EwOPro ist ein Entwicklungs- und Demonstrationsvorhaben zur Erzeugung synthetischer Kraftstoffe / eFuels, mit dem Fokus auf der Herstellung von erneuerbarem Kerosin. Das Hauptziel von EwOPro ist die detaillierte Untersuchung des Prozesses zur Umsetzung der Olefine zu Paraffinen bzw. Oligomeren in der entsprechenden Kettenlänge und Verzweigung im Rahmen des Methanol-to-Jetfuel-Prozesses, welche für die Ziel-Produktfraktion Kerosin und die Koppelprodukte hochoktaniges/aromatenfreies Benzin und Diesel/Heizöl von Relevanz sind. Dabei stehen insbesondere die wissensbasierte Katalysatorweiterentwicklung sowie die Optimierung der prozesstechnischen Parameter der einzelnen Prozessstufen Methanol-to-Olefins, Olefin-Oligomerisierung und Hydrierung sowie in Kombination im Vordergrund. Die Kombination der Verfahrensschritte ist essentiell, um die zielgerichtete Steuerung des Produktspektrums je nach wirtschaftlichem Bedarf untersuchen und entsprechend optimieren zu können. Die gesamte Prozesskette soll in einer Pilotanlage im Technikumsmaßstab unter Nutzung vorhandener Infrastruktur und Peripherie aufgebaut werden (TRL 6). Für Oligomerisierung soll ein Kerosin-Anteil von mind. 62,5 Ma.-% im flüssigen Produkt erreicht werden. Zudem stehen je 20 Ma.-% hochoktangies aromatenfreies Benzin sowie Diesel in entsprechender Qualität im Fokus der quantitativen Zielstellung. Für die Übertragbarkeit der Ergebnisse steht die Auslegung eines großtechnischen Reaktorsystems basierend auf Tests auf der Pilotanlage im Ergebnis des beantragten Vorhabens. Dies dient der schnellen und effizienten technologischen Umsetzung des Prozesses nach Abschluss des Förderprojekts. Das Ziel des Teilprojekts ist die Entwicklung einer Methode zur umfassenden und detaillierten Analytik von synthetisch erzeugten Kerosinen auf Grundlage der komprehensiven Gaschromatographie (GCxGC) und die Anwendung dieser Methode auf Proben, die in den Versuchskampagnen des Projekts an einer Technikumsanlage gewonnen werden.
<p>Das Verkehrswachstum auf der Straße sorgt für einen nahezu konstant hohen Energieverbrauch seit 1995. Die Energieverbräuche auf der Schiene sinken kontinuierlich.</p><p>Verkehr braucht Energie</p><p>2023 betrug der gesamte <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des Verkehrssektors ca. 3.498 Petajoule (PJ) (siehe Abb. „Entwicklung des gesamten Primärenergieverbrauchs im Verkehrssektor“). Das war ein Drittel des gesamten Primärenergieverbrauchs in Deutschland (vgl. dazu <a href="https://bmdv.bund.de/SharedDocs/DE/Artikel/G/verkehr-in-zahlen.html">BMDV: Verkehr in Zahlen</a>, S. 302). Im Verkehrssektor stieg der Primärenergieverbrauch seit 1995 kontinuierlich an, pandemiebedingt lagen die Werte 2020 und 2021 unter denen der Vorjahre, aber auch 2023 war der Verbrauch noch geringer als 2019.</p><p>Der Personenverkehr benötigt rund 65 % des gesamten Primärenergieverbrauchs im Verkehrssektor. Der Energieverbrauch im Straßenverkehr ist seit 1999 mit leichten Schwankungen nahezu konstant, seit 2020 zeigt er nach dem pandemiebedingten Rückgang eine stark steigende Tendenz. Im Schienenverkehr ist der Energieverbrauch dagegen seit 1995 kontinuierlich gesunken (siehe Abb. „Entwicklung des Primärenergieverbrauchs im Personenverkehr“).</p><p>Der Güterverkehr benötigte dementsprechend ca. 35 % des gesamten verkehrsbedingten Primärenergieverbrauchs in 2023. Zwischen 1995 und 2023 stieg der Verbrauch um rund 42 % an, im Wesentlichen durch die Zunahme des Straßengüterverkehrs. Besonders stark war auch die Zunahme im Luftverkehr, während die Energieverbräuche im Schienengüterverkehr und in der Binnenschifffahrt abnahmen (siehe Abb. „Entwicklung des Primärenergieverbrauchs im Güterverkehr“).</p><p>Ein wichtiger Baustein nachhaltigen Verkehrs ist die effiziente Nutzung der eingesetzten Energie in Form der Endenergieträger Diesel, Benzin, Flüssig- oder Erdgas, Kerosin und Strom sowie die Nutzung alternativer Antriebe und klimaverträglicher alternativer Kraftstoffe. Informationen hierzu finden Sie im Artikel <a href="https://www.umweltbundesamt.de/daten/verkehr/endenergieverbrauch-energieeffizienz-des-verkehrs">„Endenergieverbrauch und Energieeffizienz des Verkehrs“</a>. Darüber hinaus sind nicht-technische Maßnahmen und entsprechende Rahmenbedingungen erforderlich, um Verkehr erstens zu vermeiden und um zweitens vor allem im Personenverkehr die Nutzung umweltfreundlicherer Verkehrsmittel oder Mobilität mit weniger Verkehr zu fördern (siehe Artikel <a href="https://www.umweltbundesamt.de/daten/private-haushalte-konsum/mobilitaet-privater-haushalte">„Mobilität privater Haushalte“</a>).</p><p>Endenergieverbrauch steigt seit 2010 wieder an</p><p>Grund für den Anstieg bis 2019 war die starke Zunahme der Verkehrsleistungen im Personen- als auch im Gütertransport auf der Straße, welche die technischen Verbesserungen an den Fahrzeugen überkompensierten. Im Jahr 2023 lag der <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> im Verkehr über dem Verbrauch der pandemiegeprägten Vorjahre, jedoch noch unter dem Verbrauch von 2019 (siehe <a href="https://www.umweltbundesamt.de/daten/verkehr/fahrleistungen-verkehrsaufwand-modal-split">Fahrleistungen, Verkehrsleistung und Modal Split</a> und <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-endenergieverbrauch-des-verkehrs">Indikator: Endenergieverbrauch des Verkehrs</a>).</p><p>Kraftstoffe dominieren</p><p>Im Verkehrssektor entfielen 2023 etwa 97,8 % des Verbrauchs an <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergie#alphabar">Endenergie</a> auf Kraftstoffe und rund 2,2 % auf Strom. Der Verbrauch an Kraftstoffen verteilte sich im Jahr 2023 – bezogen auf den Energiegehalt (ohne Strom) – rund 28 % auf Benzin, 48 % auf Diesel, 16 % auf Flugkraftstoffe und 0,3 % auf Flüssig- und Erdgas. Biokraftstoffe haben einen Anteil von 5,2 % (siehe Abb. „Entwicklung des Endenergieverbrauchs nach Kraftstoffarten“).</p><p>Seit 1995 hat der Verbrauch von Diesel kontinuierlich zugenommen und lag auch 2023 etwa 19 % höher als im Jahr 1995. Analog hat sich der Verbrauch der Vergaserkraftstoffe verringert. Der Verbrauch von Kerosin ist vor allem durch die Zunahme internationaler Flüge gestiegen. Bezogen auf den <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Endenergieverbrauch#alphabar">Endenergieverbrauch</a> in Megajoule hatte der elektrische Strom im Schienenverkehr einen Anteil von 75,5 % im Jahr 2023. Diesel als Energieträger im Schienenverkehr sinkt, absolut betrachtet, seit Jahren kontinuierlich.</p><p>Biokraftstoffe</p><p>Seit 1991 werden im Straßenverkehr biogene Kraftstoffe eingesetzt. Es sind derzeit vor allem Biodiesel und Bioethanol, die fossilen Kraftstoffen beigemischt werden. Die <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32009L0028">EU Richtlinie 2009/28/EG</a> zielt vor allem auf Biokraftstoffe, schließt aber etwa die Möglichkeit ein, aus erneuerbarem Strom hergestellten Wasserstoff oder Methan in Fahrzeugen oder Strom in Elektrofahrzeugen zu nutzen (siehe auch: <a href="https://www.umweltbundesamt.de/themen/verkehr/kraftstoffe-antriebe">Kraftstoffe und Antriebe</a> sowie <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/bioenergie#Reststoffe">Bioenergie</a>).</p><p>Elektrofahrzeuge </p><p>Fahrzeuge mit Elektroantrieb bieten eine weitere Möglichkeit, Strom im Straßenverkehr direkt und damit am effizientesten unter den alternativen Energieversorgungsoptionen für Fahrzeuge zu nutzen. So kann die Batterie dieser Fahrzeuge unter anderem mit Strom aus Sonnenenergie, Wind- oder Wasserkraft aufgeladen werden. Der Anteil der erneuerbaren Energien im deutschen Strom-Mix betrug im Jahr 2024 54,4 % (<a href="https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien#entwicklung-in-zahlen">https://www.bmwk.de/Redaktion/DE/Dossier/erneuerbare-energien#entwicklung-in-zahlen</a>). Bereits bei diesem Strom-Mix sind Elektrofahrzeuge in der Regel klimafreundlicher als vergleichbare konventionelle Fahrzeuge (<a href="https://www.bmuv.de/fileadmin/Daten_BMU/Download_PDF/Verkehr/emob_klimabilanz_bf.pdf">ifeu 2020</a>). Das Angebot an reinen Elektrofahrzeugen ist in den letzten Jahren deutlich größer geworden und die Nutzbarkeit der E-Fahrzeuge ist durch inzwischen wesentlich größere Reichweiten der aktuellen Modelle deutlich gestiegen. Im Jahr 2023 war etwa jeder siebte neu zugelassene Pkw ein reines Elektrofahrzeug.</p><p>Spezifischer Energieverbrauch sinkt</p><p>Der durchschnittliche Energieverbrauch (inkl. <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Vorkette#alphabar">Vorkette</a>) pro <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsleistung#alphabar">Verkehrsleistung</a> sank von 1995 bis 2023 in fast allen Bereichen des Güter- und des Personenverkehrs (siehe Abb. „Entwicklung des spezifischen Energieverbrauchs im Güterverkehr" und Abb. „Entwicklung des spezifischen Energieverbrauchs im Personenverkehr“). Die Rückgänge im Energieverbrauch pro Verkehrsleistung sind vor allem auf technische Verbesserungen an den Fahrzeugen zurückzuführen. Auch Busse sind effizienter geworden, auch wenn der spezifische Energieverbrauch seit 2010 wieder steigt: der Grund sind sinkende Fahrgastzahlen und damit schlechtere Auslastungen der Fahrzeuge. Im Straßenverkehr wird ab 2019 der Methodenwechsel bei der Vorkettenberechnung sichtbar: die Werte gehen bei den Bussen und Pkw deutlich nach oben. Pandemiebedingte niedrige Fahrgastzahlen waren zudem 2020 und 2021 der Grund dafür, dass bei nahezu allen Verkehrsmitteln der spezifische Energieverbrauch höher lag.</p><p>*inkl. der Emissionen aus Bereitstellung und Umwandlung der Energieträger in Strom, Benzin, Diesel, Flüssig- und Erdgas<br> **schwere Nutzfahrzeuge (Lkw ab 3,5t, Sattelzüge, Lastzüge), ab 2019 Methodenwechsel in der Vorkettenmodellierung, Werte ab 2019 daher nur eingeschränkt mit den Vorjahren vergleichbar.</p><p>*inkl. Emissionen aus Bereitstellung & Umwandlung der Energieträger in Strom, Benzin, Diesel, Flüssig- & Erdgas sowie Kerosin<br> **ab 2019 Methodenwechsel in der Vorkettenmodellierung, Werte ab 2019 daher nur eingeschränkt mit den Vorjahren vergleichbar<br> ***ausgewählte Flughäfen in Deutschland, nur Kerosin</p><p>Kraftstoffverbrauch im Personen- und Güterstraßenverkehr</p><p>Die Verbrauchsentwicklung im Personenverkehr und Güterverkehr zeigt unterschiedliche Tendenzen. In den Jahren 2020 und 2021 kam es aufgrund der pandemiebedingten Einschränkungen zu einer Verringerung des gesamten Kraftstoffverbrauchs, auch 2023 lag der Verbrauch noch unter dem von 2019. Der Kraftstoffverbrauch im Pkw-Verkehr verschob sich seit 1995 kontinuierlich von Benzin zu Diesel. Während der Anteil von Benzin 1995 noch 84 % betrug, sind es mittlerweile 59 %. Der Benzinverbrauch ist entsprechend seit 1995 gesunken, der Dieselverbrauch dagegen gestiegen, stagniert jedoch seit einigen Jahren (siehe Abb. „Kraftstoffverbrauch von Pkw und Kombi“). Der Kraftstoffverbrauch in Litern im Straßengüterverkehr lag 2023 etwas unter dem Niveau von 1995 (siehe Abb. „Kraftstoffverbrauch im Straßenverkehr“).</p><p>Durchschnittsverbrauch bei Pkw stagniert</p><p>Im gesamten Zeitraum 1995 bis 2023 verringerte sich der durchschnittliche Kraftstoffverbrauch um 1,4 Liter pro 100 Kilometer (siehe Abb. „Durchschnittlicher Kraftstoffverbrauch von Pkw und Kombi“). Ein Grund dafür ist die verbesserte Gesamteffizienz der Fahrzeuge, die sowohl Motoren als auch Getriebe und Karosserie betrifft. Seit einigen Jahren liegt der Durchschnittsverbrauch jedoch unverändert bei 7,4 Liter pro 100 Kilometer. Einer Verringerung des Kraftstoffverbrauchs stehen der Trend zu leistungs-stärkeren und größeren Fahrzeugen sowie die zunehmende Ausstattung mit verbrauchserhöhenden Hilfs- und Komforteinrichtungen wie Klimaanlagen entgegen.</p><p>Weiterführende Informationen</p><p><a href="https://bmdv.bund.de/SharedDocs/DE/Artikel/G/verkehr-in-zahlen.html">BMDV: Verkehr in Zahlen</a></p><p><a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32009L0028">Richtlinie 2009/28/EG (Erneuerbare Energien)</a></p><p><a href="https://www.umweltbundesamt.de/themen/verkehr/verkehrsrecht">Verkehrsrecht</a></p><p><a href="https://www.umweltbundesamt.de/themen/verkehr/emissionsdaten">Durchschnittliche Emissionen verschiedener Verkehrsmittel</a></p><p><a href="https://www.umweltbundesamt.de/daten/energie/erneuerbare-energie-im-verkehr">Erneuerbare Energien im Verkehr</a></p><p><a href="https://www.umweltbundesamt.de/themen/verkehr/kraftstoffe-antriebe">Kraftstoffe und Antriebe</a></p>
Pflanzliche Öle werden als energiereiche Reservestoffe in Speicherorgane von Pflanzen eingelagert. Sie sind chemisch gesehen Ester aus Glycerin und drei Fettsäuren. In Deutschland konzentriert sich der Ölsaatenanbau auf Raps, Sonnenblume und Lein. Im Freistaat Sachsen dominiert auf Grund der Standortbedingungen und vor allem der Wirtschaftlichkeit eindeutig der Raps. Der maximal mögliche Anbauumfang von Raps liegt aus anbautechnischer Sicht bei 25 % der Ackerfläche und ist noch nicht ausgeschöpft (Sachsen 2004: 17 %). Für den landwirtschaftlichen Anbau kommen eine Reihe weiterer ölliefernder Pflanzenarten oder spezieller Sorten in Betracht. Interessant sind sie aus der Sicht der Verwertung insbesondere, wenn sie hohe Gehalte einzelner spezieller Fettsäuren aufweisen. Bei der Verarbeitung können dann aufwändige Aufbereitungs- und Trennprozesse eingespart und die Synthesevorleistung der Natur optimal genutzt werden. Der Anbauumfang ist jedoch meist noch sehr gering. Beispiele sind Nachtkerze und Iberischer Drachenkopf, aber auch Erucaraps und ölsäurereiche Sonnenblumensorten. a) stoffliche Verwertung In der stofflichen Verwertung reichen die Einsatzfelder pflanzlicher Öle von biologisch schnell abbaubaren Schmierstoffen, Lacken und Farben, über Tenside, Kosmetika, Wachse bis zu Grundchemikalien, aber auch Bitumen. b) energetische Verwertung Desweiteren können Pflanzenöle in Fahrzeugen, stationären oder mobilen Anlagen energetisch verwertet werden. Für den breiten Einsatz ist derzeit vor allem Biodiesel geeignet. Dieser kommt als reiner Kraftstoff zum Einsatz, seit 2004 auch in Beimischung zu Dieselkraftstoff. Eine weitere Möglichkeit eröffnet sich durch die Verwendung von reinem Rapsöl.
This report explains the calculation of the updated typical greenhouse gas emission values for the cultivation of agricultural raw materials for NUTS 2 regions in Germany and presents the results. The calculations for eleven energy crops are based on updated input variables consisting of standardized factors and comprehensive data sources such as yields, fertilizer consumption and diesel consumption. Particular attention was paid to emissions of nitrous oxide and nitrogen fertilizer. The values are differentiated for mineral and organic soils. Compared to the first report from 2010, the current values are generally significantly lower but vary to larger extend between NUTS 2 regions. Veröffentlicht in Climate Change | 12/2025.
Dieselmotoremissionen (DME) haben sich bei Verbrennung fossiler Kraftstoffe als mutagen erwiesen. Die Karzinogenitaet wurde von der IARC im Tierversuch als gesichert (sufficient evidence) und fuer den Menschen als wahrscheinlich (limited evidence) eingestuft. In unseren Studien werden die DME beim Betrieb von PKW und Traktoren mit Rapsoelmethylester (RME) und herkoemmlichem Dieselkraftstoff (DK) untersucht. Das filtergesammelte Abgaspartikulat wird schonend extrahiert, mit HPLC auf PAH analysiert und im direkten Vergleich zwischen RME und DK im AMES-Test auf seine mutagenen Eigenschaften und im Neutralrot-Test auf Zytotoxizitaet untersucht. In den bisher durchgefuehrten Versuchen waren die Filterextrakte bei RME-Betrieb trotz hoeherer absoluter Masse in fast allen Laststufen und Fahrzyklen deutlich weniger mutagen als die DK-Extrakte. Dies ist wahrscheinlich auf die niedrigere PAH-Konzentration im Abgas bei RME-Betrieb zurueckzufuehren. Sollte sich bestaetigen, dass RME-Abgase eine niedrigere mutagene Potenz aufweisen als DK-Abgase, so muss ein Ersatz von DK durch RME beim Betrieb von Dieselfahrzeugen an besonders kritischen Arbeitsplaetzen (in Hallen, unter Tage) und anderen Stellen (z.B. Taxis und Busse in Innenstaedten) diskutiert werden.
Dieser DGMK-Forschungsbericht ist eine Fortschreibung des DGMK-Forschungsberichts 611 'Biokraftstoffe -Eigenschaften und Erfahrungen bei der Anwendung', der im Jahr 2002 erschienen ist. Seit dieser Zeit haben sich die Pläne der Europäischen Kommission, den Einsatz von Biokraftstoffen zu fördern, konkretisiert. Die Direktive 2003/30/EC gibt für den Zeitraum von 2005 bis 2010 Zielvorgaben, in welchem Umfang Biokraftstoffe in den Handel gebracht werden sollen. Bei Dieselkraftstoffen wird das im Wesentlichen durch Zugabe von bis zu 5 Prozent Fettsäuremethylestern und nicht durch einen Einsatz in reiner Form geschehen. Bei den Ottokraftstoffen kommen Ethanol und Ethyltertiärbutylether (ETBE) als Beimischungen in Frage. Sowohl bei Diesel- als auch bei Ottokraftstoff sind für den Fall einer Beimischung durch die gültigen Normen Maximalwerte für die sauerstoffhaltigen Verbindungen gegeben. Wegen seiner geringeren Oxidations- und Lagerstabilität besteht ein Interesse an Labortests, die für Biodiesel und Dieselkraftstoffe, die Biodiesel enthalten, eine Vorhersage darüber erlauben, ob der Kraftstoff über eine für den praktischen Betrieb ausreichend große Stabilität verfügt. Die ASTM D 4625-Methode, bei der die Probe bei 43 Grad Celsius gelagert wird und die allgemein als das geeigneste Testverfahren zur Bestimmung der Lagerstabilität von Mitteldestillaten angesehen wird, ist für Fettsäuremethylester und Mischungen mit ihnen weniger gut geeignet. Unter vielen untersuchten Prüfverfahren hat für die Bestimmung der Lagerstabilität die Rancimat-Methode die weiteste Anerkennung gefunden, obwohl auch Ergebnisse vorliegen, die es fraglich erscheinen lassen, ob generell ein Zusammenhang zwischen den Rancimat-Ergebnissen und der Lagerstabilität besteht. Vereinzelt gibt es Dieselkraftstoffe, die für eine Zumischung auch nur einer so geringen Menge wie 5 Prozent Biodiesel schlecht geeignet erscheinen. Für solche Dieselkraftstoffe scheint eine besonders kleine Rancimat-Induktionsperiode kennzeichnend zu sein. Nicht alle für Kohlenwasserstoffe bewährten Antioxidationsmittel sind in Mischungen mit Biodiesel gleich gut wirksam. Nach den bisherigen Erfahrungen kommt es beim Einsatz von Mischungen mit Biodiesel in Kraftfahrzeugen zu keinen Problemen, wenn der Biodieselgehalt 5 Prozent nicht übersteigt, auf Abwesenheit von Wasser geachtet und die Lagerzeit auf 6 Monate begrenzt wird. Der eingesetzte Biodiesel muss den Anforderungen der Norm EN 14214 genügen. Überflüssiger Kontakt mit Luft beispielsweise durch Rühren sollte bei der Lagerung von Biodiesel unbedingt vermieden werden. Auch wenn in dem durch die Norm erlaubten Rahmen Ethanol oder ETBE konventionellen Ottokraftstoffen beigemischt wird, sind im praktischen Betrieb keine Schwierigkeiten zu erwarten. Allerdings muss beim Zusatz von Ethanol auf die Abwesenheit von Wasser im System geachtet werden. Bei einer unkontrollierten Vermischung von ethanolhaltigen und ethanolfreien Kraftstoffen kann der Dampfdruckgrenzwert ...
Im Rahmen des geplanten Forschungsvorhabens soll eine verbesserte Methode zur Bestimmung kinetischer Daten von Mehrphasenreaktionen entwickelt und getestet werden. Dabei soll ein Zweiphasenreaktor (Flüssigkeit und Katalysator) mit einer Vorsättigung der flüssigen Phase (z.B. bei Hydrierungen mit Wasserstoff) eingesetzt werden. Da nur eine fluide Phase vorliegt, wird der Einfluss der Fluiddynamik überschaubar. Da außerdem kein Stofftransport mehr aus der Gasphase in die Flüssigkeit erfolgt, bestimmen neben der chemischen Reaktion 'nur' noch Diffusionsvorgänge in der flüssigen (Kern)Phase bzw. in den Katalysatorproben die (effektive) Reaktionskinetik. Dieses wesentlich einfachere Reaktionssystem kann sehr genau untersucht werden, und zwar unter Bedingungen (Partikelgröße, Fluidgeschwindigkeit), die auch in technischen Reaktoren herrschen. Durch den anschließenden Vergleich mit Untersuchungen in einem Dreiphasenreaktor kann dann der Einfluss der Fluiddynamik und des Stofftransportes Gas/Flüssigkeit besser als mit den oben beschriebenen üblichen Methoden beurteilt werden. Diese Methode bietet sich allerdings nicht nur für kinetische Untersuchungen an, sondern auch für eine verbesserte Reaktionsführung bei Mehrphasenreaktionen. (...) Folgende Reaktionen, die in der chemischen Praxis bisher in Dreiphasen-Festbettreaktoren durchgeführt wurden, sollen näher untersucht werden: Hydrierung ungesättigter Kohlenwasserstoffe, Entschwefelung von Erdölfraktionen, die Hydrierung von Nitroaromaten, die Umsetzung von Kohlenmonoxid mit Wasserstoff in höhere Kohlenwasserstoffe wie z.B. Dieselöl durch Fischer-Tropsch-Synthese. Diese Modellsysteme wurden ausgewählt, da sie sich hinsichtlich der Kinetik und der notwendigen Reaktionsführung sehr deutlich unterscheiden. Auf diese Weise soll das Prinzip des Zweiphasenreaktors mit Vorsättigung der flüssigen Phase als Methode für kinetische Untersuchungen und als eine Alternative im Hinblick auf die Reaktionsführung von Mehrphasenreaktoren auf einer möglichst breiten Basis untersucht werden.
Die bisher ermittelten Konzentrationen polyzyklischer Aromaten in Dieselkraftstoff und leichtem Heizoel liegen zwischen fuenf Gewichtsprozent fuer alle und 0,02 Gewichtsprozent fuer die Summe von etwa einem Dutzend einzelner. Diese Ergebnisse werden einander gegenuebergestellt und kommentiert. In der Studie wird begruendet, dass die analytische Beruecksichtigung nur weniger Polyzyklen bei praktisch vollstaendiger Vernachlaessigung von Alkylderivaten dem Problem nicht angemessen ist. Schon aus diesem Grund werden die Ergebnisse mit den kleinen Konzentrationen nicht als charakteristisch fuer Mitteldestillate angesehen. Bei den Untersuchungen mit den niederen Gehalten werden ausserdem Unzulaenglichkeiten in der Analytik vermutet.
Pruefung von GFK-Tanks zur Lagerung brennbarer Fluessigkeiten im Hinblick auf eine allgemeine Bauartzulassung.
| Origin | Count |
|---|---|
| Bund | 919 |
| Europa | 1 |
| Kommune | 2 |
| Land | 85 |
| Wirtschaft | 1 |
| Wissenschaft | 2 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Chemische Verbindung | 11 |
| Daten und Messstellen | 2 |
| Ereignis | 27 |
| Förderprogramm | 530 |
| Gesetzestext | 9 |
| Hochwertiger Datensatz | 1 |
| Text | 363 |
| Umweltprüfung | 26 |
| unbekannt | 40 |
| License | Count |
|---|---|
| geschlossen | 147 |
| offen | 587 |
| unbekannt | 266 |
| Language | Count |
|---|---|
| Deutsch | 906 |
| Englisch | 152 |
| Resource type | Count |
|---|---|
| Archiv | 254 |
| Bild | 13 |
| Datei | 297 |
| Dokument | 328 |
| Keine | 425 |
| Webdienst | 4 |
| Webseite | 261 |
| Topic | Count |
|---|---|
| Boden | 815 |
| Lebewesen und Lebensräume | 858 |
| Luft | 752 |
| Mensch und Umwelt | 1000 |
| Wasser | 691 |
| Weitere | 930 |