Dieselmotoremissionen (DME) haben sich bei Verbrennung fossiler Kraftstoffe als mutagen erwiesen. Die Karzinogenitaet wurde von der IARC im Tierversuch als gesichert (sufficient evidence) und fuer den Menschen als wahrscheinlich (limited evidence) eingestuft. In unseren Studien werden die DME beim Betrieb von PKW und Traktoren mit Rapsoelmethylester (RME) und herkoemmlichem Dieselkraftstoff (DK) untersucht. Das filtergesammelte Abgaspartikulat wird schonend extrahiert, mit HPLC auf PAH analysiert und im direkten Vergleich zwischen RME und DK im AMES-Test auf seine mutagenen Eigenschaften und im Neutralrot-Test auf Zytotoxizitaet untersucht. In den bisher durchgefuehrten Versuchen waren die Filterextrakte bei RME-Betrieb trotz hoeherer absoluter Masse in fast allen Laststufen und Fahrzyklen deutlich weniger mutagen als die DK-Extrakte. Dies ist wahrscheinlich auf die niedrigere PAH-Konzentration im Abgas bei RME-Betrieb zurueckzufuehren. Sollte sich bestaetigen, dass RME-Abgase eine niedrigere mutagene Potenz aufweisen als DK-Abgase, so muss ein Ersatz von DK durch RME beim Betrieb von Dieselfahrzeugen an besonders kritischen Arbeitsplaetzen (in Hallen, unter Tage) und anderen Stellen (z.B. Taxis und Busse in Innenstaedten) diskutiert werden.
<p> Verkehrssektor emittiert relevante Mengen Ultrafeiner Partikel</p><p>Ultrafeine Partikel (UFP) in der Atemluft gefährden Mensch und Umwelt, da sie bis in die Bronchien und Lungenbläschen gelangen können. Solche Partikel entstehen etwa bei Verbrennungsprozessen in Motoren. Die Weiterentwicklung von Messgeräten macht es seit einiger Zeit möglich, UFP im Abgas zu identifizieren. Eine Daten- und Literaturanalyse zeigt den Wissenstand von UFP im Verkehr auf.</p><p>Wie hoch sind die Emissionen Ultrafeiner Partikel im Verkehr und woher stammen sie?</p><p>Zum Verkehrssektor zählen der straßengebundene Verkehr, der Luftverkehr, der Schiffsverkehr, der schienengebundene Verkehr und auch mobile Maschinen und Geräte (non-road). Die Kenntnisse über UFP-Emissionen aus Messungen sind in verschiedenen Bereichen des Verkehrs unterschiedlich stark ausgeprägt. Im Straßen- und Luftverkehr wird die <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a> der Partikelanzahl (PN) über Grenzwerte gesetzlich begrenzt. Hier liegen mehr Messdaten zu UFP-Emissionen im Abgas als für andere Verkehrsbereich vor. Diese gemessenen Emissionen stellten eine solide Basis für die Ermittlung von UFP-Emissionsfaktoren im abgeschlossenen Forschungsvorhaben dar. Bei mobilen Maschinen, Binnenschiffen und Schienenfahrzeugen bestehen zwar auch teilweise PN-Grenzwerte, aber vor allem für ältere Motoren liegen kaum Messdaten zur Partikelanzahl vor. Auch die Literaturrecherche lieferte dazu nur unzureichend Informationen. Daher mussten die UFP-Emissionen dieser Bereiche mithilfe von Analogieschlüssen zum Straßenverkehr abgeschätzt werden.</p><p>Demnach verursachten im Jahr 2022 mobile Maschinen und Geräte (NRMM), zu denen beispielsweise Baumaschinen, Traktoren oder Rasenmäher gehören, den größten Anteil an den UFP-Emissionen, gefolgt vom Straßenverkehr und dem Luftverkehr. Bahn (Dieselloks) und Binnenschifffahrt hatten einen deutlich geringeren Anteil am gesamten UFP-Ausstoß und werden deshalb bei der weiteren Betrachtung vernachlässigt.</p><p>Wie wird sich der Ausstoß in Zukunft entwickeln?</p><p>Die Modellrechnung in Form von Szenarien zeigt für das Jahr 2030 gegenüber 2022 eine Reduktion der UFP-Emissionen des Verkehrs um 36 Prozent, da sich die Emissionen vor allem im Straßenverkehr, und in geringerem Maße auch bei NRMM, infolge der strengeren Abgasnormen und der Flottenerneuerung reduzieren. Der Anstieg von Flugbewegungen und damit des Kraftstoffverbrauchs hat im Luftverkehr einen Anstieg der UFP-Emissionen zur Folge.</p><p>Wie können die Emissionen gesenkt werden?</p><p>Die Studie liefert auf Basis der Ergebnisse Vorschläge für Maßnahmen und Instrumente für die einzelnen Verkehrsbereiche, um die UFP-Emissionen in Zukunft weiter zu senken:</p><p>Im <strong>Straßenverkehr</strong> können Maßnahmen zur Verkehrsvermeidung sowie (als neues Instrument) die Ausweisung von Zero-Emission-Zones in die nur Fahrzeuge ohne schädliche Abgasemissionen, wie beispielsweise E-Autos, einfahren dürfen, die Emissionen von UFP reduzieren. Zudem spielt die periodische technische Inspektion (PTI) / Hauptuntersuchung eine wichtige Rolle, da Fahrzeuge mit unentdeckten Schäden oder Manipulationen am Partikelfilter je Kilometer etwa hundert Mal mehr UFP emittieren als Fahrzeuge mit funktionierendem Filter. Eine verlässliche und preiswerte On-Board-Sensorik für die kontinuierliche Messung der Partikelanzahl im Fahrbetrieb ist bislang nicht verfügbar, so dass die Überprüfung als Teil der Hauptuntersuchung sehr wesentlich für eine erfolgreiche Identifizierung von defekten und manipulierten Partikelfiltern ist und bleiben wird.</p><p>Für <strong>mobile Maschine und Geräte</strong> sind Maßnahmen am effektivsten, die dazu führen, dass mehrheitlich Fahrzeuge mit Partikelfiltern in den Bestand kommen (Partikelfilternachrüstung, Stilllegung von Altfahrzeugen).</p><p>Im <strong>Luftverkehr</strong> wurden vor allem die Verwendung von synthetischen Kraftstoffen und strenge Emissionsgrenzwerte für neue Triebwerke als zielführende Maßnahmen identifiziert.</p><p>Der Einfluss von <strong>Binnenschiffen und Schienenfahrzeugen</strong> am Gesamt-UFP-Aufkommen aus Abgasen spielen nach Einschätzung der Autorinnen*Autoren nur eine untergeordnete Rolle, so dass keine Maßnahmen vorgeschlagen werden.</p><p>Welchen weiteren Forschungsbedarf gibt es?</p><p>Die <a href="https://www.umweltbundesamt.de/publikationen/ultrafeine-partikel-aus-abgasemissionen-aller">Studie</a> zeigt großen Bedarf an Messdaten von UFP, um anstelle von wissenschaftlich fundierten Annahmen mit gesicherten Daten rechnen zu können. Sie weist auch darauf hin, dass diese Studie sich nicht mit den Sekundärpartikeln oder mit Abriebemissionen von Bremsen und Reifen beschäftigt hat. Sekundärpartikel entstehen durch Nukleation (Bildung neuer Partikel) aus kondensierbaren Gasen. Dies geschieht zum Beispiel. beim Abkühlen des heißen Abgases nach dem Verlassen des Endrohrs in die kältere Umgebungsluft. Die emittierten leichtflüchtigen Kohlenwasserstoffe kondensieren dann an Tröpfchen und bilden sehr kleine Partikel in der Luft.</p><p>Ebenso bedarf es noch einem Vergleich mit anderen Sektoren, um die Menge an UFP aus dem Verkehr gegenüber anderen Quellen konkret einordnen zu können. Denn überall, wo Verbrennungsprozesse auftreten (Verkehr, Kraftwerke, Heizungs- und Industrieanlagen, Holz- und Biomasseverbrennung) entstehen auch ultrafeine Partikel.</p>
Die Reduzierung der Luftbelastung erfordert sorgfältige Untersuchungen zu den Ursachen der Luftbelastung und darauf aufbauend innovative Maßnahmen, wie die Nachrüstung von Partikelfiltern an Baumaschinen und Schiffen oder Schadstoffminimierung bei Bussen im öffentlichen Personennahverkehr (ÖPNV). Bild: VMZ Berlin Luftqualität an Straßen Wie hoch ist die Luftbelastung an den Straßen, auf denen ich Rad fahren möchte? Kann ich unbesorgt joggen oder spazieren gehen? Sollte ich heute auf das Autofahren verzichten? Im Internet oder als mobile Anwendung können stündlich neu berechnete Daten zur aktuellen Luftqualität abgerufen werden. Weitere Informationen Bild: CAT-Traffic Cichon Automatisierungstechnik GmbH Kennzeichenerhebungen Wie sauber sind die Fahrzeuge auf Berlins Straßen? Wie setzt sich die Fahrzeugflotte nach Fahrzeugklasse, Emissionsstandard und Antriebsart zusammen? Wie hat sich die Elektromobilität seit der letzten Kennzeichenerhebung im Jahr 2021 entwickelt? Diese und andere Fragen wollen wir mittels einer eintägigen Kennzeichenerfassung an zehn Straßen und Abfrage technischer Eigenschaften der Fahrzeuge beantworten. Weitere Informationen Bild: Firma OPUS RSD-Abgasmessung Wieviel Schadstoffe kommen wirklich aus dem Auspuff? Welche Fahrzeuge tragen besonders zu den Schadstoffbelastungen an Straßen bei? Lassen sich mit Modellen, die in der Luftreinhaltung verwendet werden, die Kfz-Emissionen realistisch berechnen? Weitere Informationen Bild: SenMVKU Pilotstrecken Tempo 30 Seit Anfang April 2018 hat die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt auf mehreren Berliner Hauptstraßen, die besonders durch Stickstoffdioxid belastet sind, Tempo 30 angeordnet. Das Ziel ist, die Menschen vor den gesundheitsschädlichen Abgasen zu schützen. Weitere Informationen Bild: SenMVKU Praxistest "Partikelfilter an Baumaschinen" Dieselmotoren von Baumaschinen haben einen hohen Partikelausstoß, der zur Feinstaubbelastung beiträgt. Nach Berechnungen stammen in Berlin etwa 140 Tonnen pro Jahr Dieselpartikel aus Baumaschinen. Mit Partikelfiltern ließe sich der Schadstoffausstoß einer Maschine um mehr als 90 % reduzieren. Weitere Informationen Bild: photowahn - Fotolia.com Saubere (Fahrgast-)Schiffe für Berlin Fahrgastschiffe weisen oft hohe Abgasemissionen auf, da die EU-weit festgelegten Abgasgrenzwerte für Schiffe weniger anspruchsvoll sind als für Kraftfahrzeuge. Durch Nachrüstungen der Fahrgastschiffe können die Feinstaub- und Stickoxidemissionen deutlich vermindert werden. Um den Schadstoffausstoß von Schiffen zu mindern, hat das Land Berlin ein Förderprogramm „Nachhaltige Nachrüstung und Umrüstung von Fahrgastschiffen“ aufgelegt. Weitere Informationen Bild: Melica / Depositphotos.com Holzverbrennung Holzverbrennung in Öfen und Kaminen ist eine potentielle Feinstaubquelle in Berlin und Brandenburg, die zu erhöhten Feinstaubbelastungen und zur Überschreitung des Feinstaub-Tagesgrenzwertes gerade in der kalten Jahreszeit beitragen kann. Weitere Informationen Bild: Umweltbundesamt, FG II 4.2 PM10-Ursachenanalyse (PM-Ost) Detaillierte Ursachenanalyse von PM10-Feinstaub-Immissionen in den Ländern Brandenburg, Berlin, Sachsen und Mecklenburg-Vorpommern durch gravimetrische Messungen, chemische Analytik und Rezeptormodellierung zur Bestimmung des Beitrags der grenzüberschreitenden Luftverunreinigung Weitere Informationen Informationen zur aktuellen Luftqualität an Straßen Weitere Informationen
In dieser Arbeit wird die Verwendungsmoeglichkeit von Pflanzenoelen als Kraftstoff fuer Dieselmotoren, insbesondere in Hinblick auf die Anwendung dieser Technologie in den Laendern der Dritten Welt untersucht. Daher wird hier das 'On-farm-Konzept' verfolgt. Dh die gesamte Kette von der Oelsaatproduktion ueber das Oelpressen bis hin zur Verwertung des Oels erfolgt im landwirtschaftlichen Betrieb. Der Schwerpunkt der Arbeit liegt in der Durchfuehrung von Dauertests mit kaltgepresstem Rapsoel.
Gebrauchte oder minderwertige native Fette und Öle sind eine interessante Energiequelle für Dieselmaschinen, die sich durch eine ausgezeichnete Ökobilanz auszeichnen und nicht in Konkurrenz zu Nahrungs- oder Futtermitteln stehen. Dem Einsatz in Dieselmschinen stehen der i.d.R. hohe Gehalt an Schlackebildnern (Ca, Mg, Na, K, P) und an freien Fettsäuren entgegen. Ziel des Vorhabens ist es, ein Verfahren zu entwickeln, mit dem die o.g. Rohstoffe so aufzuarbeiten sind, dass sie ohne weiteres in Dieselmaschinen eingesetzt werden können. Dazu wurde der Rohstoff einer sauer katalysierten Veresterung mit biogenem Ethanol unterworfen, mit dem die Gehalte sowohl an freien Fettsäuren, als auch an den genannten Schlackebildnern soweit gesenkt werden konnten, dass die Maßgaben der DIN-VN 51 605 erfüllt werden. Abgesehen davon, dass die so gewonnen Treibstoffe aus rein biogenen Rohstoffen bestehen, weisen sie Stockpunkte von teilweise unter -20 Grad Celsius auf.
In einer Forschungskooperation mit dem Institut für Schiffstechnik, Meerestechnik und Transportsysteme der Universität Duisburg-Essen wird eine Software (BinEm) entwickelt, die mithilfe der Messung von Luftschadstoffen auf Binnenschiffen unter realen Betriebsbedingungen kalibriert und validiert werden soll. Aufgabenstellung und Ziel Die Schifffahrt soll nach Vorgaben der EU bis zum Jahr 2050 klimaneutral werden. Zur zwischenzeitlichen Reduktion der Treibhausgas- und Schadstoffemissionen werden verschiedene Technologien (z. B. Abgasreinigung) eingesetzt. Um den Einfluss von neuen Technologien auf die Schiffsemissionen abschätzen zu können, sind realistische Angaben zu den emittierten Schadstoffen durch die Binnenschifffahrt notwendig. Die bisher veröffentlichten Emissionsdaten, die der Binnenschifffahrt zugerechnet werden, basieren auf Modellen mit vielen Annahmen, die die Betriebsparameter im realen Einsatz sehr vereinfacht abschätzen. Aus diesem Grund wurde im Rahmen eines gemeinsamen Forschungsvorhabens der BAW und der Universität DuisburgEssen ein Verfahren zur Berechnung der Binnenschiffsemissionen entwickelt. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Mit der im Rahmen der Forschungskooperation mit dem Institut für Schiffstechnik, Meerestechnik und Transportsysteme (ISMT) entwickelten Software können Emissionen der Binnenschifffahrt für beliebige Regionen und Schiffsflotten modelliert werden. Damit steht der BAW eine Methode zur Verfügung, die es ermöglicht, den Anteil der Binnenschifffahrt an den Luftschadstoffen abzubilden und den Erfolg von Emissionsminderungsmaßnahmen zu bewerten. Auf Basis dieser Ergebnisse können Entscheidungsträger im BMDV und in der GDWS erfolgversprechende Maßnahmen zur Minderung von Binnenschiffsemissionen gezielt ableiten, geltende Vorschriften anpassen oder neue erlassen. Untersuchungsmethoden Das entwickelte Verfahren besteht aus mehreren Modulen. Zunächst wird der Schiffswiderstand in Abhängigkeit von der Geschwindigkeit über Grund und der Strömung berechnet (Noß und Kossmann 2021). In dem aktuellen Verfahren wird nun auch der zusätzliche Widerstand bei Kurvendrift berücksichtigt. Hierfür greift das Programm auf einen äquivalenten Geradeauswiderstand zurück und addiert in Abhängigkeit des Driftwinkels einen in einer Datenbank hinterlegten Beiwert für den zusätzlichen Widerstand durch Schräganströmung. Anschließend werden der Gütegrad der Propulsion und die Propellerdrehleistung ermittelt. Mithilfe charakteristischer Propellerfreifahrtdiagramme und Motorenkennfelder sowie leistungsbezogener Faktoren werden final der Kraftstoffverbrauch und die Schiffsemissionen berechnet (Noß und Kossmann 2022). Die Spannweite an Schiffs- und Motorenparametern ist sehr groß. Basierend auf Simulations- und Modellversuchsergebnissen charakteristischer Schiffe (Noß und Kossmann 2021, 2022; Kossmann und Wierczoch 2022) wurden einzelne Widerstandsbeiwerte und der Gütegrad der Propulsion in Abhängigkeit von Schiffsgeschwindigkeit und Wassertiefenverhältnis zu Abladetiefenverhältnis berechnet. Der für die Propulsion verwendete Propeller ähnelt in seiner Geometrie einem charakteristischen Binnenschiffs-Düsen-Propeller. In Abhängigkeit von der berechneten Propulsions- bzw. Bremsleistung, der Schiffsgröße und der Anzahl der Propeller wählt das Verfahren einen passenden Motor in einer Datenbank aus. Diese beinhaltet für schnelllaufende Dieselmotoren mit Leistungen zwischen 400 und 1200 kW Daten zur Motorleistung, Drehzahl und zum spezifischen Kraftstoffverbrauch. Der gewählte Ansatz ist für den Großteil der Flotte sowie Betriebspunkte während einer typischen Streckenfahrt anwendbar. Situationen wie Ausweichmanöver, Ausweichmanöver, Schleusenfahrten oder An- und Ablegemanöver lassen sich mit diesem Ansatz jedoch nicht abbilden.
Der sich durch eine zweistufige Verbrennung auszeichnende schnelllaufende Vorkammer-Dieselmotor, wegen seiner vergleichsweise verfahrenstypischen Laufruhe sehr gut fuer den Einsatz im PKW geeignet, zeigt vor allem im Teillastgebiet eine hohe Russemission, die den Vorteil der relativ niedrigen Stickoxid- und Kohlenwasserstoff-Emission entgegensteht. Durch eine Aenderung der Vorkammergeometrie konnte aufgrund verbesserter Stroemungs- und Gemischbildungsverhaeltnisse in einem weiten Last- und Drehzahlbereich die Russemission bis zu ca.50 v.H. ohne Verbrauchseinbusse vermindert werden. Leider wird jedoch dieser Erfolg mit einer ca. 20-prozentigen Erhoehung der Stickoxidemission erkauft. Dieser Nachteil konnte durch eine zweckentsprechend dosierte Abgasrueckfuehrung eliminiert werden, ohne dass dadurch die Verminderung der Russemission nennenswert beeintraechtigt wurde. Bei einer weitergehenden Verminderung der Stickoxidemission stieg die Russemission nicht unbetraechtlich an, sie blieb allerdings noch deutlich (z.B. 25 v.H.) unter der des Serienmotors. Die mittels einer Geruchsmessstation durchgefuehrten Untersuchungen ergaben fuer die veraenderte Vorkammer im Vergleich zur serienmaessigen Version sogar eine etwas geringere Geruchsintensitaet, obwohl diese beim serienmaessigen Motor im Vergleich zum direkteinspritzenden Dieselmotor schon sehr niedrig ist. Mit der modifizierten Vorkammer konnte auch die an der Russgrenze erreichbare Leistung um ca. 5 v.H. angehoben werden.
Ein Schwerpunkt der Arbeiten befasst sich mit der Konzeption eines elektronischen Hochdruck-Dieseleinspritzsystems. Im Rahmen dieses Forschungsschwerpunktes wurde ein elektronisches Speichereinspritzsystem konzipiert, bei dem durch Trennung von Foerderung und Zumessung moeglichst wenig prinzipielle Restriktionen aufgebaut werden. Das Konzept basiert auf der Kombination einer sitzlochgebohrten Einspritzduese als aktives, querschnittsteuerndes Element mit einem piezoelektronischen Translator, der eine extrem schnelle Ansteuerung der Duesennadel mit entsprechend hohen Kraeften erlaubt. Nach einer Betrachtung der in der Vergangenheit vorgeschlagenen Speichereinspritzsysteme wurde das System, bestehend aus Injektor, Hochdruckversorgung und Steuerungselektronik, ausgelegt. Die qualitative Simulation der Duesenstroemung untermauert die Brauchbarkeit der Sitzlochduese als querschnittssteuerndes Zumessventil.
| Origin | Count |
|---|---|
| Bund | 1325 |
| Land | 26 |
| Zivilgesellschaft | 3 |
| Type | Count |
|---|---|
| Ereignis | 11 |
| Förderprogramm | 1048 |
| Text | 270 |
| Umweltprüfung | 3 |
| unbekannt | 22 |
| License | Count |
|---|---|
| geschlossen | 45 |
| offen | 1085 |
| unbekannt | 224 |
| Language | Count |
|---|---|
| Deutsch | 1283 |
| Englisch | 101 |
| Resource type | Count |
|---|---|
| Archiv | 224 |
| Bild | 2 |
| Datei | 236 |
| Dokument | 253 |
| Keine | 828 |
| Webseite | 284 |
| Topic | Count |
|---|---|
| Boden | 1026 |
| Lebewesen und Lebensräume | 1082 |
| Luft | 1121 |
| Mensch und Umwelt | 1352 |
| Wasser | 946 |
| Weitere | 1354 |