Das Projekt "Teilprojekt D" wird vom Umweltbundesamt gefördert und von Bioeton Deutschland GmbH durchgeführt. Bei dem Teilprogramm 2 wurden biotechnologische Prozesse zur Produktion von Dicarbonsäuren (z.B. Äpfelsäure) entwickelt. Durch Upscaling werden diese Prozesse in der Phase II des Vorhabens erstmals in den Labormaßstab vergrößert. Als Ausgangstoff wird dabei das bei der Biodieselproduktion als Koppelprodukt anfallende Rohglycerin verwendet, für das es bisher keine Verwendung mit hinreichender Wertschöpfung gibt. In dieser Phase kooperieren die BRAIN AG, RWTH Aachen und Bioeton Deutschland GmbH bei der Entwicklung der Produktionsstämme zur Produktion von Dicarbonsäuren und bei der Entwicklung des Upscaling des Prozesses vom Mikromaßstab in den Labormaßstab und darüber hinaus. Die Bioeton Deutschland GmbH wird dabei das begonnene Langzeitmonitoring und die Bereitstellung des Rohglycerin fortsetzen. Zusätzlich soll in Kyritz ein kleiner Versuchsreaktor zum Upscaling zusammen mit der BRAIN AG in Betrieb genommen und optimiert werden. In der Biodieselanlage sollen verschiedene Standort getestet werden, um den optimalen Standort einer solchen Anlage innerhalb einer Industrieanlage zu finden.
Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Hochschule Biberach, Institut für Angewandte Biotechnologie (IAB) durchgeführt. Biokatalytische Prozesse, die Enzyme nutzen um chemische Reaktionen effizient und ressourcenschonend zu betreiben, stellen einen wichtigen Teil der Biotechnologie dar, und werden bereits vielseitig z.B. für die Herstellung chemischer Produkte oder in der Lebensmittelindustrie eingesetzt. An vielen enzymkatalysierten Reaktionen sind außer den Enzymen und den umzusetzenden Substraten, jedoch zusätzliche Cofaktoren (Coenzyme) beteiligt, meist um die Reaktion mit Energie in Form von ATP und/oder Reduktionskraft z.B. durch NAD(P)H zu versorgen. Diese Coenzyme, die oft teuer und chemisch kompliziert sind, werden in den Reaktionen verbraucht und müssen daher ständig neu zugesetzt werden, was den Betrieb erschwert und die ökonomische Bilanz verschlechtert. Zielsetzung des Projekts CORENZ ist es, diese Cofaktoren innerhalb eines zellfreien enzymatischen Systems zu regenerieren und dadurch Enzymsysteme nachhaltig und kostengünstiger in geschlossenen Kreisläufen betreiben zu können. Als Modelsystem wird die enzymatische Umsetzung von Acetat und CO2 zu Malat unter Verbrauch von ATP, Ferredoxin und NADPH untersucht. In letzter Zeit werden zellfreie enzymatische Verfahren vermehrt untersucht um das klimaschädliche Treibhausgas CO2 als Rohstoff für die Herstellung von chemischen Produkten zu nutzen. Durch das gewählte Reaktionsystem kann CO2 in einer organischen Dicarbonsäure fixiert werden, welche eine wichtige Plattformchemikalie für die chemische Industrie darstellt.
Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von GEA Westfalia Separator Group GmbH durchgeführt. Ziel ist es, ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen. Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösungsmittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierter Materialien) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozeßschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozesschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs-und Industriepartner in Deutschland.
Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von PlanET Biogastechnik GmbH durchgeführt. Ziel ist es ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, der Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen: Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösemittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierte Materialen) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozessschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozessschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs- und Industriepartner in Deutschland und in Indonesien.
Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT durchgeführt. Ziel ist es ein technologisches Konzept zu entwickeln, das aus einer Kombination verschiedener integrierter Prozesse zur ganzheitlichen Nutzung mehrerer, verschiedenartiger Pflanzenrohstoffe besteht. Die integrierten Prozesse produzieren Energie, Chemikalien, Treibstoffe und Materialien für technische Anwendungen. Als Rohstoffe werden die Presssäfte der Ölpalme, der Jatrophanuss und von Sweet Sorghum sowie alle Fruchtreste und die Bagasse eingesetzt. Folgende Zielprodukte und Anwendungsfelder sind zu nennen: Bernsteinsäure (für Hochleistungskunststoffe und grüne Lösemittel), Biodiesel (Biotreibstoff), Biogas (Erzeugung der Prozessenergie), Fasern und Proteine (biobasierte Materialen) sowie organischer Dünger (Rückführung der Nährstoffe auf Anbauflächen). Alle Prozessschritte sollen in einer intelligenten Art und Weise verknüpft werden. Somit wird eine vollständige Nutzung der Pflanzenrohstoffe erreicht. Es wird Gebrauch gemacht von innovativer Bio- und Maschinentechnologie sowie von biokompatibler Chemie. Typische abfallerzeugende chemische Prozessschritte werden durch neuartige enzymatische und fermentative Prozessschritte ersetzt. Toxische und nicht bioabbaubare Chemikalien werden nicht eingesetzt. Das Resultat wird eine Abschätzung der Machbarkeit in Bezug auf technische, ökonomische, ökologische und soziale Aspekte sein. Dieses Projekt fußt auf einschlägiger Erfahrung und auf Kenntnissen mehrerer Forschungs- und Industriepartner in Deutschland und in Indonesien.
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Bioeton Deutschland GmbH durchgeführt. Teilprogramm 'DeICE+' der Innovationsallianz 'ZeroCarbFP' werden biotechnologische Prozesse zur Produktion des Flugzeugenteisungsmittels 1,2 Propandiol und einer Dicarbonsäure, die z.B. als Rohstoff in der Kunststoffherstellung dienen kann, entwickelt. Als Ausgangsstoff wird dabei das bei der Biodieselproduktion als Koppelprodukt anfallende Rohglycerin verwendet, für das es bisher keine Verwendung mit hinreichender Wertschöpfung gibt. In dieser Phase kooperieren die BRAIN AG, RWTH Aachen (Entwicklung von Produktionsstämmen, -Prozessen) sowie Bioeton Deutschland GmbH (Produktion innovativer abfallbasierter Kraftstoffe, Rohglycerin) bei der Entwicklung zweier Produktionsstämme: E. coli zur Produktion von 1,2 Propandiol und Ustilago zur Produktion einer Dicarbonsäure. Bioeton Deutschland GmbH engagiert sich A) hinsichtlich des Langzeit-Monitorings unterschiedlicher Rohglycerin-Chargen. Schwankungen sollen engmaschig per GC- und ICP-OES Analytik über den Beantragungszeitraum verfolgt werden. Zur Durchführung exakter Analysen der Koppelprodukte wurde bereits ein ICP-OES angeschafft. B) bei der Bereitstellung von Rohglycerin und der Chargenlogistik. Im Verlauf des Projekts wird ein dynamisch steigernder Bedarf an Rohglycerin von vielen Kleinstmengen (0.1 - 1 L) zu größeren Mengen (10 - 100 L) in der Prozessentwicklungsphase zur Verteilung an mehrere Projektpartner erwartet. C) hinsichtlich der Evaluierung von Möglichkeiten einer Integration der Rohglycerinverwertung in die Biodieselproduktion am Standort.
Das Projekt "Teilprojekt 9" wird vom Umweltbundesamt gefördert und von Universität Frankfurt am Main, Institut für Molekulare Biowissenschaften durchgeführt. Konstruktion von Hefen zur C5-Zuckervergärung zur Produktion von Bioethanol und Malat/Fumarat Zur Produktion von Lignozellulose-Ethanol sollen rekombinante Pentose-vergärende Hefen für den industriellen Einsatz konstruiert werden. Hierfür soll das bestehende Know-how auf so genannte Industriehefestämme übertragen werden, welche sich durch eine deutlich höhere Robustheit, Stabilität und Produktivität gegenüber Laborstämmen auszeichnen. Die neuen Hefestämme sollen unter industriellen Bedingungen getestet und durch evolutive Strategien an diese weiter angepasst werden. Neben der Produktion von Bioethanol soll die Produktion von Malat und Fumarat als aus Biomasse herstellbare Funktionsbausteine ('Building Blocks') für chemische Synthesen entwickelt werden. Dazu sollen rekombinante Hefestämme hergestellt werden, die anstelle von Ethanol diese beiden Dicarbonsäuren produzieren. Dazu werden die Hefen mittel der Methoden des Metabolic und Evolutionary Engineerings genetisch modifiziert. Die Produktion von Malat bzw. Fumarat soll mit der Verwertung von Pentosezuckern und der Fermentation von lignocellulosischen Hydrolysaten kombiniert werden.
Das Projekt "Ionische Vernetzung von Fetten, Oelen und Ligninen (Oleolink)" wird vom Umweltbundesamt gefördert und von Henkel KGaA durchgeführt. Ziel des Vorhabens ist es, aus Pflanzenölen und Ligninen technisch und wirtschaftlich konkurrenzfähige Produkte herzustellen, die zum Kleben, Dichten und Beschichten eingesetzt werden können. Hintergrund hierfür ist die Tatsache, das carboxyl-terminierte Rohstoffe mit mehrwertigen Metallionen zu schwerlöslichen Salzen reagieren. Edukte mit mehreren Carboxylgruppen (funktionalisierte Öle oder Lignine) können auf diese Weise zu Polymeren bzw. Substanzen mit polymerähnlichem Verhalten verknüpft werden. Im Rahmen des Vorhabens erfolgt die Auswahl und Synthese verschiedener carboxyl-terminierter Oleochemikalien sowie die Auswahl geeigneter Metallsalze. Zur Herstellung der Oleopolymere werden die carboxyl-terminierten Oleochemikalien mit den Metallsalzen zu Oleopolymeren umgesetzt. Anschließend erfolgt deren Charakterisierung und Durchführung von anwendungstechnischen Tests. Den erhaltenen zweikomponenteigen Produkten eröffnen sich eine Reihe von Anwendungsfelder wie z.B. als Klebstoffe, Dichtmassen, Beschichtungen, Schmelzklebstoffe, und Haftklebstoffe.In der Anfangsphase des Projektes wurde die Synthese geeigneter fettchemischer carboxylterminierter Oleoderivate (z. B. Dimerfettsäuren, Umsetzungsprodukte von Fettsäuremethylestern und Fettsäureepoxiden mit ungesättigten Säureanhydriden, Diaminen, Polyolen oder Dicarbonsäuren) untersucht. Als Rohstoffbasis für die neu entwickelten Oleopolymere dienten Sonnenblumen-, Raps- und Leinöl. Die carboxylterminierten Oleoderivate wurden in der zweiten Phase des Projektes mit Metalloxiden (z. B. CaO, ZnO, MgO) zu Halatopolymeren umgesetzt. Dabei wurden die Einsatzverhältnisse der Reaktanden und die Reaktionstemperaturen variiert. Bei der Untersuchung der Eigenschaften der Halatopolymere zeigte sich, dass die physikalische Vernetzung zu Polymeren mit starkem kalten Fluss und geringer Kohäsion führte. Lediglich durch eine kovalente Vorvernetzung der Oleoderivate mit anschließender physikalischer Vernetzung konnte der kalte Fluss teilweise eingedämmt werden. Mit ausgewählten Halatopolymeren wurden in der dritten Projektphase anwendungstechnische Tests durchgeführt. Es ging in erster Linie um die Kompatibilität der Halatopolymere mit handelsüblichen Polymerdispersionen und bei entsprechender Verträglichkeit um Untersuchungen zur Haftung der so modifizierten Dispersionen. Die verträglichen Dispersionen zeigten im Test, dass die zugesetzten Halatopolymere nicht den gewünschten Beitrag bzgl. Verstärkung der Klebkraft liefern. Bei weiteren anwendungstechnischen Untersuchungen wurde versucht, die in Bodenbelagsklebstoffen eingesetzten Harzschmelzen durch Oleoderivate oder Halatopolymere zu ersetzen. Aber die ausgewählten Polymere reagierten mit den in den Klebern enthaltene Füllstoffen, so dass es zu einer starken und nicht akzeptablen Verringerung des Tacks und der Klebkraft kam. Somit sind die hergestellten Oleoderivate und Halatopolymere als Harzschmelzersatz für füllstoffhaltige Bodenbelagsklebstoffe nicht geeignet.
Das Projekt "Bioökonomie International - OIL-to-Acids - Mikrobielle Konversion von Palmöl" wird vom Umweltbundesamt gefördert und von Brandenburgische Technische Universität (BTU) Cottbus-Senftenberg, Arbeitsgruppe Technische Mikrobiologie durchgeführt. Ziel des Projekts ist ein mikrobielles Verfahren für die Umwandlung von Palmöl in Basischemikalien, z.B. Bernsteinsäure. Mit als 'nachhaltig' zertifiziertem Öl soll ein umweltverträgliches Verfahren entwickelt werden, um polymerisierbare Grundstoffe für die Chemische Industrie herzustellen. Die höhere Wertschöpfung im Vergleich zu Kraftstoffen soll ökonomischer Anreiz für malaysische und deutsche Firmen sein, die Projektergebnisse technisch umzusetzen. Ziel ist ein schnelles Wachstum der Mikroorganismen mit anschließender Produktionsphase in der Gene für gewünschte Enzyme aktiviert und unerwünschte Gene in ihrer Ausprägung unterdrückt werden. Die Stammentwicklung wird in Deutschland, die Verfahrensentwicklung in Malaysia angesiedelt. Als Basis des Verfahrens dient ein erteiltes Patent für die selektive Kultivierung von Pilzen in einfachen Behältern ohne Steriltechnik. Zuerst sollen Mikroorganismen gesammelt und charakterisiert werden, die in diesem System, aber mit Palmöl als Kohlenstoff- und Energiequelle, wachsen können. Parallel ist ein ausgewählter Pilz, der sich in der industriellen Anwendung bereits bewährt hat, gentechnisch so zu verändern, dass z. B. Bernsteinsäure überproduziert wird. Die Metabolisierung von pflanzlichen Fetten ist ein seit Jahren bearbeitetes Feld in Senftenberg. Wichtige Enzyme, z.B. die Isocitrat-Lyase, wurden eingehend untersucht.
Das Projekt "Bioökonomie International 2016: Integrierte Bernsteinsäureproduktion durch Nutzung von Xylose aus Lignocellulose und Kohlendioxid aus Biogas und Ethanolfermentation" wird vom Umweltbundesamt gefördert und von Prüf- und Forschungsinstitut Pirmasens e.V. durchgeführt. Ziel des Projekts ist die Entwicklung einer fermentativen Bernsteinsäureproduktion in der Bakterien CO2 fixieren und Xylose als Kohlenstoffquelle (aus Weizenstroh oder Maisfasern) nutzen. Biogas und CO2 aus der Bioethanolfermentation dienen als CO2-Quellen. Biogas besteht zu 40 % aus CO2 und ca. 60 % aus CH4, während der Gasstrom aus der Bioethanolproduktion reines CO2 ist. Um Biogas im Erdgasnetz zu speichern bedarf es einer Abtrennung des CO2. Dieses in Bernsteinsäure zu überführen dient also auch der Aufreinigung des Biogases zum Einspeisen. Die Nutzung von Lignocellulosen Rohstoffen für die Bioökonomie kann über unterschiedliche Wege geschehen. Eine thermochemische Vorbehandlung führt zur Hydrolyse von Xylan, dem Hauptbestandteil der Hemicellulose. Die entstehende Xylose steht dann zur weiteren Nutzung zur Verfügung. Durch SucciniGas lässt sich die Bernsteinsäureproduktion in Bioraffinerien und Biogasanlagen integrieren, wodurch Synergieeffekte ausgenutzt werden können.
Origin | Count |
---|---|
Bund | 57 |
Type | Count |
---|---|
Förderprogramm | 57 |
License | Count |
---|---|
offen | 57 |
Language | Count |
---|---|
Deutsch | 57 |
Englisch | 4 |
Resource type | Count |
---|---|
Keine | 15 |
Webseite | 42 |
Topic | Count |
---|---|
Boden | 52 |
Lebewesen & Lebensräume | 44 |
Luft | 26 |
Mensch & Umwelt | 57 |
Wasser | 17 |
Weitere | 57 |