Nachbildung der motorischen Einspritzung am Pumpenpruefstand; Messungen bei Einspritzung gegen Atmosphaerendruck und in eine mit Stickstoff gefuellte Druckkammer; Erfassung der Unterschiede der Strahlenausbreitung bei den verschiedenen Kraftstoffen.
Erforschung des Potentials der Carbene, den Zuendverzug von Dieselkraftstoff positiv zu beeinflussen. Darstellung erforderlicher Mengen verschieden geeigneter Diazo-Verbindungen. Untersuchung deren Effekts in Stichprobenversuchen an verschiedenen Motoren.
Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.
<p>Beim Autokauf Elektroautos bevorzugen, auf geringen Energieverbrauch und CO2-Ausstoß achten</p><p>Worauf Sie beim umweltbewussten Autokauf achten sollten</p><p><ul><li>Kaufen Sie einen Pkw mit geringem Kraftstoff- bzw. Energieverbrauch und niedrigem CO2-Ausstoß – das Elektroauto ist hier die erste Wahl.</li><li>Es muss nicht immer das eigene Auto sein: Vor allem Wenig-Fahrer können beim Carsharing viel Geld sparen.</li></ul></p><p>Gewusst wie</p><p>Der größte Teil der Umweltbelastungen eines Autos wie Treibhausgase (CO2), Schadstoffe (Stickstoffdioxide, Feinstaub) und Lärm entsteht beim Fahren. Aber bereits beim Kauf entscheiden Sie über den spezifischen Kraftstoffverbrauch ihres Autos und damit über die zukünftigen Umweltbelastungen und Tank- bzw. Energiekosten.</p><p><strong>Sparsames Auto wählen:</strong>Die CO2-Emissionen eines Autos und damit seine Klimawirksamkeit hängen direkt vom Kraftstoffverbrauch ab: Pro Kilowattstunde Strom werden rund 0,4 kg CO2(Deutscher Strommix), pro Liter Benzin rund 2,3 kg CO2und pro Liter Diesel rund 2,6 kg CO2freigesetzt. Auch die Kosten für das Tanken steigen linear mit dem Verbrauch. Mit Ihrer einmaligen Kaufentscheidung für ein bestimmtes Auto legen Sie in hohem Maße die Tank- bzw. Energiekosten und CO2-Emissionen für die gesamte langjährige Nutzungszeit fest. Es lohnt sich deshalb doppelt, ein Auto mit einem möglichst geringen Energieverbrauch zu wählen. Händler und Hersteller sind deshalb auch gesetzlich verpflichtet, den Kraftstoff- bzw. Stromverbrauch und die spezifischen CO2-Emissionen sowohl in der Werbung als auch im Autohaus anzugeben. Häufig weisen schon verschiedene Modellvarianten desselben Herstellers große Spannbreiten beim Energieverbrauch und CO2-Ausstoß auf.</p><p><strong>Elektroantrieb bevorzugen:</strong>Die klimaschonendste Antriebsvariante beim Autokauf ist das Elektroauto. Die CO2-Einsparungen während der Nutzung übersteigen die höheren Treibhausgasemissionen bei der Herstellung durch den zusätzlichen Aufwand für Batterien deutlich. Ein Vorteil des Elektroantriebs ist auch, dass lokal keine Schadstoffe durch Abgase emittiert werden. Zudem wird die Lärmbelastung reduziert. Bei Elektrofahrzeugen hängen die Emissionen bei der Fahrzeugherstellung und beim Betrieb (Abriebemissionen von Reifen) sowie das Gewicht des Fahrzeuges stark von der Größe bzw. Kapazität der verbauten Antriebsbatterie ab. Deshalb sollte die Antriebsbatterie bedarfsgerecht ausgewählt werden, auch um ein unnötiges Mitschleppen von zusätzlichem Gewicht zu vermeiden. Hierdurch können sowohl Emissionen als auch der Energieverbrauch des Fahrzeuges verringert werden. Wenn man sich nichtdestotrotz zum Kauf eines Verbrenner-Pkw entscheidet, sollte das Neufahrzeug bei einem Dieselantrieb mindestens die Euro 6d-TEMP Abgasnorm einhalten. Ein Otto-Pkw mit Direkteinspritzung muss mindestens die Euro 6c-Norm erfüllen. So wird sichergestellt, dass auch die Partikelemissionen des Otto-Direkteinspritzers gering sind.</p><p>Auf dem Pkw-Label werden Neuwagen in sieben CO2-Effizienzklassen eingeteilt: von „A“ (grün, beste) bis „G“ (rot, schlechteste).</p><p><strong>Auf Pkw-Label achten:</strong>Wie klimafreundlich und kostengünstig ein Neuwagen im Betrieb ist, lässt sich einfach am<a href="https://www.alternativ-mobil.info/pkw-label">Pkw-Label</a>erkennen, mit dem jeder Neuwagen ausgezeichnet sein muss. Das Pkw-Label enthält Informationen zum Energieverbrauch und zum CO2-Ausstoß neuer Autos. Außerdem beinhaltet es Kostenrechnungen für die Kraftstoff-/Energie- und CO2-Kosten. Somit erhalten Verbraucherinnen und Verbraucher auch Informationen darüber, wie sich die CO2-Bepreisung fossiler Kraftstoffe bei den Kosten an der Tankstelle auswirken wird. Die Darstellung des Labels ist analog zum bekannten EU-Energielabel und stuft die Autos nach CO2-Klassen (A bis G bzw. dunkelgrün bis rot) ein (siehe Abbildung). Die Einstufung nach CO2-Klassen erfolgt in Abhängigkeit von der Antriebsart.</p><p><strong>Sparsam bei der Ausstattung sein:</strong><a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/mobilitaet/autoklimaanlage">Klimaanlage</a>, elektrische Fensterheber oder beheizbare Sitze und Heckscheiben sind heute oft Standard. Sie treiben aber auch den Energieverbrauch des Fahrzeugs in die Höhe. Die Klimaanlage ist dabei der größte Spritfresser: Sie erhöht beispielsweise den Verbrauch im Stadtverkehr um bis zu 30 %. Leider wird der Verbrauch durch die Nebenaggregate bei den normierten Verbrauchsangaben der Autohersteller nicht berücksichtigt. Verzichten Sie deshalb beim Kauf nach Möglichkeit auf solche verbrauchssteigernden Nebenaggregate bzw. verwenden Sie diese – insbesondere die Klimaanlage – sparsam.</p><p><strong>Carsharing nutzen:</strong>Oft geht es auch ohne eigenen Pkw. Insbesondere dann, wenn Sie Ihr Auto nicht täglich benötigen. Mit Carsharing können Sie zudem richtig viel Geld sparen. Wenn Sie nicht mehr als 10.000 bis 14.000 km pro Jahr fahren, ist<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/mobilitaet/carsharing">Carsharing</a>in der Regel kostengünstiger als ein eigenes Auto. Die hohen Fixkosten für Anschaffung und Versicherung entfallen. Außerdem müssen Sie sich nicht mehr um die Wartung des Fahrzeugs kümmern.</p><p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p><strong>Umweltsituation:</strong>Der Anteil des Verkehrs an den Treibhausgasemissionen in Deutschland ist seit 1990 von etwa 13 % auf 19,4 % im Jahr 2021 gestiegen. Das lag vor allem am stetig wachsenden Straßengüterverkehr und dem Motorisierten Individualverkehr. Technische Effizienzsteigerungen werden durch höhere Fahrleistungen und dem Trend zu größeren und schwereren Fahrzeugen aufgehoben. Mehr Informationen dazu finden Sie auf unserer Seite<a href="https://www.umweltbundesamt.de/daten/verkehr/emissionen-des-verkehrs">Emissionen des Verkehrs</a>.</p><p>Bezüglich <a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klimawirkung#alphabar">Klimawirkung</a> haben Elektrofahrzeuge die Nase vorn. Gemäß einer Studie im Auftrag des <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> sind im Jahr 2020 zugelassene Elektroautos um etwa 40% klimafreundlicher in ihrer Wirkung als Pkw mit Benzinmotor (UBA 2024). Bei einigen Umweltwirkungen wie die Auswirkungen auf Wasser (aquatische Eutrophierung) und Böden (Versauerung) ergeben sich für E‑Pkw aktuell noch Nachteile, die größtenteils auf die noch fossile Strombereitstellung zurückzuführen sind. Nach Umstellung auf ein erneuerbares Stromsystem liegt der E-Pkw bei allen untersuchten Umweltwirkungen vor Pkw mit Verbrennungsmotoren.</p><p>Eine weitere Umweltbelastung stellt die Versiegelung und Zerschneidung von Flächen durch den Straßenverkehr dar. Damit wird der Lebensraum der Menschen massiv eingeschränkt sowie die <a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Flora#alphabar">Flora</a> und <a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fauna#alphabar">Fauna</a> stark beeinträchtigt.</p><p><strong>Gesetzeslage:</strong>Fossile Kraftstoffe unterliegen einem CO2-Preis, der im<a href="https://www.dehst.de/DE/Publikationen/Recht/Rechtsgrundlagen/_docs/nehs/behg_artikel.html">Brennstoffemissionshandelsgesetz (BEHG)</a>für die Jahre 2024 (45 Euro/ t CO2) und 2025 (55 Euro/ t CO2) festgelegt ist. Das neue Pkw-Label informiert Verbraucherinnen und Verbraucher beispielhaft darüber, wie sich die CO2-Bepreisung fossiler Kraftstoffe bei den Kosten an der Tankstelle auswirken kann. Darüber hinaus finden Sie umfassende Hinweise zu gesetzlichen Regelungen auf unserer Themenseite<a href="https://www.umweltbundesamt.de/themen/verkehr/emissionsstandards/pkw-leichte-nutzfahrzeuge%20">Pkw und leichte Nutzfahrzeuge</a>.</p><p><strong>Marktbeobachtung:</strong>Der Marktanteil von Elektroautos bei Neuwagen nimmt seit dem Jahr 2020 deutlich zu (siehe Abbildung). Allerdings war im Jahr 2023 nur etwa jedes fünfte neue Auto ein Elektroauto. Weitere Marktbeobachtungen finden Sie auf unserer Themenseite<a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/konsum-produkte/gruene-produkte-marktzahlen/marktdaten-bereich-mobilitaet%20">Marktdaten: Mobilität</a>.</p><p>Weitere Informationen finden Sie auf unseren<strong>UBA-Themenseiten</strong>:</p><p><strong>Quellen:</strong>UBA (2024):<a href="https://www.umweltbundesamt.de/publikationen/analyse-der-umweltbilanz-von-kraftfahrzeugen">Analyse der Umweltbilanz von Kraftfahrzeugen mit alternativen Antrieben oder Kraftstoffen auf dem Weg zu einem treibhausgasneutralen Verkehr</a></p><p></p>
Dieselmotoremissionen (DME) haben sich bei Verbrennung fossiler Kraftstoffe als mutagen erwiesen. Die Karzinogenitaet wurde von der IARC im Tierversuch als gesichert (sufficient evidence) und fuer den Menschen als wahrscheinlich (limited evidence) eingestuft. In unseren Studien werden die DME beim Betrieb von PKW und Traktoren mit Rapsoelmethylester (RME) und herkoemmlichem Dieselkraftstoff (DK) untersucht. Das filtergesammelte Abgaspartikulat wird schonend extrahiert, mit HPLC auf PAH analysiert und im direkten Vergleich zwischen RME und DK im AMES-Test auf seine mutagenen Eigenschaften und im Neutralrot-Test auf Zytotoxizitaet untersucht. In den bisher durchgefuehrten Versuchen waren die Filterextrakte bei RME-Betrieb trotz hoeherer absoluter Masse in fast allen Laststufen und Fahrzyklen deutlich weniger mutagen als die DK-Extrakte. Dies ist wahrscheinlich auf die niedrigere PAH-Konzentration im Abgas bei RME-Betrieb zurueckzufuehren. Sollte sich bestaetigen, dass RME-Abgase eine niedrigere mutagene Potenz aufweisen als DK-Abgase, so muss ein Ersatz von DK durch RME beim Betrieb von Dieselfahrzeugen an besonders kritischen Arbeitsplaetzen (in Hallen, unter Tage) und anderen Stellen (z.B. Taxis und Busse in Innenstaedten) diskutiert werden.
Im Rahmen des geplanten Forschungsvorhabens soll eine verbesserte Methode zur Bestimmung kinetischer Daten von Mehrphasenreaktionen entwickelt und getestet werden. Dabei soll ein Zweiphasenreaktor (Flüssigkeit und Katalysator) mit einer Vorsättigung der flüssigen Phase (z.B. bei Hydrierungen mit Wasserstoff) eingesetzt werden. Da nur eine fluide Phase vorliegt, wird der Einfluss der Fluiddynamik überschaubar. Da außerdem kein Stofftransport mehr aus der Gasphase in die Flüssigkeit erfolgt, bestimmen neben der chemischen Reaktion 'nur' noch Diffusionsvorgänge in der flüssigen (Kern)Phase bzw. in den Katalysatorproben die (effektive) Reaktionskinetik. Dieses wesentlich einfachere Reaktionssystem kann sehr genau untersucht werden, und zwar unter Bedingungen (Partikelgröße, Fluidgeschwindigkeit), die auch in technischen Reaktoren herrschen. Durch den anschließenden Vergleich mit Untersuchungen in einem Dreiphasenreaktor kann dann der Einfluss der Fluiddynamik und des Stofftransportes Gas/Flüssigkeit besser als mit den oben beschriebenen üblichen Methoden beurteilt werden. Diese Methode bietet sich allerdings nicht nur für kinetische Untersuchungen an, sondern auch für eine verbesserte Reaktionsführung bei Mehrphasenreaktionen. (...) Folgende Reaktionen, die in der chemischen Praxis bisher in Dreiphasen-Festbettreaktoren durchgeführt wurden, sollen näher untersucht werden: Hydrierung ungesättigter Kohlenwasserstoffe, Entschwefelung von Erdölfraktionen, die Hydrierung von Nitroaromaten, die Umsetzung von Kohlenmonoxid mit Wasserstoff in höhere Kohlenwasserstoffe wie z.B. Dieselöl durch Fischer-Tropsch-Synthese. Diese Modellsysteme wurden ausgewählt, da sie sich hinsichtlich der Kinetik und der notwendigen Reaktionsführung sehr deutlich unterscheiden. Auf diese Weise soll das Prinzip des Zweiphasenreaktors mit Vorsättigung der flüssigen Phase als Methode für kinetische Untersuchungen und als eine Alternative im Hinblick auf die Reaktionsführung von Mehrphasenreaktoren auf einer möglichst breiten Basis untersucht werden.
Die bisher ermittelten Konzentrationen polyzyklischer Aromaten in Dieselkraftstoff und leichtem Heizoel liegen zwischen fuenf Gewichtsprozent fuer alle und 0,02 Gewichtsprozent fuer die Summe von etwa einem Dutzend einzelner. Diese Ergebnisse werden einander gegenuebergestellt und kommentiert. In der Studie wird begruendet, dass die analytische Beruecksichtigung nur weniger Polyzyklen bei praktisch vollstaendiger Vernachlaessigung von Alkylderivaten dem Problem nicht angemessen ist. Schon aus diesem Grund werden die Ergebnisse mit den kleinen Konzentrationen nicht als charakteristisch fuer Mitteldestillate angesehen. Bei den Untersuchungen mit den niederen Gehalten werden ausserdem Unzulaenglichkeiten in der Analytik vermutet.
Das Ziel des Projektkonsortiums ist es die regional stark verankerte Obstbaulandwirtschaft nachhaltig zu unterstützen. Der Fokus des Vorhabens liegt dabei auf den Themen Bewässerung und Pflanzenschutz und hat zum Ziel durch den Einsatz smarter Messtechnik und intelligenter Auswertealgorithmen Einsparungen von Betriebsmitteln, wie Diesel, Pflanzenschutzmittel und Wasser zu ermöglichen. Erreicht werden soll dieses Ziel durch ein Neudenken der etablierten Bewirtschaftungsmethoden, die sich auf Expertenwissen und langjährige nicht quantifizierbare Erfahrungen beruhen. Die begrenzte Erfassbarkeit der komplexen Einflussfaktoren wie Klima, Vorjahresertrag, Blühverlauf uvm. auf die Erntemenge und -qualität lassen sich vom Erzeuger nicht im Detail überblicken und führen somit zu verallgemeinerten Behandlungen der gesamten Anbaufläche mit Pflanzenschutzmitteln anstatt punktuell zu agieren. Mit dem Ansatz eines multisensoriellen Bilderfassungssystems können alle Obstbäume und Anbauflächen automatisiert erfasst und katalogisiert werden. Die Bild- und Sensordaten können entlang der Saison Aufschluss über die Kenngrößen der Pflanzen (Wachstum, Frucht- und Blütenzahl, durchgeführte Behandlungen) liefern und über Jahre hinweg gesichert und mit Hilfe von KI-Algorithmen analysiert werden, wodurch relevantere Handlungsempfehlungen teilflächen- und baumspezifisch abgeleitet werden können. Mit Hilfe autonomer Robotik können die individuell abgestimmten Behandlungen der Bäume durchgeführt werden. Die Sammlung der Daten in einem zentralen interaktiven Hofmanagementsystem bietet zudem eine Schnittstelle, um hochaufgelöste Wetterdaten von verteilten Stationen zu integrieren, wodurch ein teilflächenspezifischer Einsatz der Frostschutzberegnung und somit eine Einsparung von Wasser erreicht werden kann. Durch die Vernetzung und Kooperation der Projektpartner mit lokalen Partnern und Obstbauern kann das erworbene Forschungswissen nachhaltig in der Region an Interessierte weitergegeben werden.
Origin | Count |
---|---|
Bund | 955 |
Europa | 1 |
Kommune | 1 |
Land | 86 |
Wirtschaft | 1 |
Wissenschaft | 2 |
Zivilgesellschaft | 4 |
Type | Count |
---|---|
Chemische Verbindung | 11 |
Daten und Messstellen | 2 |
Ereignis | 27 |
Förderprogramm | 528 |
Gesetzestext | 9 |
Text | 403 |
Umweltprüfung | 25 |
unbekannt | 40 |
License | Count |
---|---|
geschlossen | 185 |
offen | 586 |
unbekannt | 265 |
Language | Count |
---|---|
Deutsch | 942 |
Englisch | 158 |
Resource type | Count |
---|---|
Archiv | 253 |
Bild | 13 |
Datei | 298 |
Dokument | 354 |
Keine | 436 |
Webdienst | 4 |
Webseite | 274 |
Topic | Count |
---|---|
Boden | 855 |
Lebewesen und Lebensräume | 814 |
Luft | 794 |
Mensch und Umwelt | 1036 |
Wasser | 725 |
Weitere | 975 |