung neuer Denitrifikationsmodelle, die in Teilprojekten von DASIM (P7, P8, PC) angewendet und/oder entwickelt werden sollen. 2. Durch Inkubationsversuche mit variierter Bodenmenge unter standardisierten Bedingungen werden wir das für die Denitrifikation repräsentative Elementarvolumen als Grundlage für das Hochskalieren bei der Modellierung untersuchen. 3. Zur Bestimmung des anaeroben Bodenvolumenanteils werden wir in Kooperation mit P1 und P8 die räumliche Verteilung der Gasdiffusivität sowie Denitrifikationsaktivitäten unter definierten Sauerstoffverhältnissen messen. Diese verschiedenen Ansätze werden kreuzvalidiert und der aussichtsreichste wird bei der Validierung des anaeroben Volumens in den neuen Denitrifikationsmodellen (P8) Anwendung finden. 4. Wir werden testen, ob die räumlichen Verteilungen der Denitrifikationsaktivität sowie ihrer Kontrollfaktoren mit NanoSIMS bestimmt werden können und ob NanoSIMS geeignet ist, um in Phase 2 von DASIM heterogene mikroskalige Prozesse in größerem Umfang zu untersuchen. Diese Tests beinhalten die Messung der Verteilung der organischen Substanz in ausgewählten Bodenaggregaten und eine neue 15N-Tracermethode zur Lokalisierung von Nitratabbau in Aggregaten.

Stickstoffentfernung mit dem Belebungsverfahren aus Abwaessern der pharmazeutischen Industrie

Eine bestehende Belebungsanlage soll so erweitert werden, dass der hohe Stickstoffgehalt durch Nitrifikation-Denitrifikation weitestgehend reduziert wird. Fuer ausreichende Information ueber die bestmoegliche Betriebsweise und den zu erreichenden Grad der Stickstoffelimination werden zwei Pilotanlagen betrieben. Bislang konnte weitgehende Nitrifikation und auch Denitrifikation erreicht werden. Um einen langfristig stabilen Reinigungsprozess mit gleichzeitig niedrigen Stickstoffablaufwerten zu erreichen, ist jedoch noch eine laengere Versuchsperiode erforderlich.

Potenzielle Nitratkonzentration im Sickerwasser (2019)

Die potenzielle Nitratkonzentration im Sickerwasser in [mg NO3/l] ist eine wichtige Kenngröße zur Abschätzung und Bewertung der Sickerwassergüte an der Untergrenze des Wurzelraumes. Im Rahmen des landesweiten Basis-Emissionsmonitorings erfolgt die Abschätzung der potenziellen Nitratkonzentration auf Grundlage des Stickstoff-Flächenbilanzsaldos aus der Landwirtschaft auf Gemeindeebene, der atmosphärischen N-Deposition, der Landnutzung nach ATKIS-DLM, der zusätzlichen N-Mobilisierung bzw. Immobilisierung im Boden, dem Nitratabbau im Boden (Denitrifikation) sowie der Sickerwassermenge. Die berechnete potenzielle Nitratkonzentration im Sickerwasser wird neben den gemessenen Nitratkonzentrationen in den Grundwassermessstellen zur Gefährdungsabschätzung und Bewertung des chemischen Zustands der Grundwasserkörper gemäß EG-WRRL herangezogen. Bei der landesweit ermittelten potenziellen Nitratkonzentration im Sickerwasser ist zu beachten, dass die Werte aufgrund der räumlichen Auflösung der verfügbaren Eingangsdaten nicht für eine schlaggenaue Bewertung geeignet sind. Detaillierte Methodenbeschreibung siehe: Methodik_Basis_Emissionsmonitoring_LBEG.pdf

Ueber die Herkunft von Ammonium im Wasser

In einigen Veroeffentlichungen der letzten Jahre wird die Bildung von Ammonium aus Nitrat in Frage gestellt. Wir haben aus je einer Erd- und Talsperrensedimentprobe 60 verschiedene Staemme von nitratammonifizierenden Bakterien erhalten. Von den Bakterien, die unter anaeroben Bedingungen aus Nitrat Ammonium bilden, sind diejenigen zu trennen, die Nitrat unter Bildung von N2 oder N2O denitrifizieren. Verschieden von beiden Prozessen ist die Ammoniumbildung aus organischen, stickstoffhaltigen Verbindungen (Ammonifikation). Nitratammonifizierende Bakterien koennen auch Nitrit und teilweise Hydroxylamin unter anaeroben Bedingungen reduzieren. Sowohl bei der Denitrifikation als auch bei der Nitratammonifikation kann aus organischer Substanz Ammonium gebildet werden.

Linking nutrient cycles, land use and biodiversity along an elevation gradient on Mt. Kilimanjaro

To understand impacts of climate and land use changes on biodiversity and accompanying ecosystem stability and services at the Mt. Kilimanjaro, detailed understanding and description of the current biotic and abiotic controls on ecosystem C and nutrient fluxes are needed. Therefore, cycles of main nutrients and typomorph elements (C, N, P, K, Ca, Mg, S, Si) will be quantitatively described on pedon and stand level scale depending on climate (altitude gradient) and land use (natural vs. agricultural ecosystems). Total and available pools of the elements will be quantified in litter and soils for 6 dominant (agro)ecosystems and related to soil greenhouse gas emissions (CO2, N2O, CH4). 13C and 15N tracers will be used at small plots for exact quantification of C and N fluxes by decomposition of plant residues (SP7), mineralization, nitrification, denitrification and incorporation into soil organic matter pools with various stability. 13C compound-specific isotope analyses in microbial biomarkers (13C-PLFA) will evaluate the changes of key biota as dependent on climate and land use. Greenhouse gas (GHG) emissions and leaching losses of nutrients from the (agro)ecosystems and the increase of the losses by conversion of natural ecosystems to agriculture will be evaluated and linked with changing vegetation diversity (SP4), vegetation biomass (SP2), decomposers community (SP7) and plant functional traits (SP5). Nutrient pools, turnover and fluxes will be linked with water cycle (SP2), CO2 and H2O vegetation exchange (SP2) allowing to describe ecosystem specific nutrient and water characteristics including the derivation of full GHG balances. Based on 60 plots screening stand level scale biogeochemical models will be tested, adapted and applied for simulation of key ecosystem processes along climate (SP1) and land use gradients.

Sauerstoffabnahme im Ozean: Implikationen für die N2O Produktion und die Atmosphäre

N2O ist ein wichtiges Treibhausgas und seine atmosphärische Lebensdauer ist ausreichend lang, um in die Stratosphäre zu gelangen wo es an ozonabbauenden photochemische Reaktionen beteiligt ist (de Bie et al. 2002). Der Ozean ist eine bedeutende Quelle von N2O und macht etwa 35% der natürlichen Quellen aus. Die mikrobielle Produktion von N2O (NH4+-Oxidation, Nitrifizierer-Denitrifikation, Denitrifikation) wird weitgehend über die Konzentration von gelöstem Sauerstoff (DO) reguliert. Unterhalb einer bestimmten, aber ungenau definierten DO-Konzentration, findet deutlich erhöhte N2O Produktion statt. Die Hinweise auf sinkende DO-Konzentrationen im Ozean häufen sich und dies wird zu einer erhöhten ozeanischen N2O Produktion und somit zu einer erhöhten N2O-Emission in die Atmosphäre führen. Bevor dies geschieht ist entscheidend, dass wir 1) die aktuellen N2O Bedingungen im Ozean identifizieren (d.h. N2O-Verteilung, Produktion und Produktionswege) und 2) bestimmen, wie sich die N2O Bedingungen unter verschiedenen Szenarien zukünftiger DO-Konzentrationen ändern werden. Für Punkt 1 werden Arbeiten im nordöstlichen tropischen Atlantik durchgeführt, da dort DO-Konzentrationen herrschen, die für den größten Teil des Ozeans charakteristisch sind. Für Punkt 2 werden wir Arbeit in zwei extremen Sauerstoffminimumzonen (OMZ) durchzuführen (im südöstlichen tropischen Pazifik und in einem low oxygen eddy im nordöstlichen tropischen Atlantik), wo die DO-Konzentrationen wesentlich niedriger sind als im Großteil des Ozeans. In beiden Regionen werden wir: 1) N2O-Konzentrationen messen; 2) del15N, del18O und 15N Site Preference von N2O messen, um die relative Bedeutung, die die verschiedenen Produktionswege von N2O an der Gesamtkonzentration haben, zu bestimmen; 3) N2O-Produktionsraten für jeden der verschiedenen Produktionswege mittels der 15N-Tracer-Technik bestimmen. Zusätzliche Molekularanalysen werden helfen, die verschiedenen N2O-produzierenden Organismen zu charakterisieren und zu quantifizieren. Um die Auswirkungen zu studieren, die eine erhöhte N2O-Produktion im Ozean (als Folge der abnehmenden DO-Konzentration) für die Atmosphäre hat, ist es wichtig, dass wir die Faktoren die den Gasaustausch von N2O beeinflussen, besser verstehen. Mittels der Eddy-Kovarianz-Technik werden wir N2O Flüsse aus dem Meer direkt messen und mit physikalischen, chemischen und biologischen Parametern vergleichen.

Simultane Minimierung der Arsen Mobilisierung und N2O Emission in Reisfeldböden

Reis ist eine wichtige Nahrungsquelle für Millionen von Menschen in Asien. Die Qualität des Reises wurde oft wegen der Anreicherung von giftigem Arsen, welches sich durch die Bewässerung mit kontaminiertem Wasser in den Reiskörnern ansammelt, diskutiert. In vielen Regionen ist die Verunreinigung des Wassers mit Arsen natürlichen Ursprungs. Arsen wird durch Auswaschen von arsenreichen Gebirgszügen im Grundwasser akkumuliert. Traditioneller Nassreisanbau verhindert die Versorgung des Bodens mit Sauerstoff und erzeugt reduzierende Bedingungen, unter welchen mobiles reduziertes Arsen(III) im Pflanzengewebe aufgenommen und in den Reiskörnern angesammelt werden kann. Der Nassreisanbau hat weiterhin Auswirkungen auf die Produktion von Treibhausen wie N2O. Unter anoxischen Bedingungen kann N2O durch chemische und biotische Denitrifikationsprozesse erzeugt werden. Die Anwendung von Stickstoffdünger verschiebt die Redoxbedingungen im Reisfeldboden in Richtung Denitrifikation. Die mikrobielle Denitrifikation bewirkt die Bildung von Nitrit als Zwischenprodukt und N2 oder N2O als Endprodukt der Reaktion. In Eisen-reichen, reduzierten Reisfeldböden reagiert gelöstes Eisen (II) während des Prozesses der Chemodenitrifikation mit Nitrit und produziert eine enorme Menge des Treibhausgases N2O. Bei der Chemodenitrifikation bilden sich allerdings auch Eisen(III)-minerale, welche durch ihre hochreaktive Oberflächen Arsen sorbieren und somit immobilisieren können. In früheren Studien konnte gezeigt werden, dass die Bildung von Eisen(III)-mineralen im Reisfeldboden die Anreicherung an Arsen in den Reiskörnern vermindern kann. Die Anwendung von weniger oder keinem Stickstoffdünger im Nassreisanbau würde zu einer Verschiebung der Redoxbedingungen in Richtung Eisen(III)-Reduktion führen. Die mikrobielle Eisen(III)-Reduktion löst teilweise Eisen(III)-Minerale und re-mobilisiert somit toxisches Arsen im Boden, verhindert allerdings die Bildung von N2O durch (Chemo)Denitrifikation. Im beantragte Forschungsprojekt liegt der Fokus darauf den Einsatz von Stickstoffdünger so zu optimieren, dass man minimale Mengen an klimaschädlichem N2O im Reisfeldboden produziert und zeitgleich maximal die Immobilisierung von gesundheitsschädlichem Arsen durch Eisen(III)-Mineralbildung anstrebt. In diesem Zusammenhang werden wir experimentelle Datenerfassung mit theoretischer Umweltsystemanalyse kombinieren, um von den experimentellen Bedingungen Rückschlüsse auf natürliche Systeme im großen Maßstab zu ziehen.

Biogeochemie des Kohlenstoffs und Stickstoffs im Arabischen Meer - ein Beitrag zur Internationalen Indian Ocean Expedition 2

Abbau von hohen Nitratgehalten in vorwiegend anorganisch belasteten Abwaessern

Zahlreiche Industrieabwaesser weisen einen hohen Gehalt von anorganischen N-Verbindungen auf. Diese muessen vor Einleitung in den Vorfluter beseitigt werden, da sie sowohl fuer die Gewaesser-Biologie (Eutrophierung) als auch fuer die Trinkwassergewinnung Probleme aufwerfen. Hierfuer kommen in erster Linie mikrobiologische Verfahren in Frage: verschiedene Bakterien koennen Nitrat unter aneroben Bedingungen zu N2 reduzieren, das als Gas entweicht (Denitifikation); Ammonium kann von sog. Nitrifikanten zu Nitrat unter aeroben Verhaeltnissen oxidiert werden, das dann anschliessend (wie o. erwaehnt) zu N2 reduziert werden kann. - Ziel des Projektes ist es, diese Prozesse mit belasteten Abwaessern unter Verwendung besonders geeigneter Bakterien zu untersuchen. Dabei sollen die einzelnen Parameter zunaechst im Labormasstab (und zwar im kontinuierlichen Betrieb) ermittelt werden. Fuer die Denitrifikation sollen Thiobacillen eingesetzt werden, deren Verwendung besonders praktisch und oekonomisch ist, da sie keine organische C-Quelle benoetigen.

Modellierung der CH4 und N2O Spurengasemissionen aus Reisanbaugebieten in China

Im Rahmen des Forschungsvorhabens soll ein prozessorientiertes Modell zur Beschreibung von biogeochemischen Stoffumsetzungen in landwirtschaftlich genutzten Böden derart weiterentwickelt werden, daß es zur Prognose von CH4- und N2O-Spurengasemissionen aus dem Reisanbau eingesetzt werden kann. Insbesondere soll die numerische Beschreibung der in der CH4- und N2O-Produktion und Konsumption involvierten mikrobiologischen Prozesse Methanogenese, Methan-Oxidation, Nitrifikation und Denitrifikation und deren Abhängigkeit von Änderungen des Redoxpotentials im Boden implementiert bzw. verbessert werden. Zudem sollen die verschiedenen Mechanismen, die zur Emission von Spurengasen aus dem Reisanbau beitragen (Diffusion, Gasblasenbildung bei Überstauung, Pflanzentransport) sowie die Auswirkung von radialen Sauerstoffverlusten der Reiswurzeln auf die mikrobiologischen Prozesse in einer durch Anaerobiosis dominierten Umgebung in das Modell implementiert werden.

1 2 3 4 576 77 78