API src

Found 1541 results.

Related terms

Lkw-gross-AO-generisch

Diesel-fueled heavy-duty truck (GVW: 18.0 t) - rural traffic mode (without motorways) ---------------------------------------------------- The exhaust emission factors are calculated on the basis of data from UBA 1995 and Patyk 1995. The figure for N2O is taken from EEA 1997. These factors are typical for trucks with 14.0-20.0 t gross vehicle weight (GVW) and without emissions control technologies outside built-up areas (state of the art in the 1950s and 1960s in Europe). Fuel consumption: 34.3 l/100 km (Source: UBA 1995). GVW: 18.0 t; payload: 11.2 t; load factor: 50%. Fahrleistung: 40000km/a Kraftstoff/Antrieb: Diesel Lebensdauer: 30a spezifischer Verbrauch: 12,2MJ/km spezifischer Verbrauch: 33,9l/100 km Tonnage: 5,6t

Markt für Gold

technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of gold production (US): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. BENEFICIATION: Bald Mountain Mines: The ore treatment method is based on conventional heap leaching technology followed by carbon absorption. The loaded carbon is stripped and refined in the newly commissioned refinery on site. Water is supplied by wells located on the mine property. Grid power was brought to Bald Mountain Mine in 1996. For this purpose, one 27-kilometre 69 KVA power line was constructed from the Alligator Ridge Mine substation to the grid. Golden Sunlight Mines: The ore treatment plant is based on conventional carbon-in-pulp technology, with the addition of a Sand Tailings Retreatment (STR) gold recovery plant to recover gold that would otherwise be lost to tailings. The STR circuit removes the heavier gold bearing pyrite from the sand portion of the tailings by gravity separation. The gold is refined into doré at the mine. Tailing from the mill is discharged to an impoundment area where the solids are allowed to settle so the water can be reused. A cyanide recovery/destruction process was commissioned in 1998. It eliminates the hazard posed to wildlife at the tailings impoundment by lowering cyanide concentrations below 20 mg/l. Fresh water for ore processing, dust suppression, and fire control is supplied from the Jefferson Slough, which is an old natural channel of the Jefferson River. Ore processing also uses water pumped from the tailings impoundment. Pit water is treated in a facility located in the mill complex prior to disposal or for use in dust control. Drinking water is made available by filtering fresh water through an on-site treatment plant. Electric power is provided from a substation at the south property boundary. North-Western Energy supplies electricity the substation. Small diesel generators are used for emergency lighting. A natural gas pipeline supplies gas for heating buildings, a crusher, air scrubber, boiler, carbon reactivation kiln, and refining furnaces. Cortez Mine: Three different metallurgical processes are employed for the recovery of gold. The process used for a particular ore is determined based on grade and metallurgical character of that ore. Lower grade oxide ore is heap leached, while higher-grade non-refractory ore is treated in a conventional mill using cyanidation and a carbon-in-leach (“CIL”) process. When carbonaceous ore is processed by Barrick, it is first dry ground, and then oxidized in a circulating fluid bed roaster, followed by CIL recovery. In 2002 a new leach pad and process plant was commissioned; this plant is capable of processing 164 million tonnes of heap leach ore over the life of the asset. Heap leach ore production is hauled directly to heap leach pads for gold recovery. Water for process use is supplied from the open pit dewatering system. Approximately 90 litres per second of the pit dewatering volume is diverted for plant use. Electric power is supplied by Sierra Pacific Power Company (“SPPC”) through a 73 kilometre, 120 kV transmission line. A long-term agreement is in place with SPPC to provide power through the regulated power system. The average power requirement of the mine is about 160 GWh/year. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. OTHER MINES: Information about the technology used in the remaining mines is described in the References. WATER EMISSIONS: Water effluents are discharged into rivers. References: Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Barrick (2006b) Environment: Performance Tables from http://www.barrick. com/Default.aspx?SectionID=8906c4bd-4ee4-4f15-bf1b-565e357c01e1& LanguageId=1 Newmont (2005b) Now & Beyond: Sustainability Reports. Newmont Mining Corporation. Retrieved from http://www.newmont.com/en/social/reporting/ index.asp technologyComment of gold production (CA): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. BENEFICIATION: In the Porcupine Mines, gold is recovered using a combination of gravity concentration, milling and cyanidation techniques. The milling process consists of primary crushing, secondary crushing, rod/ball mill grinding, gravity concentration, cyanide leaching, carbon-in-pulp gold recovery, stripping, electrowinning and refining. In the Campbell Mine, the ore from the mine, after crushing and grinding, is processed by gravity separation, flotation, pressure oxidation, cyanidation and carbon-in-pulp process followed by electro-winning and gold refining to doré on site. The Musselwhite Mine uses gravity separation, carbon in pulp, electro¬winning and gold refining to doré on site. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Effluents are discharged into the ocean. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (AU): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Water effluents are discharged into rivers. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (TZ): The mining of ore from open pit and underground mines is considered. technologyComment of gold refinery operation (ZA): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold refinery operation (RoW): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold-silver mine operation with refinery (PG): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The recovery processes of the Misima Mine are cyanide leach and carbon in pulp (CIP). The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: The recovery process in the Porgera Mine is pressure oxidation and cyanide leach. The slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. WATER SUPPLY: For Misima Mine, process water is supplied from pit dewatering bores and in-pit water. Potable water is sourced from boreholes in the coastal limestone. For Porgera Mine, the main water supply of the mine is the Waile Creek Dam, located approximately 7 kilometres from the mine. The reservoir has a capacity of approximately 717, 000 m3 of water. Water for the grinding circuit is also extracted from Kogai Creek, which is located adjacent to the grinding circuit. The mine operates four water treatment plants for potable water and five sewage treatment plants. ENERGY SUPPLY: For Misima Mine, electricity is produced by the mine on site or with own power generators, from diesel and heavy fuel oil. For Porgera Mine, electricity is produced by the mine on site. Assumed with Mobius / Wohlwill electrolysis. Porgera's principal source of power is supplied by a 73-kilometre transmission line from the gas fired and PJV-owned Hides Power Station. The station has a total output of 62 megawatts (“MW”). A back up diesel power station is located at the mine and has an output of 13MW. The average power requirement of the mine is about 60 MW. For both Misima and Porgera Mines, an 18 MW diesel fired power station supplies electrical power. Diesel was used in the station due to the unavailability of previously supplied heavy fuel oil. technologyComment of gold-silver mine operation with refinery (CA-QC): One of the modelled mine is an open-pit mine and the two others are underground. technologyComment of gold-silver mine operation with refinery (RoW): The mining of ore from open pit mines is considered. technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of processing of anode slime from electrorefining of copper, anode (GLO): Based on typical current technology. Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, copper telluride cement and crude selenium to further processing. technologyComment of silver-gold mine operation with refinery (CL): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. BENEFICIATION: The processing plant consists of primary crushing, a pre-crushing circuit, (semi autogenous ball mill crushing) grinding, leaching, filtering and washing, Merrill-Crowe plant and doré refinery. The Merrill-Crowe metal recovery circuit is better than a carbon-in-pulp system for the high-grade silver material. Tailings are filtered to recover excess water as well as residual cyanide and metals. A dry tailings disposal system was preferred to a conventional wet tailings impoundment because of site-specific environmental considerations. technologyComment of silver-gold mine operation with refinery (RoW): Refinement is estimated with electrolysis-data. technologyComment of treatment of precious metal from electronics scrap, in anode slime, precious metal extraction (SE, RoW): Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, Palladium to further processing

Durchfahrtsbeschränkungen für Dieselfahrzeuge Hamburg

Dieser Datensatz ist nicht mehr aktuell, da die Durchfahrtsbeschränkungen für Dieselfahrzeuge im September 2023 aufgehoben wurden. Die zugehörigen WMS- und WFS-Dienste wurden abgeschaltet. Der Datensatz enthielt die Straßenabschnitte in Hamburg, auf denen eine Durchfahrtsbeschränkung für Dieselfahrzeuge galt sowie die zugehörigen von der Stadt empfohlenen Umfahrungsempfehlungen. Hierbei wird zwischen Beschränkungen für alle Dieselfahrzeuge bis einschließlich EURO 5 (Pkw) bzw. EURO V (Lkw) und Beschränkungen ausschließlich für Lkw (ebenfalls bis einschließlich EURO V) unterschieden. Die betroffenen Straßenabschnitte waren für Anlieger frei befahrbar und mit entsprechenden Verkehrszeichen angekündigt.

WMS Durchfahrtsbeschränkungen für Dieselfahrzeuge Hamburg

Dieser WMS (WebMapService) stellt die Straßenabschnitte in Hamburg, auf denen eine Durchfahrtsbeschränkung für Dieselfahrzeuge gilt, sowie die zugehörigen von der Stadt empfohlenen Umfahrungsempfehlungen bereit. Die betroffenen Straßenabschnitte sind für Anlieger frei befahrbar und mit entsprechenden Verkehrszeichen angekündigt. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

WFS Durchfahrtsbeschränkungen für Dieselfahrzeuge Hamburg

Dieser WFS (WebFeatureService) stellt die Straßenabschnitte in Hamburg, auf denen eine Durchfahrtsbeschränkung für Dieselfahrzeuge gilt, sowie die zugehörigen von der Stadt empfohlenen Umfahrungsempfehlungen bereit. Die betroffenen Straßenabschnitte sind für Anlieger frei befahrbar und mit entsprechenden Verkehrszeichen angekündigt. Zur genaueren Beschreibung der Daten und Datenverantwortung nutzen Sie bitte den Verweis zur Datensatzbeschreibung.

Tankstellen des Ennepe-Ruhr-Kreises

Dieser Datensatz zeigt die Tankstellen (Ottokraftstoff, Diesel und Gas) innerhalb des Ennepe-Ruhr-Kreises.

Luftqualität 2017: Rückgang der Stickstoffdioxidbelastung reicht noch nicht aus

Grenzwertüberschreitungen in rund 70 Kommunen – Diesel-Nachrüstung mit Katalysatoren nötig Die Belastung der Luft mit Stickstoffdioxid (NO2) ist 2017 im Vergleich zum Vorjahr zurückgegangen. Die Zahl der Kommunen mit Grenzwertüberschreitungen nahm nach erster Schätzung von 90 auf 70 ab. Das zeigt die Auswertung der vorläufigen Messdaten der Länder und des Umweltbundesamtes (UBA). Dennoch: An rund 46 Prozent der verkehrsnahen Messstationen wurde der Grenzwert von 40 µg/m³ im Jahresmittel überschritten, an zwei Drittel dieser Stationen mit Werten von mehr als 45 µg/m3 sogar deutlich. „Die Entwicklung geht in die richtige Richtung. Wir sind aber noch längst nicht am Ziel. Immer noch liegen viele Städte deutlich über dem seit 2010 einzuhaltenden Grenzwert, viele Einwohner sind also weiter zu viel gesundheitsschädlichem Stickstoffdioxid ausgesetzt. Schuld sind vor allem die Diesel-Autos mit hohen Realemissionen, die oftmals erst in den vergangen Jahren zugelassen wurden und in den Städten unterwegs sind“, sagte Maria Krautzberger, Präsidentin des ⁠ UBA ⁠. „Wie vom Umweltbundesamt im Sommer 2017 geschätzt, werden die Maßnahmen des Diesel-Gipfels mit Software-Updates und Umtauschprämien nicht ausreichen, um die Luft in den Städten so zu verbessern, dass die Grenzwerte überall eingehalten werden. Wir brauchen dringend die Hardware-Nachrüstung der Autos und leichten Nutzfahrzeuge. Nur so können wir die Gesundheitsbelastungen durch Stickstoffoxide schnell und vor allem dauerhaft senken.“ Den Rückgang der mittleren Stickstoffdioxidbelastung an verkehrsnahen Messstationen im Jahr 2017 um zirka zwei Mikrogramm pro Kubikmeter im Jahresmittel wertet das UBA als Indiz dafür, dass die durch die Dieseldebatte angestoßenen Maßnahmen in den Städten anfangen zu wirken. So wurden beispielsweise örtlich Tempolimits eingeführt sowie durch Straßenverengung der Verkehr reduziert, es wurden öffentliche Verkehre gefördert und Busse nachgerüstet. Bundesweit wurden Autos mit hohen Realemissionen durch Software-Updates hinsichtlich ihrer NOx-⁠ Emission ⁠ leicht verbessert. Außerdem erneuerte und veränderte sich die Fahrzeugflotte hin zu weniger Dieseln: Das Kraftfahrbundesamt (KBA) zeigt in seinen Neuzulassungszahlen 2017 eine Verschiebung hin zu benzinbetriebenen PKW. Ihr Anteil steigt um über elf Prozent gegenüber 2016, Diesel verlieren über 15 Prozent. Wie sich die einzelnen Maßnahmen jeweils auf die Luftqualität auswirken, lässt sich mit den vorliegenden Daten derzeit nicht exakt bestimmen. Die NO2-Messdaten und deren Rückgang bestätigen allerdings, dass Software-Updates und der Rückkauf alter Diesel-PKW (Umtauschprämie) nur ein begrenztes Minderungspotential aufweisen. Nach Berechnungen des UBA könnte die NO2-Luftbelastung durch die beiden Maßnahmen maximal zwischen zwei und fünf Mikrogramm pro Kubikmeter Luft sinken. Wichtig: Beide Maßnahmen wirken erst seit Ende 2017. In der vorläufigen Jahresauswertung „Luftqualität 2017“ betrachtet das UBA neben Stickstoffdioxid auch Feinstaub und Ozon. Feinstaub (⁠ PM10 ⁠): Die Feinstaubbelastung war 2017 im Vergleich zum Zeitraum 2005 bis 2016 geringer. Außer zu Beginn des Jahres blieben besonders feinstaubbegünstigende Wetterlagen aus. 2017 gehörte mit den beiden Vorjahren zu den am geringsten mit Feinstaub belasteten Jahren. Nur an der verkehrsnahen Messstation am Stuttgarter Neckartor wurde mit 45 Tagen erneut der Grenzwert überschritten (PM10-Tagesmittelwerte über 50 µg/m³ an mehr als 35 Tagen im Jahr). Allerdings sollen laut Weltgesundheitsorganisation (⁠ WHO ⁠) die Werte an höchstens drei Tagen pro Jahr über 50 µg/m³ liegen. Dieses Ziel überschreiten 87% aller Messstationen in Deutschland. Zum Schutz der menschlichen Gesundheit sollte nach Auffassung des UBA der von der WHO empfohlene Wert eingehalten werden. Es bedarf also weiterer Anstrengungen von Bund, Ländern und Kommunen, um das Gesundheitsrisiko durch Feinstaub weiter zu verringern. Zukünftig ist es verstärkt notwendig, besonderes Augenmerk auf die nicht-verbrennungsbedingten Partikelemissionen aus dem Abrieb von Bremsscheiben, Kupplungen und Reifen zu legen. Ozon: Die Ozonkonzentrationen waren 2017 im Vergleich zu den letzten 20 Jahren niedrig. Anders als der ⁠ Hitzesommer ⁠ 2015 war der Sommer 2017 eher wechselhaft und es traten keine lang anhaltenden Schönwetterperioden auf, die die Ozonbildung hätten begünstigen können. Dennoch kam es an 17 Prozent aller Messstationen zu Zielwert-Überschreitungen (der maximale Ozon-8-Stunden-Wert eines Tages darf an höchstens 25 Tagen pro Kalenderjahr – gemittelt über 3 Jahre – den Wert von 120 µg/m3 überschreiten). Aktualisierung: Die Übersicht "Städte mit NO2-Grenzwertüberschreitungen 2017" sowie die Exceldaten wurden zum 30.05.2018 aktualisiert. Es liegen nun aus allen Messnetzen die vollständigen, geprüften Daten vor. Mit den endgültigen Daten sind es noch 65 Städte mit Grenzwertüberschreitung. Die Stadt Remscheid ist nicht mehr auf der Liste.

Genehmigungsverfahren gemäß § 16 Abs. 1 BImSchG für die wesentliche Änderung der Autofabrik der Firma AUDI AG Ingolstadt durch die Errichtung und den Betrieb eines Tanklagers A77

Die Firma AUDI AG hat mit Schreiben vom 09.01.2019 einen immissionsschutzrechtlichen Genehmigungsantrag beim Umweltamt der Stadt Ingolstadt zur wesentlichen Änderung des Automobilwerkes am Standort Ingolstadt, Auto-Union-Str. 1, 85045 Ingolstadt durch die Errichtung und den Betrieb eines Tanklagers A77 eingereicht. Im Zuge des Änderungsvorhabens wird als Ersatz für die beiden bestehenden Tankfelder A3 und A16 ein neues Tanklager A77 für die Lagerung von Ottokraftstoff (Sonderkraftstoff ASF), Dieselkraftstoff, AdBlue, Glykol, Scheibenreinigerkonzentrat (Ethanol) sowie Bremsflüssigkeit errichtet. Der Genehmigungsantrag umfasst im Wesentlichen die folgenden Anlagenkomponenten: 1. Errichtung und Betrieb eines Tankfeldes mit insgesamt 14 unterirdischen Lagerbehältern mit einem Fassungsvermögen von jeweils 60 m³ zur Lagerung der vorgenannten Produkte 2. Errichtung und Betrieb einer Abfüllfläche (21,5 m x 5 m) mit zwei Fernfüllschränken 3. Errichtung und Betrieb eines Pumpenhauses 4. Errichtung und Betrieb von insgesamt 7 Rohrleitungen vom Tanklager A77 in die Produktionshallen A1 bis A4 5. Errichtung und Betrieb von mehreren Vorlagebehältern für die Medien ASF, Diesel und AdBlue in den Produktionshallen A1 bis A4 von jeweils 300 l (Halle A4 nur 100 l) Im Rahmen des Genehmigungsverfahrens wurde gemäß § 9 Abs. 2 Nr. 2 und Abs. 4 i.V.m. § 7 Abs. 1 UVPG und Nr. 3.14 Spalte 2 der Anlage 1 zum UVPG eine allgemeine Vorprüfung des Einzelfalls vorgenommen.

Öl aus dem Wrack der Sea Diamond wird abgepumpt

Zwei Jahre nachdem das Kreuzfahrtschiff Sea Diamond vor der Küste der Vulkaninsel Santorin gesunken ist, haben griechische Behörden mit den Bergungsarbeiten des Schwer- und Dieselöl begonnen. Experten befürchteten, dass Treibstoff im Laufe der Zeit durch Lecks aus den Tanks entweichen und die maritime Umwelt schädigen könnte. Die Kosten der Bergung mit drei Spezial-U-Booten, etwa sechs Millionen Euro, übernimmt die zyprische Reederei Louis Cruises, der das Schiff gehörte. Das Kreuzfahrtschiff lief am 5. April 2007 auf ein Riff auf und sank am folgenden Tag.

Ölpest vor der Tampa Bay

Am 10. August 1993 kollidierten zwei Tankschiffe (Ocean 255, Bouchard B155) und ein Frachter (Balsa 37) im Zugang der Tampa Bucht in Florida, USA. Die Kollision führte zu einem Brand auf einem der Schiffe und verursachte eine schwere Ölpest. Über 32.000 Gallonen Kerosin, Diesel und Benzin und rund 330 000 Gallonen Schweröl liefen von den Schiffen ins Meer. Trotz Ölbekämpfungsmaßnahmen wurden auf rund 23 Kilometern Länge die Stränden durch das Öl verunreinigt. Das Öl schädigte Vögel und Meeresschildkröten und verschmutzte Mangroven-Lebensräume, Seegras- und Salzwiesen, Muschelbänke und Bodensedimenten.

1 2 3 4 5153 154 155