Die bisher ermittelten Konzentrationen polyzyklischer Aromaten in Dieselkraftstoff und leichtem Heizoel liegen zwischen fuenf Gewichtsprozent fuer alle und 0,02 Gewichtsprozent fuer die Summe von etwa einem Dutzend einzelner. Diese Ergebnisse werden einander gegenuebergestellt und kommentiert. In der Studie wird begruendet, dass die analytische Beruecksichtigung nur weniger Polyzyklen bei praktisch vollstaendiger Vernachlaessigung von Alkylderivaten dem Problem nicht angemessen ist. Schon aus diesem Grund werden die Ergebnisse mit den kleinen Konzentrationen nicht als charakteristisch fuer Mitteldestillate angesehen. Bei den Untersuchungen mit den niederen Gehalten werden ausserdem Unzulaenglichkeiten in der Analytik vermutet.
Schienenverkehr Schiffsverkehr Flugverkehr Off-road-Verkehr Baustellen Als Datengrundlage zur Berechnung der Emissionen aus dem Schienenverkehr dienten Informationen der Deutschen Bahn AG, Eisenbahnverkehrsunternehmen auf dem Netz des DB-Schienennetzes, Werks- und Privatbahnen, sowie der Straßenbahn und oberirdisch fahrenden U-Bahn Neben Abgas-Emissionen aus dieselbetriebenen Schienenfahrzeugen entstehen auch Partikel-Emissionen durch Abrieb der Bremsen, Räder, Schienen, Fahrleitungen und Stromabnehmer, wobei diese Partikelemissionen auch von elektrisch betriebenen Fahrzeugen stammen. Insgesamt wurden vom Schienenverkehr in Berlin 6,900 Tonnen CO 2 , 114 Tonnen NO x und 227 Tonnen Feinstaub (PM 10 ) emittiert. Den größten Anteil der gasförmigen Emissionen hat der Güterverkehr, wohingegen für PM 10 und PM 2,5 die höchsten Beiträge vom Personennahverkehr (Regionalbahnen und S-Bahnen) rühren, da aufgrund der höheren Fahrleistungen die Abriebprozesse verstärkt zur Feinstaubemission beitragen. Die Datengrundlage für die Berechnung der Emissionen aus dem Berliner Schifffahrtsverkehr bilden Informationen der Schiffs- und Güterstrombewegungen auf den Bundeswasserstraßen der Wasser- und Schifffahrtsdirektion Ost sowie Auswertungen der Fahrpläne der Fahrgastschiffe der in Berlin tätigen Reedereien. Über die Wasser- und Schifffahrtsdirektion Ost ist zudem die mittlere Flottenstruktur der in Berlin beheimateten Güter- und Personenschiffe, differenziert nach mittlerer Fahrgastanzahl und mittlerer Leistung, bekannt. Schleusendaten erfassen außerdem neben den Güter – und Personenschiffen auch Motorboote, sodass auch diese Schiffsklasse in die Berechnung der schifffahrtsbedingten Emissionen einfließen konnte. Eine weitere Datenquelle für die Emissionsberechnung bildete der Kraftstoffverbrauch sowohl des Güterverkehrs als auch der Fahrgastschifffahrt und der sonstigen Boote. Der größte Anteil der Emissionen auf Berliner Wasserstraßen entfällt auf die Fahrgastschifffahrt, der bei den NO x -Emissionen bei 57 % und bei den PM 10 -Emissionen bei 65 % liegt. Räumlich ist vor allem der Stadtbezirk Mitte mit den vielen Fahrgastschifffahrtsanlegern zwischen Mühlendammschleuse und dem Bundeskanzleramt. Für den Flugverkehr wurden die Abgas-Emissionen des zivilen Flugverkehrs im bodennahen Bereich der Flughäfen bis 3.000 Fuß oder 915 Meter Höhe sowie die Emissionen durch die Fahrzeuge auf den Flughafenvorfeldern berücksichtigt. Für das Basisjahr 2015 wurden die beiden Berliner Flughäfen Schönefeld und Tegel sowie die Flugbewegungen auf den 10 Berliner Hubschrauberlandeplätzen in die Emissionsberechnung einbezogen. Zur Ermittlung der Emissionen wurden die Start- und Landevorgänge, differenziert nach Luftfahrzeugklasse, analysiert, die vom Statistischen Bundesamt zur Verfügung gestellt wurden. Zudem wurden vom Flughafenbetreiber Berlin-Brandenburg GmbH modellfeine Daten aus Flugtagebüchern zur Verfügung gestellt Zudem wurde eine Abschätzung der Emissionen des Flughafen Berlin-Brandenburg (BER) für das Bezugsjahr 2023 durchgeführt. Bei der Berechnung der zu erwartenden Emissionen wurde auf die vom Flughafen Berlin – Brandenburg erstellte Flugverkehrsprognose zurückgegriffen. Die Quellgruppe „Off-road-Verkehr“ umfasst die Anwendung von mobilen Geräten und Maschinen sowie von Fahrzeugen außerhalb des öffentlichen Straßenverkehrs in der Forst- und Landwirtschaft, Industrie, Privaten Gartenpflege, Pflegen öffentlicher Grünflächen und des Militärs. Als emissionsrelevante Daten werden Angaben zum eingesetzten Fahrzeug- und Gerätebestand und deren Einsatzbedingungen benötigt, die aber im Allgemeinen nicht vorliegen. Deshalb muss auf Ersatzdaten ausgewichen werden, die im Folgenden aufgelistet sind: Gesamte Waldfläche und landwirtschaftliche Nutzflächen, Anzahl der Beschäftigten im verarbeitenden Gewerbe Gebäude- und Freiflächendaten im Wohnungsbereich Erholungsflächen, Grünanlagen und Friedhofsflächen Anzahl der militärischen Dienstposten. Anhand dieser Angaben und mittlerer Emissionsfaktoren wurden daraus die Emissionen des Sektors “off-road-Verkehr” abgeschätzt. Durch Baustellen werden verschiedene Emissionen erzeugt, die sich in folgende Teilbereiche einteilen lassen: Abgasemissionen der mobilen Maschinen Aufwirbelungs- und Abriebemissionen der mobilen Maschinen Weitere Emissionen (vor allem Staub) durch unterschiedliche Bautätigkeiten und Arbeitsprozesse (z.B. Abbrucharbeiten, Bohrungen usw.) Baustellen lassen sich jedoch räumlich nur sehr schwer repräsentativ für einen längeren Zeitraum einem bestimmten Gebiet zuordnen. Während mobile Baumaschinen, die zum größten Teil dieselbetrieben sind, stark in ihrer Größe und Leistung je nach Einsatzgebiet variieren und im Straßen-, Hoch- und Tiefbau eingesetzt werden, relativ gut emissionsseitig eingeordnet werden können, ist die Datenlage ihres Einsatzes jedoch sehr unsicher. Der Standort des gemeldeten Bestandes weicht häufig stark von ihrem Einsatzgebiet ab, da Baufirmen nicht nur lokal arbeiten und zudem häufig auch Leihmaschinen einsetzen. Die Staub-Emissionen durch Aufwirbelung und Abrieb sowie durch Abbrucharbeiten überschreiten zudem in der Regel die Abgasemissionen auf Baustellen bei weitem. Emissionsfaktoren für Aufwirbelung und Abrieb werden über die im Bau befindlichen Flächen und über die Baudauer, differenziert nach Gebäudetyp, zur Verfügung gestellt. Auch für Abbrucharbeiten beziehen sich die Emissionsfaktoren üblicherweise auf das abzubrechende Material, das heißt, auf die Größe der Baustelle und des abzubrechenden Gebäudes. Zusammenfassend muss festgestellt werden, dass insbesondere die nicht-motorbedingten Emissionen aus dem Einsatz von Baumaschinen und den Tätigkeiten auf Baustellen aktuell nur sehr grob abgeschätzt werden können. Die Ermittlung der Emissionen der Bauwirtschaft in Berlin wurde deshalb auf Basis anderweitiger Daten durchgeführt: Ermittlung des Gesamtbauvolumes für Berlin, differenziert nach Bauhauptgewerbe und Ausbaugewerbe Abschätzung der Anzahl der Beschäftigten auf Basis der Daten aus der Statistik des Baugewerbes Berlin Ableitung von spezifischen Verbrauchsdaten (Diesel, Benzin, Gemisch) pro Beschäftigten und Ermittlung von typischen Bestandsstrukturen der eingesetzten Baumaschinen Ermittlung von charakteristischen kraftstoffbezogenen Abgas-Emissionsfaktoren sowie Emissionsfaktoren für Aufwirbelung, Abrieb und Abbrucharbeiten.
Die Data 4 Germany S.à.r.l., Boulevard Royal 26A, L-2449 Luxemburg, hat einen Antrag gestellt auf Erteilung einer immissionsschutzrechtlichen Genehmigung zur Errichtung und zum Betrieb einer Notstromversorgung mit NDM für das Rechenzentrum-Campus Hanau. Das Rechenzentrum-Campus Hanau besteht aus sechs eigenständigen Gebäuden (Modul M1-M6). Um die unterbrechungsfreie Stromversorgung des Rechenzentrums im Falle eines Ausfalls der öffentlichen Stromversorgung sicherzustellen, sind die Installation von insgesamt 128 NDM (Endausbau) sowie eines Hausgenerators einschließlich der zugehörigen Nebeneinrichtungen vorgesehen Die immissionsschutzrechtliche Genehmigung für das Gesamtvorhaben bis Endausbau wird in einem gestuften Genehmigungsverfahren mit mehreren Teilgenehmigungen nach § 8 BImSchG beantragt. Bei dem beantragten Vorhaben handelt es sich um einen Antrag auf Erteilung der ersten Teilgenehmigung gemäß § 8 BImSchG. Gegenstand des Antrags ist im Wesentlichen die Errichtung und der Betrieb einer Notstromversorgung mit insgesamt 64 NDM sowie eines Hausgenerators zur Versorgung der Module M1 bis M4 des Rechenzentrum-Campus Hanau für den Fall eines Ausfalls der öffentlichen Stromversorgung. Die beantragte Anlage umfasst im Einzelnen: 64 Data Hall Generatoren, jeweils mit: • Lagertank für Diesel (26 m³) • Harnstofftank (0,5 m³) • Schmierölkreislauf • Kühlkreisläufe mit Rückkühler (Wasser/Glykol-Gemisch) • Dieselfilteranlagen • Abgasreinigungsanlagen (SCR-Katalysator) 1 Hausgenerator, mit: • Lagertank für Diesel (4 m³) • Harnstofftank (0,5 m³) • Schmierölkreislauf • Kühlkreislauf mit Rückkühler (Wasser/Glykol-Gemisch) • Dieselfilteranlage • Abgasreinigungsanlage (SCR-Katalysator) Die installierte und beantragte Feuerungswärmeleistung (FWL) umfasst insgesamt 64 NDM mit einer jeweiligen FWL von 7,13 MW sowie einen Hausgenerator mit einer FWL von 0,64 MW. Dies entspricht einer FWL in der Höhe von 457 MW. Die maximale Betriebsstundenzahl beträgt 360 h/a. Zu Modul 1 wurde zusätzlich für die Errichtung der Abfüllfläche, der Lagertanks für Diesel und Harnstoff, der zugehörigen Rohrleitungen, ferner für die Errichtung der Generatoren und der Schornsteine ein Antrag auf Zulassung des vorzeitigen Beginns gemäß § 8a BImSchG gestellt. Bei der Anlage handelt es sich um eine Anlage nach der Industrieemissionsrichtlinie. Dieses Vorhaben bedarf nach § 4 Abs. 1 des Bundes-Immissionsschutzgesetzes (BImSchG) in Verbindung mit Nr. 1.1 des Anhangs 1 der Vierten Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) der immissionsschutzrechtlichen Genehmigung das Regierungspräsidium Darmstadt.
Dieselmotoremissionen (DME) haben sich bei Verbrennung fossiler Kraftstoffe als mutagen erwiesen. Die Karzinogenitaet wurde von der IARC im Tierversuch als gesichert (sufficient evidence) und fuer den Menschen als wahrscheinlich (limited evidence) eingestuft. In unseren Studien werden die DME beim Betrieb von PKW und Traktoren mit Rapsoelmethylester (RME) und herkoemmlichem Dieselkraftstoff (DK) untersucht. Das filtergesammelte Abgaspartikulat wird schonend extrahiert, mit HPLC auf PAH analysiert und im direkten Vergleich zwischen RME und DK im AMES-Test auf seine mutagenen Eigenschaften und im Neutralrot-Test auf Zytotoxizitaet untersucht. In den bisher durchgefuehrten Versuchen waren die Filterextrakte bei RME-Betrieb trotz hoeherer absoluter Masse in fast allen Laststufen und Fahrzyklen deutlich weniger mutagen als die DK-Extrakte. Dies ist wahrscheinlich auf die niedrigere PAH-Konzentration im Abgas bei RME-Betrieb zurueckzufuehren. Sollte sich bestaetigen, dass RME-Abgase eine niedrigere mutagene Potenz aufweisen als DK-Abgase, so muss ein Ersatz von DK durch RME beim Betrieb von Dieselfahrzeugen an besonders kritischen Arbeitsplaetzen (in Hallen, unter Tage) und anderen Stellen (z.B. Taxis und Busse in Innenstaedten) diskutiert werden.
EwOPro ist ein Entwicklungs- und Demonstrationsvorhaben zur Erzeugung synthetischer Kraftstoffe / eFuels, mit dem Fokus auf der Herstellung von erneuerbarem Kerosin. Das Hauptziel von EwOPro ist die detaillierte Untersuchung des Prozesses zur Umsetzung der Olefine zu Paraffinen bzw. Oligomeren in der entsprechenden Kettenlänge und Verzweigung im Rahmen des Methanol-to-Jetfuel-Prozesses, welche für die Ziel-Produktfraktion Kerosin und die Koppelprodukte hochoktaniges/aromatenfreies Benzin und Diesel/Heizöl von Relevanz sind. Dabei stehen insbesondere die wissensbasierte Katalysatorweiterentwicklung sowie die Optimierung der prozesstechnischen Parameter der einzelnen Prozessstufen Methanol-to-Olefins, Olefin-Oligomerisierung und Hydrierung sowie in Kombination im Vordergrund. Die Kombination der Verfahrensschritte ist essentiell, um die zielgerichtete Steuerung des Produktspektrums je nach wirtschaftlichem Bedarf untersuchen und entsprechend optimieren zu können. Die gesamte Prozesskette soll in einer Pilotanlage im Technikumsmaßstab unter Nutzung vorhandener Infrastruktur und Peripherie aufgebaut werden (TRL 6). Für Oligomerisierung soll ein Kerosin-Anteil von mind. 62,5 Ma.-% im flüssigen Produkt erreicht werden. Zudem stehen je 20 Ma.-% hochoktangies aromatenfreies Benzin sowie Diesel in entsprechender Qualität im Fokus der quantitativen Zielstellung. Für die Übertragbarkeit der Ergebnisse steht die Auslegung eines großtechnischen Reaktorsystems basierend auf Tests auf der Pilotanlage im Ergebnis des beantragten Vorhabens. Dies dient der schnellen und effizienten technologischen Umsetzung des Prozesses nach Abschluss des Förderprojekts. Das Ziel des Teilprojekts ist die Entwicklung einer Methode zur umfassenden und detaillierten Analytik von synthetisch erzeugten Kerosinen auf Grundlage der komprehensiven Gaschromatographie (GCxGC) und die Anwendung dieser Methode auf Proben, die in den Versuchskampagnen des Projekts an einer Technikumsanlage gewonnen werden.
EwOPro ist ein Entwicklungs- und Demonstrationsvorhaben zur Erzeugung synthetischer Kraftstoffe / eFuels, mit dem Fokus auf der Herstellung von erneuerbarem Kerosin. Das Hauptziel von EwOPro ist die detaillierte Untersuchung des Prozesses zur Umsetzung der Olefine zu Paraffinen bzw. Oligomeren in der entsprechenden Kettenlänge und Verzweigung im Rahmen des Methanol-to-Jetfuel-Prozesses, welche für die Ziel-Produktfraktion Kerosin und die Koppelprodukte hochoktaniges/aromatenfreies Benzin und Diesel/Heizöl von Relevanz sind. Dabei stehen insbesondere die wissensbasierte Katalysatorweiterentwicklung sowie die Optimierung der prozesstechnischen Parameter der einzelnen Prozessstufen Methanol-to-Olefins, Olefin-Oligomerisierung und Hydrierung sowie in Kombination im Vordergrund. Die Kombination der Verfahrensschritte ist essentiell, um die zielgerichtete Steuerung des Produktspektrums je nach wirtschaftlichem Bedarf untersuchen und entsprechend optimieren zu können. Die gesamte Prozesskette soll in einer Pilotanlage im Technikumsmaßstab unter Nutzung vorhandener Infrastruktur und Peripherie aufgebaut werden (TRL 6). Für Oligomerisierung soll ein Kerosin-Anteil von mind. 62,5 Ma.-% im flüssigen Produkt erreicht werden. Zudem stehen je 20 Ma.-% hochoktangies aromatenfreies Benzin sowie Diesel in entsprechender Qualität im Fokus der quantitativen Zielstellung. Für die Übertragbarkeit der Ergebnisse steht die Auslegung eines großtechnischen Reaktorsystems basierend auf Tests auf der Pilotanlage im Ergebnis des beantragten Vorhabens. Dies dient der schnellen und effizienten technologischen Umsetzung des Prozesses nach Abschluss des Förderprojekts.
<p>Sprit sparen: Kosten für Benzin und Diesel reduzieren </p><p>Wie Sie Sprit sparen für ein umweltbewusstes Autofahren</p><p><ul><li>Der Spritverbrauch hängt in erster Linie vom Auto ab. Kaufen Sie deshalb ein Auto mit möglichst niedrigem Spritverbrauch.</li><li>Fahren Sie niedertourig, vorausschauend und gleichmäßig.</li><li>Wählen Sie den passenden Reifen und Reifendruck.</li><li>Verzichten Sie auf unnötige Lasten und Aufbauten.</li><li>Schalten Sie Nebenaggregate wie Klimaanlage nur an, wenn Sie diese wirklich brauchen.</li></ul></p><p>Gewusst wie</p><p>Der Großteil der Treibhausgasemissionen eines Autos wird durch das Verbrennen von Benzin oder Diesel verursacht. Der dabei verbrauchte Kraftstoff hängt – neben dem spezifischen Spritverbrauch des Autos (siehe <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/mobilitaet/autokauf">Tipps zum Autokauf</a>) – in hohem Maße von der Fahrweise und dem Nutzungsverhalten ab. Das ist auch eine Kostenfrage. Die Einsparungen durch vorausschauende Fahrweise und energiesparendem Verhalten können mehrere hundert Euro pro Jahr betragen. Bei steigenden Spritpreisen wird dadurch noch mehr Geld gespart.</p><p><strong>Niedertourig, vorausschauend und angemessen fahren:</strong> Schalten Sie nach dem Anfahren möglichst schnell hoch und orientieren Sie sich, wenn vorhanden, dabei an der Schaltpunktanzeige. Fahren Sie dann gleichmäßig in hohen Gängen bei niedrigen Drehzahlen. Dadurch sinkt auch der Geräuschpegel. Automotoren kommen mit niedertourigem Fahren problemlos klar. Bei Fahrzeugen mit Automatikgetriebe verzichten Sie auf das Sportprogramm. Durch vorrausschauendes Fahren mit ausreichendem Sicherheitsabstand „schwimmen“ Sie im Verkehr mit und vermeiden spritfressendes Beschleunigen und Bremsen. Auch Höchstgeschwindigkeiten benötigen übermäßig viel Sprit. So spart beispielsweise ein Auto mit einer mittleren Geschwindigkeit von 100 km/h statt 120 km/h bei gleicher Streckenlänge rund 15 % Kraftstoff und damit 15 % der Spritkosten.</p><p><strong>Die richtigen Reifen:</strong> Wählen Sie einen zur Jahreszeit passenden Reifen und überprüfen Sie regelmäßig den vom Hersteller empfohlenen Reifendruck. Ein um 0,5 bar zu niedriger Reifendruck erhöht den Kraftstoffverbrauch um rund fünf Prozent mit entsprechenden Mehrkosten. Ein falscher Reifendruck ist auch ein Sicherheitsrisiko und führt zu vorzeitigem Reifenverschleiß. Winterreifen sind lauter, nutzen schneller ab und verursachen bis zu zehn Prozent mehr Kraftstoffverbrauch. Winterreifen sollten deshalb nur im Winter ihren Dienst tun. Beachten Sie auch unsere Hinweise zum Kauf von neuen <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/mobilitaet/autoreifen">Reifen</a>.</p><p><strong>Unnötige Aufbauten und Lasten entfernen:</strong> Dachgepäckträger erhöhen den Luftwiderstand. Nach Messungen des ADAC steigt der Kraftstoffverbrauch bei einem Mittelklassewagen mit einer Geschwindigkeit von 130 km/h um bis zu 25%. Fahrrad-, Ski- oder Gepäckträger sollten deshalb unbedingt entfernt werden, wenn sie nicht im Einsatz sind. Vermeiden Sie auch im Auto unnötiges Mehrgewicht, das den Kraftstoffverbrauch ebenfalls erhöht.</p><p><strong>Nebenaggregate im Blick:</strong> Nutzen Sie Extras wie Klimaanlage und Heckscheibenheizung nur, wenn Sie diese wirklich brauchen. Auch diese Geräte verbrauchen Strom und damit Kraftstoff. Eine <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/mobilitaet/autoklimaanlage">Klimaanlage </a>kann den Kraftstoffverbrauch im Stadtverkehr um etwa 10 bis 30 % und damit schon bei einem Kleinwagen um bis zu 2 Liter pro 100 km erhöhen. Eine beheizte Heckscheibe erhöht ihn um vier bis sieben Prozent.</p><p><strong>Kurzstrecken zu Fuß oder mit dem Rad:</strong> Ein kalter Motor verbraucht erheblich mehr Kraftstoff als ein betriebswarmer Motor. Durchschnittlich verbraucht ein Mittelklassewagen direkt nach dem Start hochgerechnet bis zu 30 Liter auf 100 km. Erst wenn der Motor seine Betriebstemperatur erreicht hat, stellt sich der normale Spritverbrauch ein. Auch der Verschleiß des Motors ist aus dem gleichen Grund bei Kurzstrecken außerordentlich hoch. Der Umstieg bei Kurzstrecken auf Fuß oder Rad ist daher nicht nur gesünder, sondern auch spritsparend und motorschonend.</p><p><strong>Was Sie noch tun können:</strong></p>
Pruefung von GFK-Tanks zur Lagerung brennbarer Fluessigkeiten im Hinblick auf eine allgemeine Bauartzulassung.
| Origin | Count |
|---|---|
| Bund | 927 |
| Europa | 1 |
| Kommune | 2 |
| Land | 85 |
| Wirtschaft | 1 |
| Wissenschaft | 2 |
| Zivilgesellschaft | 5 |
| Type | Count |
|---|---|
| Chemische Verbindung | 11 |
| Daten und Messstellen | 2 |
| Ereignis | 27 |
| Förderprogramm | 530 |
| Gesetzestext | 9 |
| Hochwertiger Datensatz | 1 |
| Text | 370 |
| Umweltprüfung | 26 |
| unbekannt | 40 |
| License | Count |
|---|---|
| geschlossen | 155 |
| offen | 586 |
| unbekannt | 266 |
| Language | Count |
|---|---|
| Deutsch | 911 |
| Englisch | 154 |
| Resource type | Count |
|---|---|
| Archiv | 254 |
| Bild | 13 |
| Datei | 297 |
| Dokument | 336 |
| Keine | 424 |
| Webdienst | 4 |
| Webseite | 264 |
| Topic | Count |
|---|---|
| Boden | 821 |
| Lebewesen und Lebensräume | 864 |
| Luft | 745 |
| Mensch und Umwelt | 1007 |
| Wasser | 692 |
| Weitere | 983 |