Pilze sind eine der am diversesten, jedoch am wenigsten untersuchten mikrobiellen Gruppen in marinen Gewässern. Eine Untergruppe der Pilze, kurz als Chytridien bekannt, umfasst häufig auftretende Parasiten auf Phytoplankton, welche eine starke Belastung für das Phytoplanktonwachstum, die Entwicklung von Algenblüten und deren Populationsdynamiken darstellen. Parasitäre Chytridien befallen alle Hauptgruppen von Phytoplankton und treten bevorzugt in Küstenregionen mit hoher Phytoplanktonbiomasse und Produktivität auf. Die Auswirkungen von parasitären Pilzen auf Stoffkreisläufe und die Funktion von Ökosystemen sind jedoch kaum bekannt bzw. quantifiziert. Die Emmy Noether-Nachwuchsgruppe wird die funktionelle und quantitative Rolle parasitärer Pilze für die Phytoplanktonproduktivität und den Stoffkreislauf in Brack- und Meerwasser untersuchen. Unsere Ziele sind (1) Betrachtung der Wechselwirkungen zwischen Phytoplankton und Chytridien auf Einzelzell-Ebene, (2) Untersuchungen der integrativen Rolle von Chytridien in aquatischen Nahrungsnetzen und (3) Aufklärung der Auswirkungen von parasitären Pilzen auf Remineralisierungs- und Sedimentationsprozesse. Unser umfassender Ansatz beinhaltet experimentelle Studien mit Phytoplankton-Pilz Co-Kulturen sowie mit natürlichen Planktongemeinschaften, mittels Analysen auf Zell- und Mikoskalen-Ebene bis hin zu mesoskaligen Stoffflüssen entlang der Wassersäule. Im Wesentlichen werden wir den Transfer von Kohlenstoff und Stickstoff vom Phytoplankton durch das pelagische Nahrungsnetz innerhalb der photischen Zone bis hin zum Absinken als Detritus in die Tiefe verfolgen. Das Projektergebnis soll ein ganzheitliches Verständnis der Rolle von Chytridien an der Basis aquatischer Nahrungsnetze und Produktivität fördern, einschließlich der zugrunde liegenden Mechanismen und Größenordnungen. Angesichts der potenziellen Signifikanz parasitärer Pilze für die Abschwächung von Produktivität, Sinkstoffflüssen aber auch von toxischen Algenblüten in Küstengebieten, sollen die gewonnenen Daten mit lokalen und globalen Stoffkreisläufen verknüpft und in zukünftige Entscheidungen zum Küstenmanagement implementiert werden.
Biologische Bodenkrusten (Biokrusten) sind Hotspots an mikrobieller Diversität und Aktivität, die als 'Ökosystemingenieure' biogeochemische Kreisläufe (N, P) kontrollieren und die Bodenoberfläche stabilisieren. Biokrusten sind ein komplexes Netzwerk vielfältiger, interagierender Mikroorganismen mit verschiedensten Lebensweisen. In den gemäßigten Breiten ist wenig über die Einflussfaktoren auf Struktur und Funktion der Biokrusten bekannt. Daher wollen wir die Diversität der Mikroorganismen in Biokrusten (Bakterien, Protisten, Pilze und Algen) und ihre biogeochemische Funktion in den Waldflächen der Biodiversitätsexploratorien (BE) entlang von Landnutzungsgradienten untersuchen, um deren Beeinflussung durch Landnutzung und Umweltfaktoren zu verstehen.Das zentral organisierte, neue Störexperiment in den Waldflächen ist eine hervorragende Möglichkeit, um die Entwicklung einer Biokruste unter natürlichen Bedingungen nach einer starken Störung zu verfolgen. Eine Teilfläche simuliert Kahlschlag (die Stämme werden entfernt), die andere Teilfläche einen zukünftig häufiger auftretenden Orkan (Stämme verbleiben auf der Fläche). Wir werden die Entwicklung der Bodenkrusten von einem jungen zu einem reifen Stadium visuell (Flächenbedeckung) und durch Probenahme (Biomasse, Nährstoffe, Bodenorganik, Mikrobiota) mittels Feld-, analytischen und molekularen Methoden regelmäßig über zwei Jahre verfolgen. Außerdem werden wir an der zentralen Bodenbeprobungskampagne in allen 150 Waldflächen teilnehmen und parallel Biokrusten sammeln. Wir werden die mikrobielle Biomasse in der Biokruste quantifizieren, ihre Gemeinschaftsstruktur mittels Hochdurchsatzsequenzierung beschreiben und dies mit dem Umsatz von Stickstoff- und Phosphorverbindungen verschneiden. Um Schlüsselorganismen dieser Prozesse zu identifizieren und in hoher räumlicher Auflösung zu visualisieren, wird zusätzlich ein Laborexperiment unter Anwendung von stable isotope probing und NanoSims durchgeführt. Die Daten zur Biodiversität und funktionellen Genomik werden mit den Nährstoffstatus der Biokrusten (Konzentration und chemische Speziierung von C, N und P) verknüpft. Das Laborexperiment mit stabilen Isotopen wird unser Verständnis von Biokrusten Schlüsselorganismen im N- und P-Nährstoffkreislauf und den Einfluss der räumlichen Heterogenität fundamental verbessern. Diese Daten erlauben zum ersten Mal die quantitative und qualitative Rekonstruktion der wichtigsten Stoffkreisläufe und mikrobiellen Interaktionsmuster in Biokrusten als Reaktion auf Landnutzung und Störung. Abschließend werden die ermittelten Daten in das gemeinsame bodenkundliche Netzwerk der BE integriert und dienen dann als Keimzelle für ein Synthese-Vorschlag mit dem Ziel, die Leistung der Biokruste quantitativ und qualitativ mit anderen Hotspots in Böden, wie Detritus- oder Rhizosphäre, zu vergleichen.
Pilze sind eine der am diversesten, jedoch am wenigsten untersuchten mikrobiellen Gruppen in marinen Gewässern. Eine Untergruppe der Pilze, kurz als Chytridien bekannt, umfasst häufig auftretende Parasiten auf Phytoplankton, welche eine starke Belastung für das Phytoplanktonwachstum, die Entwicklung von Algenblüten und deren Populationsdynamiken darstellen. Parasitäre Chytridien befallen alle Hauptgruppen von Phytoplankton und treten bevorzugt in Küstenregionen mit hoher Phytoplanktonbiomasse und Produktivität auf. Die Auswirkungen von parasitären Pilzen auf Stoffkreisläufe und die Funktion von Ökosystemen sind jedoch kaum bekannt bzw. quantifiziert. Die Emmy Noether-Nachwuchsgruppe wird die funktionelle und quantitative Rolle parasitärer Pilze für die Phytoplanktonproduktivität und den Stoffkreislauf in Brack- und Meerwasser untersuchen. Unsere Ziele sind (1) Betrachtung der Wechselwirkungen zwischen Phytoplankton und Chytridien auf Einzelzell-Ebene, (2) Untersuchungen der integrativen Rolle von Chytridien in aquatischen Nahrungsnetzen und (3) Aufklärung der Auswirkungen von parasitären Pilzen auf Remineralisierungs- und Sedimentationsprozesse. Unser umfassender Ansatz beinhaltet experimentelle Studien mit Phytoplanktonâ€ÌPilz Co-Kulturen sowie mit natürlichen Planktongemeinschaften, mittels Analysen auf Zell- und Mikoskalen-Ebene bis hin zu mesoskaligen Stoffflüssen entlang der Wassersäule. Im Wesentlichen werden wir den Transfer von Kohlenstoff und Stickstoff vom Phytoplankton durch das pelagische Nahrungsnetz innerhalb der photischen Zone bis hin zum Absinken als Detritus in die Tiefe verfolgen. Das Projektergebnis soll ein ganzheitliches Verständnis der Rolle von Chytridien an der Basis aquatischer Nahrungsnetze und Produktivität fördern, einschließlich der zugrunde liegenden Mechanismen und Größenordnungen. Angesichts der potenziellen Signifikanz parasitärer Pilze für die Abschwächung von Produktivität, Sinkstoffflüssen aber auch von toxischen Algenblüten in Küstengebieten, sollen die gewonnenen Daten mit lokalen und globalen Stoffkreisläufen verknüpft und in zukünftige Entscheidungen zum Küstenmanagement implementiert werden.
Die bundesweite Bodenzustandserhebung ergab, dass die Mehrzahl der Waldstandorte eine geringe bis sehr geringe Basensättigung aufweisen. Die Nährstoffnachlieferung für den aufwachsenden Baumbestand erfolgt auf diesen Standorten fast ausschließlich durch Nährstoffrückführung aus der Biomasse (Streu, starkes Totholz). Ziel des Forschungsvorhabens ist es, den Beitrag des Totholzes zur Nährstoffnachlieferung zu erfassen und die bei der Totholzzersetzung ablaufenden Stoffumsatzprozesse (Respiration, Auswaschung, Fragmentierung, Stickstoff-Fixierung, Stickstoff-Mineralisation) zu analysieren. Die Untersuchungen konzentrieren sich auf eine Baumart, die Buche, als dominierende Baumart der Waldgesellschaften Mitteleuropas, und eine Versuchsfläche, auf der seit 10 Jahren Stoffflüsse (Eintrag, Austrag) und -umsätze (Streuzersetzung, Mineralisation, Pflanzenaufnahme) nach Bestandesauflichtung und Kalkung gemessen werden. Die Versuchsfläche zeichnet sich durch einen hohen Totholzvorrat aus, dessen Anfall datiert werden kann. Das Forschungsvorhaben dient zur Abschätzung des Totholzvorrates, der für einen nachhaltig ausgewogenen Nährstoffhaushalt eines Buchenwaldökosystems auf basenarmen Standort notwendig ist.
In diesem Vorhaben soll ein mathematisches Modell entwickelt werden, das die wichtigsten interagierenden Prozesse nachbildet. Dabei handelt es sich um die konkurrierenden Prozesse der Detritusdegradierung in den verschiedenen Schichten des Sedimentes mit unterschiedlichen Oxidationspotentialen, um die abiotischen und mikrobiologisch ablaufenden Redoxprozesse, um die physikalischen und biologisch induzierten Transportprozesse und um das microbial foodweb . Die Kreisläufe der Elemente C, 0, N, P, Si, S, Fe und Mn sollen mit ihren Massenbilanzen dargestellt werden. Das Modell besteht aus einer Reihe von partiellen Differentialgleichungen (Diffusions-Reaktionsgleichungen) für die Konzentrationen der beteiligten Stoffkomponenten. Dabei werden wir uns auf die vertikale Dimension (bis 30 cm) beschränken. Als Antrieb werden Annahmen über die zeitlich veränderlichen Oberflächenrandbedingungen (Konzentrationen im überstehenden Wasser, Eintrag durch Sedimentation usw.) benutzt. Die Arbeit synthetisiert frühere und gegenwärtig laufende Forschungsaktivitäten zu einem Gesamtbild. Es ist zu erwarten, dass dabei durchaus erhebliche Fortschritte im Verständnis auch der Einzelprozess erreicht werden, weil der Zwang zur konzeptionellen Klarheit in einem mathematischen Modell Wissenslücken und Konsistenzprobleme aufdeckt. Ein wesentliches Nebenprodukt wird die Erarbeitung einer Modellversion herausragend gut verständlicher graphischer Darstellung der Ergebnisse und einfachster Bedienung sein.
Dieses deutsch-argentinische Gemeinschaftsprojekt fokussiert auf den Ursachen der räumlichen Verteilung von großen Massenbewegungen in den Anden von NW Argentinien, einer durch zahlreiche Bergsturzablagerungen charakterisierten Region mit ausgeprägten E-W und N-S-Gradienten hinsichtlich Topographie, Relief, Niederschlag und Vegetationsbedeckung. Das Arbeitsgebiet ist außerdem seismisch aktiv und wurde von 2 großen Erdbeben in den letzten 6 Jahren erfasst (M6.3 in 2010 and M5.8 in 2015) und bietet somit die einmalige Gelegenheit, verschiedene Steuerungsfaktoren von Bergstürzen durch eine Kombination von Feld- und fernerkundlichen Arbeiten zu erkunden. Die Landschaftsentwicklung von Hochgebirgsregionen wird oft sehr stark durch Bergsturzaktivität geprägt, allerdings werden die Auslösemechanismen z.T. kontrovers diskutiert. Bisherige Studien zeigen, dass Bergsturzcluster durch seismische und/oder klimatisch gesteuerte Prozesse ausgelöst werden können, allerdings spielen lithologische und strukturelle Parameter, aber auch die klimagesteuerte Vegetationsbedeckung eine Rolle. Aus diesem Grunde fokussiert dieser Antrag auf zwei, miteinander verbundenen Arbeitshypothesen: Wir wollen erstens testen, ob die Verbreitung von Bergsturzablagerungen und rezenten Massenbewegungen in den nordwest-argentinischen Anden vor allem auch durch strukturell-lithologische und vegetationsbedingte Faktoren bestimmt ist. Zweitens soll geprüft werden, ob kosmogene Nukliddatierungen dazu beitragen können, sub-rezente sowie Bergsturzereignisse auf Zeitskalen von mehreren hundert bis tausend Jahren zu evaluieren und somit Bereiche wiederholter Bergsturzaktivität zu dechiffrieren. Diese Charakterisierung von Bergstürzen und Hanginstabilitäten auf verschiedenen räumlichen und zeitlichen Skalen sind für die Bewertung von klimatischen und seismischen Extremereignissen und damit verbundenen kaskadierenden Effekten von großer Wichtigkeit. Diese Arbeiten zu Massenbewegungen sollen mit Hilfe einer Kombination von Geländebegehungen, optischen und Radar-Fernerkundungsdaten (Luftphotos, ENVISAT, TerraSAR-X, Sentinel, ALOS) für eine Zeitreihe von 2001 bis heute erarbeitet werden. Weiterhin werden geochemische Analysen an detritischem Quarz aus verschiedenen Einzugsgebieten durchgeführt, um Erosionsraten der letzten hundert bis tausend Jahre zu erfassen und somit die möglichen Auslösemechanismen zu bestimmen und die räumliche Bergsturzverteilung auf unterschiedlichen Zeitskalen zu bewerten.
Mögliche Korrelationen zwischen der taxonomischen Zusammensetzung mikrobieller Biofilmen, die offene Felsen aus hartem magmatischen Gestein besiedeln, und einer Verwitterung bzw. Erosion der Felsoberflächen zu untersuchen sind wichtige Ziele dieses Projektes. Die Diversität sowohl phototrophe (Cyanobakterien, eukaryotische Algen) als auch heterotrophe (andere Prokaryoten und Mikropilze) Biofilm-Komponenten werden mit New Generation Sequencing (NGS) möglichst umfassend bestimmt. Zusätzlich werden auch Kulturen der phototrophen Biofilmorganismen untersucht. Veränderungen der mikrobiellen Lebensgemeinschaften auf und im Gestein werden entlang eines klimatischen Gradienten in Bezug auf Feuchtigkeit und Temperatur untersucht. Dazu dienen Proben von Biofilmen und Bohrkernen aus drei klimatisch unterschiedlichen Zonen in der Küsten-nahen Cordillera Region in Chile, d.h. den ausgewiesenen primären Schwerpunktuntersuchungsarealen des SPP 1803. Verschiedene Sukzessionsstadien der Biofilme ergeben zusammen mit Altersbestimmung anhand von 14C Beschleunigungs-Massenspektrometrie eine biologische Zeitskala. Für einen breiteren Einblick in die Funktionalität von Diversitätsveränderungen in den Biofilmen dienen sowohl hoch auflösende Flächenanalytik von Hartteilschnitten als auch biochemische Analysen zum Nachweis Signaturen mikrobiellen Stoffwechsels an der Schnittstelle Biofilm/Fels. Die räumliche Verteilung und relative Abundanzen der verschiedenen Organismengruppen innerhalb der Biofilme werden mithilfe der in situ Hybridisierung und Fluoreszenzmikroskopie untersucht. Parallel dazu werden exponierte künstliche Hartsteinsubstrate auf eine Entwicklung der Besiedelung und Verwitterung untersucht. Ebenfalls für das Erstellen einer biologischen Zeitskala der Verwitterung dienen Analysen von Detritus in nächster Nähe der untersuchten Felsen, d.h. Gesteinspartikel mit Biofilmen dar, die aufgrund der Verwitterung bereits vom Felskörper abgefallen sind. Die Zusammensetzung mikrobieller Gemeinschaften des Detritus gibt möglicherweise Hinweise auf den Beginn dessen Besiedlung und in einem späteren Stadium auch des Bodens, der sich aus dem Detritus bildet. Somit ergibt sich hier eine Schnittstelle von der biogenen Gesteinsverwitterung zur Besiedlung von Böden. Um Effekte der Erosion durch Biofilme untersuchen zu können und zur Etablierung einer geologischen Zeitskala dienen Analysen kosmogener Nuklide (CNA). Damit wird analysiert 1) ob und wenn ja welche Beziehungen zwischen der artlichen (OTU) Zusammensetzung der Biofilme und Erosion der Felsoberflächen bestehen und 2) eine graduelle Erosion der Oberfläche, d.h. Biodeterioration, stattfindet. In dem ariden nördlichen Untersuchungsgebiet (Atacama Wüste) sind auch Felsen ohne nachweisbaren Biofilm zu erwarten. Vergleiche der Konzentrationen kosmogener Nuklide von Proben mit und ohne Biofilm werden dann zeigen, ob und in wie fern Biofilme die Oberflächenverwitterung über lange Zeiträume hinweg beeinflussen.
Dieser Antrag skizziert ein Projekt, das den Zielen des SPP 'EarthShape' folgt, indem es die Rolle von Biota für die Formungsprozesse der Erde untersucht. Diese Studie zielt darauf ab, (i) die ursprüngliche Annahme von EarthShape zu testen, dass alle primären Arbeitsgebiete eine ähnliche langfristige tektonische (Gesteinshebungs-) Geschichte aufweisen und (ii) den Einfluss von Biota auf Landschaften entlang eines ausgeprägten klimatischen und ökologischen Gradienten in der chilenischen Küstenregion über Jahrtausende zu quantifizieren. Die Annahme einer identischen tektonischen (Gesteinshebungs-) Geschichte aller vier primären Arbeitsgebiete impliziert, dass laterale Variationen der Topographie und der stattfindenden Erdoberflächenprozesse ausschließlich durch Klima und Biota gesteuert werden/wurden. Tektonische Studien und thermochronologische Pilotdaten, legen nahe, dass dies möglicherweise nicht der Fall ist, und somit jedwede Schlussfolgerung über Biota- Topographie-Erosionsbeziehungen unvollkommen ist. Wir werden Festgesteins- Niedrigtemperatur-Thermochronologie (Apatit (U-Th)/He- und Fission-Track-Methode) und thermisch-kinematische Modellierung (PECUBE) anwenden, um die tektonische (Gesteinshebungs-) Geschichte aller vier primären Arbeitsgebiete in EarthShape über Millionen Jahre zu rekonstruieren. Die Ergebnisse sind sowohl für Beobachtungs- als auch für Modellierungsstudien, die großskalige Tektonik-Klima-Biota-Interaktionen und Landschaftsentwicklungen untersuchen (vgl. Phase-II-EarthShape-Anträge: PIs Ehlers und Hickler, Schaller und van der Kruk, Mutz und Niedermeyer), von großer Bedeutung. Detritische (Tracer) Thermochronologie wird in allen primären Arbeitsgebiete von EarthShape angewendet, um die antreibenden Kräfte von Erdoberflächenprozessen über Jahrtausende zu identifizieren. Von besonderem Interesse ist hierbei die Untersuchung der Beziehungen zwischen Vegetationsbedeckung, Geomorphologie, Erosion und Sedimenttransport. Dies geschieht durch statistische Zuordnung der detritischen Altersverteilungen zu den Herkunftsgebieten in den untersuchten Einzugsgebieten. Geomorphologische und biotische Einflussfaktoren werden aus verschiedenen Fernerkundungsdaten abgeleitet. Geomorphologische Erosionsfaktoren werden aus digitalen Höhenmodellen (ASTER, LiDAR) berechnet, während Vegetations-Erosionsfaktoren aus der Analyse multispektraler Satellitendaten (Sentinel, Landsat) in Verbindung mit Feldarbeit abgeleitet werden. Hieraus resultierende relative Erosionskarten können mit kosmogenen Nuklid-Erosionsraten kombiniert werden (z. B. EarthShape Phase I + II, PIs Schereler et al., Schaller und van der Kruk), um hochaufgelöste Erosionsraten-Karten für alle primären Arbeitsgebiet von EarthShape abzuleiten. Wir erwarten, dass dieser innovative multidisziplinäre Ansatz (Kombination von Thermochronologie und Fernerkundungsdaten) unser Verständnis der tektonischen, klimatischen und biologischen Landschaftsdynamik verbessern wird.
Die Biologische Kohlenstoffpumpe (BCP) steuert die Zufuhr, Verwertung und Speicherung von Kohlenstoff in den Weltmeeren. Ein mechanistisches Verständnis der BCP erfordert kontinuierliche Beobachtungen, welche Biologie, Ozeanographie und Geochemie über Zeit, Wasserschichten und Umweltbedingungen verknüpfen. Solche Beobachtungen der BCP im Südlichen Ozean fehlen, und erfordern autonome Technologien. Basierend auf autonomen Probennehmern und Sensoren, gibt YIPPEE ganzjährige Einblicke in die taxonomischen und funktionellen Merkmale der BCP im Weddellmeer. Dieses "letzte Eisgebiet" mit zentraler Bedeutung für das globale Klima ist ein natürliches Labor für das Verständnis polarer Prozesse und ihrer Reaktion auf den Klimawandel. Die Verankerung wurde zwischen März 2021 und März 2022 erfolgreich ausgebracht. Vorläufige Analysen von eDNA und Umweltparametern bestätigen die Konsistenz des Datensatzes. Drei Arbeitspakete beleuchten die biologische Vielfalt und funktionelle Genomik über ein komplettes Jahr im Kontext von Wassermassen, Eisbedeckung und Nährstoffkonzentrationen. Essenziell ist die hochauflösende biologische und ökologische Probenahme, welche Dynamiken in der photischen Zone mit geochemischen Flüssen in die Tiefsee verbindet. eDNA-Sequenzierung wird Populationen - von Bakterien bis Metazoen - während spezifischer Ökosystemzustände darstellen, sowie deren zeitliche und ökologische Konnektivität. Dies wird Übergangsperioden und zentrale Wendepunkte im Jahreszyklus aufdecken: die Schwelle des Tageslichts, welches Phytoplanktonwachstum auslöst, bakterielle Aktivitäten nach dem ersten photosynthetischen Impuls, sowie die Sukzession von Protisten und Zooplankton. Die Sequenzierung von Long-Read-Metagenomen wird funktionelle Signaturen saisonaler Ökosystemzustände aufzeigen und den Beitrag biogeochemischer Pfade über Umweltgradienten quantifizieren, was eine Klassifizierung des Jahreszyklus in Perioden der Autotrophie und (Chemo-)Heterotrophie sowie der zugrundeliegenden Stoffwechselwege ermöglicht. Genetische Funktionen, welche während hoher Eisbedeckung vorherrschen, schaffen einen Bezugswert für das "wahre" Weddellmeer vor den Auswirkungen des Klimawandels. Drittens eröffnet der Vergleich antarktischer und arktischer Dynamiken eine bipolare Perspektive auf die funktionale Saisonalität und den Aufbau biologischer Gemeinschaften. Dieses hochauflösende Bild der wichtigsten Taxa, genetischen Vielfalt, ökologischen Netzwerke und Nährstoffflüsse erstellt ein einzigartiges Bild der antarktischen BCP, und polarer Ökosysteme im Allgemeinen. YIPPEE steht im Einklang mit ~10 anderen SPP-Projekten und zentralen SPP-Zielen, einschließlich angeregter Langzeitbeobachtungen. Alle Daten und bioinformatischer Code werden sofort veröffentlicht. Zusätzlich zu wissenschaftlichen Publikationen werden die Ergebnisse über eine interaktive Web-App und gesellschaftliche Kommunikationskanäle verbreitet.
Origin | Count |
---|---|
Bund | 81 |
Land | 15 |
Wissenschaft | 36 |
Type | Count |
---|---|
Daten und Messstellen | 29 |
Förderprogramm | 75 |
Taxon | 6 |
Text | 3 |
unbekannt | 18 |
License | Count |
---|---|
geschlossen | 19 |
offen | 105 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 82 |
Englisch | 61 |
Resource type | Count |
---|---|
Archiv | 7 |
Datei | 22 |
Dokument | 20 |
Keine | 55 |
Unbekannt | 3 |
Webseite | 27 |
Topic | Count |
---|---|
Boden | 101 |
Lebewesen und Lebensräume | 122 |
Luft | 57 |
Mensch und Umwelt | 128 |
Wasser | 105 |
Weitere | 121 |