API src

Found 1064 results.

Similar terms

s/dentrifikation/Denitrifikation/gi

Grundwassermessstelle APP_GWMN_300

Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_300 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper EI14 : Eider/Treene - Geest. Es liegen insgesamt 43975 Messwerte vor. Es liegen außerdem 47 Probenentnahmen vor (siehe Resourcen).

Produktion und Konsumption (Flüsse) der klimarelevanten Spurengase, Lachgas und Methan in einem Dauergrünland unter steigender atmosphärischer CO2-Konzentration

Außer dem bekannten Treibhausgas Kohlendioxid (CO2) existieren weitere stark klimawirksame Spurengase biologischen Ursprungs, z.B. Lachgas (N2O) und Methan (CH4), die mikrobiell im Boden produziert (N2O, CH4) oder im Falle des Methans auch verbraucht (oxidiert) werden. Die steigende atmosphärische CO2-Konzentration kann sich über die Pflanzen in vielfacher Weise auf die bodenmikrobiellen, Spurengasproduzierenden Prozesse auswirken. So ist beispielsweise nachgewiesen worden, dass der Wasserverbrauch der Pflanzen unter erhöhtem CO2 häufig sinkt und die Abgabe von leicht zersetzbarem Kohlenstoff an den Boden (Wurzelexudation) steigt. Beides könnte die Denitrifikation und damit die N2O-Produktion begünstigen, ebenso die Methanproduktion, wenn im Boden anaerobe Bedingungen (z.B. durch Überflutung) eintreten. Steigende Bodenfeuchte würde zugleich die Sauerstoff-abhängige Methanoxidation im Oberboden hemmen. Zu diesem Thema existieren bislang weltweit nur Kurzzeit- und Laborstudien. Im hier vorgestellten Projekt werden im Freilandexperiment die Langzeitauswirkungen steigender atmosphärischer CO2-Konzentrationen über das System Pflanze-Boden auf die Flüsse der klimawirksamen Spurengase N2O und CH4 in einem artenreichen Dauergrünland untersucht. Hierzu gelangt ein im Institut für Pflanzenökologie neuentwickeltes Freiland-CO2-Anreicherungssystem (FACE) zur Anwendung, bei dem die CO2-Konzentration in drei Anreicherungsringen seit Mai 1998 um etwa 20 Prozent gegenüber den drei Kontrollringen erhöht wurde. Über die Jahresbilanzierungen der Spurengasflüsse sowie über begleitende Prozessstudien soll geklärt werden, wie und auf welche Weise erhöhtes CO2 auf die N2O- und CH4-Spurengasflüsse rückwirkt. Die ersten Ergebnisse zeigen deutlich, dass in einem etablierten artenreichen Ökosystem wie dem untersuchten Feuchtgrünland zuerst die unterirdischen Prozesse auf die steigenden CO2-Konzentrationen reagierten (Bestandesatmung). Die oberirdische Biomasse zeigte erst nach etwa 1,5 Jahren der CO2-Anreicherung einen signifikanten Zuwachs gegenüber den Kontrollflächen. Im Jahr 1997, vor dem Beginn der CO2 -Anreicherung, waren sowohl die N2O-Emissionen als auch die CH4 Flüsse auf den (späteren) Anreicherungs- und den Kontrollflächen fast identisch. Seit Beginn der Anreicherung hingegen sind die N2O-Emissionen vor allem während der Vegetationsperiode dramatisch angestiegen: auf 278 Prozent der Emissionen der Kontrollflächen. Die Methanoxidation war rückläufig unter erhöhtem CO2: Mittlerweile oxidieren die CO2 Anreicherungsflächen 20 Prozent weniger CH4 als die Kontrollflächen (Jahr 2000), wobei auch hier der größte Unterschied während der Vegetationsperiode auftrat. Eine erhöhte Bodenfeuchte kommt als Erklärung nicht in Frage, da sich diese nicht geändert hat.

Sonderforschungsbereich (SFB) 1076: Forschungsverbund zum Verständnis der Verknüpfungen zwischen der oberirdischen und unterirdischen Biogeosphäre, Teilprojekt B 05: Von den Baumkronen zum Aquifer: die Rolle mikrobieller Prozesse in der Bildung und Umsetzung von Nitrat in der 'Critical Zone'

Dieses Projekt untersucht mikrobiell vermittelte Schlüsselprozesse im Zuge des Nitrat-Eintrages in bzw. Stickstoffverlustes aus den Kalkstein-Aquiferen des Hainich CZE. Unsere Untersuchungen befassen sich mit Änderungen von Nitrifikationspotential und Nitrifikanten-Gemeinschaften von den Baumkronen bis hin zu den Aquiferen, inklusive einer Abschätzung der möglichen Rolle der vollständigen Nitrifikation (Comammox), sowie mit der Relevanz der anaeroben Ammonium-Oxidation (Anammox) im Vergleich zur Denitrifikation für Stickstoff-Verluste aus dem Grundwasser. Unter Verwendung von 15N-basierten Techniken, quantitativer PCR, Illumina Amplikon-Sequenzierungen und Single Cell Genomics werden Aktivitätsmessungen von Nitrifikation, Anammox und Denitrifikation zu räumlichen Verbreitungsmustern und transkriptioneller Aktivität der entsprechenden mikrobiellen Gruppen in Beziehung gesetzt.

Grundwassermessstelle APP_GWMN_563

Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_563 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper EL13 : Krückau - Altmoränengeest Nord. Es liegen insgesamt 23693 Messwerte vor. Es liegen außerdem 15 Probenentnahmen vor (siehe Resourcen).

Grundwassermessstelle APP_GWMN_453

Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_453 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper EL13 : Krückau - Altmoränengeest Nord. Es liegen insgesamt 32368 Messwerte vor. Es liegen außerdem 14 Probenentnahmen vor (siehe Resourcen).

Grundwassermessstelle APP_GWMN_275

Dieser Datensatz beschreibt die Grundwassermessstelle APP_GWMN_275 in Schleswig-Holstein. Die Messstelle liegt im Grundwasserkörper EI14 : Eider/Treene - Geest. Es liegen insgesamt 52450 Messwerte vor. Es liegen außerdem 55 Probenentnahmen vor (siehe Resourcen).

Messung und Modellierung der N2O- und N2-Bildung durch Denitrifikation in der Drainzone zur standortspezifischen Abschätzung des Nitratabbaus in der ungesättigten Sickerwasserzone unterhalb des Wurzelraumes

Das Ziel dieses Verbundvorhabens ist die quantitative Bestimmung der Minderung von Nitrateinträgen in das Grundwasser durch den Abbau von Nitrat zu N2O und N2 durch Denitrifikation in der Drainzone. Dazu wird die Denitrifikation in Proben aus der Drainzone in Abhängigkeit wichtiger Bodeneigenschaften gemessen und ein Modell entwickelt und parametrisiert. Dazu werden typische Standorte in Deutschland mit unterschiedlich mächtigen Drainzonen untersucht. Die modellhafte Beschreibung wird auch eine standortspezifische Bewertung des Nitratabbaus ermöglichen. Damit wird das Verbundvorhaben unsere Kenntnisse über den Nitratabbau und die N2O und N2 Produktion im Unterboden, speziell aus der Drainzone erweitern und damit die Grundlage zu einem Landmanagement legen, das die Umsätze von Nitrat in dieser Zone berücksichtigt.

Abbau von hohen Nitratgehalten in vorwiegend anorganisch belasteten Abwaessern

Zahlreiche Industrieabwaesser weisen einen hohen Gehalt von anorganischen N-Verbindungen auf. Diese muessen vor Einleitung in den Vorfluter beseitigt werden, da sie sowohl fuer die Gewaesser-Biologie (Eutrophierung) als auch fuer die Trinkwassergewinnung Probleme aufwerfen. Hierfuer kommen in erster Linie mikrobiologische Verfahren in Frage: verschiedene Bakterien koennen Nitrat unter aneroben Bedingungen zu N2 reduzieren, das als Gas entweicht (Denitifikation); Ammonium kann von sog. Nitrifikanten zu Nitrat unter aeroben Verhaeltnissen oxidiert werden, das dann anschliessend (wie o. erwaehnt) zu N2 reduziert werden kann. - Ziel des Projektes ist es, diese Prozesse mit belasteten Abwaessern unter Verwendung besonders geeigneter Bakterien zu untersuchen. Dabei sollen die einzelnen Parameter zunaechst im Labormasstab (und zwar im kontinuierlichen Betrieb) ermittelt werden. Fuer die Denitrifikation sollen Thiobacillen eingesetzt werden, deren Verwendung besonders praktisch und oekonomisch ist, da sie keine organische C-Quelle benoetigen.

Ueber die Herkunft von Ammonium im Wasser

In einigen Veroeffentlichungen der letzten Jahre wird die Bildung von Ammonium aus Nitrat in Frage gestellt. Wir haben aus je einer Erd- und Talsperrensedimentprobe 60 verschiedene Staemme von nitratammonifizierenden Bakterien erhalten. Von den Bakterien, die unter anaeroben Bedingungen aus Nitrat Ammonium bilden, sind diejenigen zu trennen, die Nitrat unter Bildung von N2 oder N2O denitrifizieren. Verschieden von beiden Prozessen ist die Ammoniumbildung aus organischen, stickstoffhaltigen Verbindungen (Ammonifikation). Nitratammonifizierende Bakterien koennen auch Nitrit und teilweise Hydroxylamin unter anaeroben Bedingungen reduzieren. Sowohl bei der Denitrifikation als auch bei der Nitratammonifikation kann aus organischer Substanz Ammonium gebildet werden.

Modellierung des Einflusses von Pflanzenrückständen, flüssigorganischer Düngung und zugehöriger Applikationstechnik auf N2O und N2-Emissionen aus landwirtschaftlichen Böden

Die Düngung von Ackerböden mit Gülle und die Einarbeitung von Ernterückständen beeinflussen gasförmige N-Verluste in die Atmosphäre einschließlich NO, N2O und N2 sowie die Nitratauswaschung. Ihr Ausmaß hängt von der komplexen Wechselwirkung zwischen Techniken zur Bewirtschaftung von Gülle und Ernterückständen sowie von den Eigenschaften dieser Substrate und des Bodens ab. Die erste Phase von MOFANE befasste sich mit der allgemeinen Frage, wie sich die Gülledüngung und ihre Ausbringungsweise auf die N2O- und N2-Flüsse aus landwirtschaftlichen Böden auswirken, wie ihre Optimierung Emissionen verringern und gleichzeitig die Ernteerträge erhalten können und wie die Modelle verbessert werden müssten, um Antworten zu finden. Wir haben dies durch gezielte Experimente zur Quantifizierung von N2-, N2O- und NO-Flüssen sowie von Bruttomineralisierungs- und Nitrifikationsraten von Boden-Gülle-Systemen unter kontrollierten Bedingungen bearbeitet und die Ergebnisse zur Bewertung und Verbesserung von Modellen verwendet. Hier beantragen wir ein Follow-up mit dem Ziel, die Auswirkungen von Pflanzenrückständen auf die Denitrifikationsdynamik in unsere Modelle einzubeziehen und die Porenstruktur sowie die Verteilung von Gülle und Ernterückständen zu quantifizieren, um verbesserte Eingangsdaten für das Modell zu liefern. Aufbauend auf der ersten Phase quantifizieren wir nun Hotspots, die durch die Ausbringung von organischem Dünger entstehen mit einer Kombination aus Röntgen-CT und O2-Mikrosensoren in Experimenten mit strukturiertem Boden. Während in der ersten Phase der Fokus nur auf Gülle lag, werden wir auch die Einarbeitung von Pflanzenresten untersuchen. Unser Arbeitsprogramm umfasst folgende Aufgaben. - Untersuchung der Denitrifikation in strukturierten Böden unter realistischen Bedingungen mit 1) verschiedenen organischen Substraten, nämlich Gülle und Pflanzenresten und 2) unterschiedlicher Ausbringung, eingearbeitet durch Pflügen (konventionelle Bodenbearbeitung) und mit einem Grubber (reduzierte Bodenbearbeitung) - Reduzierung der strukturellen Komplexität von natürlichen, ungestörten Böden auf eine begrenzte Anzahl von aussagekräftigen Größen, die durch Röntgen-CT abgeleitet werden, was in Modellparameter übersetzt werden kann, die 1) den Hotspot, den Boden und seine Grenzschicht und 2) die Verteilung der Hotspots beschreiben. - Explorative Modellentwicklung zur Beschreibung von Hot-Spot-Effekten der Einarbeitung von Gülle und Ernterückständen durch konventionelle und reduzierte Bodenbearbeitung auf die Denitrifikation, einschließlich der weiteren Verbesserung und Entwicklung des DyMaN-Submoduls, das ursprünglich zur Modellierung von räumlichen Gülleeffekten konzipiert wurde, um auch Hot-Spot-Effekte von Pflanzenrückständen abzudecken. - Implementierung von Modellansätzen, die räumliche Effekte auf den C- und N-Kreislauf beschreiben, in das biogeochemische Modell DNDCv.CAN. Modellvalidierung des integrierten Modells entlang bestehender Datensätze

1 2 3 4 5105 106 107