API src

Found 81 results.

Die Energiewende ist möglich - Für eine neue Energiepolitik der Kommunen

Das Projekt "Die Energiewende ist möglich - Für eine neue Energiepolitik der Kommunen" wird/wurde gefördert durch: Öko-Institut. Institut für angewandte Ökologie e.V.. Es wird/wurde ausgeführt durch: Öko-Institut. Institut für angewandte Ökologie e.V..Eine oekologische Energiepolitik ist nur bei einer weitgehenden Autonomie der Kommunen moeglich. Das ist die Hauptthese der Folgestudie der 1980 erschienenen 'Energiewende' des Oeko-Instituts. Wurde damals nachgewiesen, dass sich bis ins Jahr 2030 etwa 50 Prozent der Energie (1980) einsparen laesst, so zeigt die neue Studie, wie dies zu erreichen ist: Strom- sowie Waermeproduktion muessen dezentralisiert werden. Die Aufsicht ueber die Energiewirtschaft, das Energierecht und die Tarifgestaltung beduerfen einer Aenderung.

Primärenergieeinsparung in der dezentralen Energieversorgung

Das Projekt "Primärenergieeinsparung in der dezentralen Energieversorgung" wird/wurde gefördert durch: Thüringer Ministerium für Wissenschaft, Forschung und Kunst. Es wird/wurde ausgeführt durch: Fachhochschule Erfurt, Fachbereich Versorgungstechnik.Durchführen innovativer Forschungen zur Primärenergieeinsparung und Reduzierung der Kohlendioxidemission in der dezentralen Energieversorgung; - Untersuchen von Blockheizkraftwerken, Wärmepumpen und evtl. Brennstoffzellen; - Kernpunkte: Zusammenwirken der Komponenten in komplexer Einheit aus Energetik, Hydraulik und Regelungstechnik, Teillastverhalten und Schadstoffemissionen. - Errichten einer einzigartigen Versuchsanlage in der Art einer 'kleinen Energiezentrale' im Labor 'Dezentrale Energiesysteme' der FH Erfurt, Durchführung umfangreicher experimenteller/meßtechnischer Untersuchungen; - Ziel: neue Methoden zum Bewerten, Optimieren und Planen von Anlagen der dezentralen und kommunalen Energieversorgung, intensive Öffentlichkeitsarbeit; - Resultate: Erstmalige Untersuchungen zum Teillastverhalten von Klein- BHKW; Entwickeln eines dynamischen Wärmepumpentests unter variablen Feldbedingungen; Ausloten der Potentiale zum Optimieren der Regelung von dezentralen Energieerzeugern, inklusive Versuchen; Entwurf einer Total-Energie-Anlage für liberalisierte Energiemärkte; Aufbau eines System zum übergeordneten Steuern und Regeln von dezentralen Energieerzeugern mit PC (dezentrales Energiemanagement).

EnEff:Stadt: EnVisaGe-Plus -Kommunale netzgebundene Energieversorgung - Vision 2020 am Beispiel der Gemeinde Wüstenrot, Projektphase III, Teilvorhaben: Monitoring und Betriebsoptimierung sowie weiterführende Analysen und Umsetzungen zum Stromnetz und Ausbau von Wärmenetzen

Das Projekt "EnEff:Stadt: EnVisaGe-Plus -Kommunale netzgebundene Energieversorgung - Vision 2020 am Beispiel der Gemeinde Wüstenrot, Projektphase III, Teilvorhaben: Monitoring und Betriebsoptimierung sowie weiterführende Analysen und Umsetzungen zum Stromnetz und Ausbau von Wärmenetzen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Hochschule für Technik Stuttgart, Zentrum für angewandte Forschung an Fachhochschulen, Nachhaltige Energietechnik - zafh.net.1. Monitoring und Quervergleich: Durch intensives Monitoring der Umsetzungsprojekte aus EnVisaGe (Plusenergiesiedlung, Wärmenetz Weihenbronn, Stromspeicher Schule) werden die Effizienz der eingesetzten Technologien und Regelungsstrategien analysiert, Optimierungsstrategien ausgearbeitet und im Quervergleich zum Landshuter Ludmilla-Wohnpark '+Eins' bewertet. 2. Der ländliche Raum als Energielieferant für Ballungszentren: Kopplung von intelligenter Systemsteuerung (Wärmepumpen und Stromspeicher) mit Ertragsprognosen für PV und Windanlagen. Anbindung an das virtuelle Kraftwerk der Stadtwerke Schwäbisch Hall, um als ländliche 'Energiezelle' heraus Großverbrauchern in angrenzenden Ballungszentren als Energielieferant zu dienen und lokale Wertschöpfung zu generieren. 3. Zukunftsfähige Wärmenetze im ländlichen Raum: Ausgehend von den beiden in EnVisaGe umgesetzten innovativen Wärmenetzen, wird anhand konkreter Projekte untersucht, wie zukunftsfähige Wärmenetze im ländlichen Raum realisiert werden können. Neben neuen LowEx Wärmenetzkonzepten mit dezentraler Solarthermie-Einspeisung oder Insellösungen die zu Netzen zusammenwachsen können, werden hier auch unterschiedliche innovative Investitions-, Beteiligungs- und Betreibermodelle untersucht, die es Stadtwerken künftig erlauben, Wärmenetze für den ländlichen Raum verstärkt umzusetzen und rentabel zu betreiben.

Entwicklung einer Methodik zur Einbindung von KMU unterschiedlicher Branchen in ein virtuelles Kraftwerk

Das Projekt "Entwicklung einer Methodik zur Einbindung von KMU unterschiedlicher Branchen in ein virtuelles Kraftwerk" wird/wurde gefördert durch: Deutsche Bundesstiftung Umwelt. Es wird/wurde ausgeführt durch: ebök Institut GmbH.

Die Stadt als Speicher - Energietechnische und -wirtschaftliche Bündelung vielfältiger lokaler Speicherkapazitäten innerhalb städtischer Lastzentren zum Ausgleich der Fluktuation erneuerbarer Einspeiser^Teilvorhaben: TU Dortmund, Teilvorhaben: BOSCH

Das Projekt "Die Stadt als Speicher - Energietechnische und -wirtschaftliche Bündelung vielfältiger lokaler Speicherkapazitäten innerhalb städtischer Lastzentren zum Ausgleich der Fluktuation erneuerbarer Einspeiser^Teilvorhaben: TU Dortmund, Teilvorhaben: BOSCH" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Es wird/wurde ausgeführt durch: Robert Bosch GmbH.Im Projekt wird ein Verbund thermischer und elektrischer Energiespeicher zum Ausgleich fluktuierender Einspeisung erneuerbarer Energien durch den Zusammenschluss verteilter Erzeuger und Lasten realisiert. Bosch prüft die notwendigen Entwicklungen, um im Umfeld einer Stadt dezentral Speicherkapazität zur Verfügung zu stellen. Die Speicherung der elektrischen Energie erfolgt hierbei im koordinierten Betrieb von Lastverschiebepotentialen, Erzeugungsanlagen und Lasten mit thermischer Speicherkapazität, sowie durch Einbindung von Batterien. Die Einbindung dezentraler Anlagen erfordert eine Erweiterung der Kommunikationsinfrastruktur im Stromnetz bis zum Endverbraucher. Hierfür sind Lösungen zur Anbindungen der Endgeräte an die Leittechnik der Netzbetreiber zu realisieren. Nach der Evaluierung geeigneter Quartiere und Planung des Konzeptes wird gemeinsam mit den Partnern ein Kommunikationskonzept für das Smart-Grid entwickelt. Durch die Erfahrungen im Bereich der Heizung und der Solartechnik übernimmt Bosch die Ankopplung der Endgeräte und dezentralen Erzeuger über die Einbindung in eine Automation beim Endverbraucher. Die Erfahrungen bei der Implementierung und Betrieb werden in Ansätzen zur Standardisierung der Einbindung thermischer Speicher verwendet. In den 2 strukturell unterschiedlichen Regionen werden verschiedene Geschäftsmodelle und Akzeptanz geprüft. Zusammen mit den Partnern realisiert Bosch die Umsetzung und begleitet den 1-jährigen Feldversuch.

Dezentrale Kraft-Waermekopplung mit Biomassefeuerung und Heissluftturbinenanlage - 1. Stufe: Machbarkeitsstudie

Das Projekt "Dezentrale Kraft-Waermekopplung mit Biomassefeuerung und Heissluftturbinenanlage - 1. Stufe: Machbarkeitsstudie" wird/wurde gefördert durch: Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Technische Universität Dresden, Institut für Energietechnik.Der Heißluftturbinenprozeß, der Gegenstand des beantragten o. g. Projektes ist, bietet die Möglichkeit, neben Wärme auch im begrenzten Umfang Strom zu erzeugen. Dies macht das Verfahren insbesondere zur Deckung des Eigenstrombedarfes wärmeenergieintensiver Verbraucher wie landwirtschaftliche Trocknung oder kleinere holzverarbeitender Betriebe interessant. Ein besondere technische Herausforderung stellt der Wärmetausch zur Erhitzung des Wärmeträgermediums, welches als Arbeitsmittel über die Heißluftturbine entspannt wird, dar. An die Effizienz des Wärmetauschers sind, der Wärmeübergang in Gase ist grundsätzlich wesentlich schlechter als der in Flüssigkeiten, hohe Anforderungen zu stellen. Hinzu kommt, dass das Rauchgas aus Biomassefeuerungsanlagen einen höheren Anteil an Partikeln und Stäuben aufweist als Rauchgas aus der Öl- oder Gasverbrennung. Im Rahmen des geplanten Vorhabens soll die Lösung dieses Problems vorgenommen werden. Im Rahmen der Machbarkeitsstudie sind die folgenden Arbeitsziele vorgesehen: - Grundlagenermittlung, - Variantenentwicklung, - Entwurfsplanung. Mit diesen Arbeiten sollen auch die Grundlagen für die erfolgreiche Durchführung eines nachfolgenden FuE- bzw. Demonstrationsvorhaben gelegt werden. Im Rahmen der Entwurfsplanung sollen erste Schritte zur standortkonkreten Umsetzung des Heißluftturbinenprozesses vorgenommen werden. Wegen der dort vorhandenen Anlagen soll eine Zusammenarbeit mit der Thüringer Landesanstalt für Landwirtschaft (TLL), Zentrum für Nachwachsende Rohstoffe, Dornburg, stattfinden. Es wurden die Möglichkeiten und die Grenzen der Heißluftturbinentechnik aufgezeigt und theoretisch betrachtet. Die vorgestellte Variantenentwicklung konnte mit der Einbeziehung einer Verbrennungsanlage ergänzt werden. Die wichtigsten Ergebnisse des o. g. Vorhabens können allgemein folgendermaßen zusammengefasst werden: -das Heißluftturbinenprozess hat ein Potential zur Steigerung des elektrischen Wirkungsgrades der KWK-Anlage bis zu 24 Prozent, dieser ist jedoch nur unter bestimmten Annahmen auszuschöpfen. Diese sind: -die Heißlufttemperatur vor der Turbine muss ca. 950 C betragen, die Abluft der Turbine muss durch eine Rückführung als Brennluft der Verbrennungsanlage genutzt werden, -der gewählte Lufterhitzer (Wärmeübertrager) muss einen geringen Widerstand aufweisen, Verschmutzungszustände sowie Wärmeverluste und derer Auswirkung auf die Wärmeübertragung müssen dabei berücksichtigt werden; -das gewählte Temperaturniveau der Luft vor der Turbine von 950 C (Annahme der Verbrennungstemperatur - 1050 C) kann mit Holzbrennstoffe realisiert werden; Die Forschungsziele 'Variantenentwicklung' und 'Entwurfsplanung', wurden nicht in allen relevanten Aspekten erarbeitet. Statt dessen wurden die systemtechnischen Untersuchungen des Heißluftturbinenprozesses sehr aufwendig durchgeführt und bewertet. Daraus ergeben sich wichtige Informationen über die energetische Potentiale der Heißluftturbine mit biomassebefeuerten Verbrennungsanlagen.

Identifizierung von regionalen Potentialen zur Steigerung der Ressourceneffizienz - Beratung beim Aufbau regionaler und dezentraler Wirtschafts- und Versorgungsstrukturen in Podlassien, Polen (vorrangig am Beispiel Erneuerbarer Energien)

Das Projekt "Identifizierung von regionalen Potentialen zur Steigerung der Ressourceneffizienz - Beratung beim Aufbau regionaler und dezentraler Wirtschafts- und Versorgungsstrukturen in Podlassien, Polen (vorrangig am Beispiel Erneuerbarer Energien)" wird/wurde gefördert durch: Umweltbundesamt. Es wird/wurde ausgeführt durch: EuroNatur - Stiftung Europäisches Naturerbe (Geschäftsstelle Bonn).Das übergeordnete Ziel des Projektes ist es, ein ausgeprägtes Bewusstsein für Ressourceneffizienz und Ressourcenschonung beim Aufbau von Wirtschaft- und Versorgungstrukturen in der Region zu schaffen. Unter aktiver Einbeziehung der Gesellschaft in die Entwicklung und Umsetzung einer 'Energiewende von unten' sollen weitgehend Wirtschaftskreisläufe und Versorgungsstrukturen initiiert werden.

KMU-innovativ: UV-LEDIS: Entwicklung von Technologien für eine energieeffiziente Trinkwassergewinnung mittels UV-LEDs^Teilprojekt D, Teilprojekt B

Das Projekt "KMU-innovativ: UV-LEDIS: Entwicklung von Technologien für eine energieeffiziente Trinkwassergewinnung mittels UV-LEDs^Teilprojekt D, Teilprojekt B" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: UMEX GmbH.Ziel des Verbundprojektes 'UV-LEDIS' ist die Entwicklung einer alternativen Strahlungsquelle für die Wasserdesinfektion auf Basis von UV-C LED. Darüber hinaus soll ein sehr kompakter Reaktor zur Wasserdesinfektion entwickelt und konstruiert werden, bei dem die entwickelten UV-C LED-Module als Strahlungsquellen zum Einsatz kommen. Mit dem neuen Reaktor soll mittelfristig ein Durchsatz von bis zu 5 Litern pro Minute realisiert werden. Die kompakte Bauweise verbunden mit einer geringen Stromaufnahme soll zukünftig den dezentralen, autarken Einsatz der Wasserdesinfektionsanlage in verschiedenen Anwendungsgebieten ermöglichen. Die Entwicklungsarbeiten können in drei große Arbeitskomplexe aufgeteilt werden. Im ersten Arbeitskomplex werden die Konzepte für die einzelnen Reaktorkomponenten entwickelt. Unter Zuhilfenahme von Modellen und verschiedenartigen Untersuchungen werden alternative Konzepte für einen Wasserentkeimungsreaktor mit UV-LED als UV-Strahlungsquelle entwickelt und ausgearbeitet. Arbeitskomplex 2 beschäftigt sich mit der Konstruktion und dem Aufbau der einzelnen Komponenten. Dabei müssen u.a. die UV-LED-Module charakterisiert, dimensioniert und parametriert werden, um die Elektronik und Sensorik entwickeln zu können. Im dritten Arbeitskomplex werden die Einzelkomponenten zu einem Gesamtsystem zusammengefügt und der Prototyp gebaut. Abschließend werden Funktionstest und Optimierungsmaßnahmen durchgeführt und die Entwicklung dokumentiert.

Teilprojekt B^KMU-innovativ: UV-LEDIS: Entwicklung von Technologien für eine energieeffiziente Trinkwassergewinnung mittels UV-LEDs^Teilprojekt D^Teilprojekt C, Teilprojekt A

Das Projekt "Teilprojekt B^KMU-innovativ: UV-LEDIS: Entwicklung von Technologien für eine energieeffiziente Trinkwassergewinnung mittels UV-LEDs^Teilprojekt D^Teilprojekt C, Teilprojekt A" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: IL Metronic Sensortechnik GmbH.Ziel des Verbundprojektes 'UV-LEDIS' ist die Entwicklung eines UV-Trinkwasserdesinfektionsreaktors mit UV-C-LED als Strahlungsquelle. Dafür werden im Rahmen des Projekts grundsätzlich zwei sich in der angestrebten Anwendung gegenseitig beeinflussende Technologien untersucht und entwickelt: zum einen werden leistungsfähige und zuverlässige UV-C-LED-Arrays entwickelt, zum anderen wird ein neuer sehr kompakter, robuster und energieeffizienter Durchflussreaktor mit einem Durchsatz von bis zu 1 Litern pro Minute entwickelt. Die kompakte Bauweise, verbunden mit einer geringen Stromaufnahme, soll zukünftig den denzentralen, autarken Einsatz des neuen Reaktors in verschiedenen Anwendungsgebieten ermöglichen. Die Entwicklungsarbeiten können in drei große Arbeitskomplexe aufgeteilt werden. Im ersten Arbeitskomplex werden die Konzepte für die einzelnen Reaktorkomponenten entwickelt: allgemeiner Reaktoraufbau, Sensorik und Messtechnik, UV-LED-Arrays. Arbeitskomplex 2 beschäftigt sich mit der Konstruktion und dem Aufbau der einzelnen Komponenten. Dabei müssen u.a. die UV-LED-Module charakterisiert, dimensioniert und parametriert werden um die Elektronik und Sensorik entwickeln zu können. Im dritten Arbeitskomplex werden die Einzelkomponenten zu einem Gesamtsystem zusammengefügt und der Prototyp gebaut. Abschließend werden Funktionstest und Optimierungsmaßnahmen durchgeführt und die Entwicklung dokumentiert.

Teilprojekt B^KMU-innovativ: UV-LEDIS: Entwicklung von Technologien für eine energieeffiziente Trinkwassergewinnung mittels UV-LEDs^Teilprojekt D, Teilprojekt C

Das Projekt "Teilprojekt B^KMU-innovativ: UV-LEDIS: Entwicklung von Technologien für eine energieeffiziente Trinkwassergewinnung mittels UV-LEDs^Teilprojekt D, Teilprojekt C" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik im Forschungsverbund Berlin e.V..Im Rahmen des Projekts sollen leistungsfähige und robuste UV-Wasserentkeimungsreaktoren auf Basis von UV-C-LEDs für den mobilen und dezentralen Einsatz entwickelt werden. Der Anteil des FBH besteht darin, entsprechende Arrays aus UV-C-LEDs zu designen und zu untersuchen. Ziel der ersten Projektphase ist es, die elektrooptischen Eigenschaften von UV-C-LEDs zu charakterisieren. Zusammen mit thermischen Simulationen ist dies die Grundlage für die Bereitstellung von Richtlinien für das Design eines UV-Reaktors, insbesondere für ein leistungsfähiges thermisches Management der LED-Arrays durch die Projektpartner. Ziel der zweiten Projektphase ist zum einen die Untersuchung des Alterungsverhaltens der UV-C-LEDs sowie der zugrunde liegenden physikalischen Mechanismen und zum anderen die Charakterisierung von UV-C-LED-Arrays. Das erarbeitete Wissen soll sowohl in die Entwicklung der Aufbau- und Verbindungstechnik für die Arrays sowie deren sensorischer Überwachung durch die Projektpartner einfließen. Die UV-LEDs werden elektrooptisch charakterisiert und Zuverlässigkeitstests unter verschiedenen Stressoren durchgeführt. Letzteres erfordert den Aufbau entsprechender Alterungsmessplätze. Weiterhin erfolgen thermische Simulationen verschiedener Array-Konzepte. Es wird die Performance aufgebauter UV-C-LED-Arrays untersucht. Die Ergebnisse gehen jeweils an die Projektpartner für das Design und den Aufbau eines effizienten UV-Wasserentkeimungsreaktors. Weitere Details siehe Projektantrag.

1 2 3 4 57 8 9