The dataset consist of time series of hourly rain rates and mean radar reflectivity factor (herein after referred to as reflectivity) near the ground, 100 meter and 1500 meter above the ground at six locations in the Attert catchment in Luxembourg. The time series cover a time span of 4 years (from the 1st of October 2012 tor the 30th of September 2016). The dataset was derived from drop size measurements we conducted at six stations with six laser optical disdrometers and two micro rain radars (MRR) within the CAOS Project (DFG Research Group: From Catchments as Organized Systems to Models based on Functional Units (FOR 1598). The time series of rain rates and radar reflectivity factors (reflectivities) were calculated (derived) via the 3.5th and 6th statistical moments of the drop size distributions using the particular raw data of drop sizes and fall velocities. The primary reason for the measurements was to improve radar based quantitative precipitation estimation in general and the conversion of the reflectivity Z (measured by operational weather radar) to a rain rate R at the ground via the so-called Z-R relation within a mesoscale catchment.GENERAL CONVENTIONS:• Time extent: 1.10.2012 00:00 – 30.09.2016 23:00 (35064 values)• Time reference: UTC • Time stamp: end• Time resolution: 1h• Time series are equidistant and gapless• Missing values: NaN• Delimiter: ; (semicolon)• decimal separator: . (point)STATION LOCATIONS:Name; Abbreviation; Latitude (WGS-84); Longitude(WGS-84); height a.s.l; InstrumentationOberpallen;OPA; 49.73201°; 5.84712°;287 m; disdrometer Useldange;USL; 49.76738°; 5.96756°; 280 m; disdrometer and MRR Ell;ELL; 49.76558°; 5.84401°; 290 m; disdrometer Post;POS; 49.75394°; 5.75481°; 345 m; disdrometer Petit-Nobressart;PIN; 49.77938°; 5.80526°; 374 m; disdrometer and MRR Hostert-Folschette;HOF; 49.81267°; 5.87008°; 435 m; disdrometerHEADER – VARIABLES DESCRIPTION:Name - description:Date-UTC – Date as yyyy-mm-dd HH:MM (4 digit year-2 digit month – 2 digit day 2 digit hour: 2 digit minute)Time Zone: UTC. Decade – tenner day of the year (that is 1st to 10th of January = 1 ; 11th to 20th of January = 2 ; 21th to 30th of January = 3 ; … 21st to 31st of December = 36.Month – Month of the year (1: January, 2: February, 3:March,…, 12: December).dBZ0_DIS_ELL – reflectivity at ground level (in dBZ) at the station Ell derived from disdrometer measurements.dBZ0_DIS_HOF – reflectivity at ground level (in dBZ) at the station Hostert-Folschette derived from disdrometer measurements.dBZ0_DIS_OPA – reflectivity at ground level (in dBZ) at the station Oberpallen derived from disdrometer measurements.dBZ0_DIS_PIN – reflectivity at ground level (in dBZ) at the station Petit-Nobressart derived from disdrometer measurements.dBZ0_DIS_POS – reflectivity at ground level (in dBZ) at the station Post derived from disdrometer measurements.dBZ0_DIS_USL – reflectivity at ground level (in dBZ) at the station Useldange derived from disdrometer measurements.dBZ100_MRR_PIN – reflectivity 100 m above ground (in dBZ) at the station Petit-Nobressart derived from MRR measurements.dBZ100_MRR_USL – reflectivity 100 m above ground (in dBZ) at the station Useldange derived from MRR measurements.dBZ1500_MRR_PIN – reflectivity 1500 m above ground (in dBZ) at the station Petit-Nobressart derived from MRR measurements.dBZ1500_MRR_USL – reflectivity 1500 m above ground (in dBZ) at the station Useldange derived from MRR measurements.RR0_DIS_ELL – rain rate at ground level (in mm/h) at the station Ell derived from disdrometer measurements.RR0_DIS_HOF – rain rate at ground level (in mm/h) at the station Hostert-Folschette derived from disdrometer measurements.RR0_DIS_OPA – rain rate at ground level (in mm/h) at the station Oberpallen derived from disdrometer measurements.RR0_DIS_PIN– rain rate at ground level (in mm/h) at the station Petit-Nobressart derived from disdrometer measurements.RR0_DIS_POS – rain rate at ground level (in mm/h) at the station Post derived from disdrometer measurements.RR0_DIS_USL – rain rate at ground level (in mm/h) at the station Useldange derived from disdrometer measurements.RR100_MRR_PIN – rain rate 100 m above ground (in mm/h) at the station Petit-Nobressart derived from MRR measurements.RR100_MRR_USL – rain rate 100 m above ground (in mm/h) at the station Useldange derived from MRR measurements.RR1500_MRR_PIN – rain rate 1500 m above ground (in mm/h) at the station Petit-Nobressart derived from MRR measurements.RR1500_MRR_USL – rain rate 1500 m above ground (in mm/h) at the station Useldange derived from MRR measurements.The instruments were maintained and cleaned monthly. The data was quality checked. Cases with solid precipitation were excluded using the output form the Pasivel² present weather sensor software, which especially was needed since disdrometer data was contaminated by cobwebs. But since the present weather analyzer classified these (due to their slow movement within the wind) as snow, these then could easily be eliminated.
PEP ist eine Pilotstudie zur Bestimmung der Verdunstung und des Niederschlags ueber der Ostsee, die dem Hauptexperiment BRIDGE in BALTEX vorausgeht. Ziel dieser Studie ist die Validierung der Radarmessungen des Niederschlags auf See mit den von uns durchgefuehrten in situ Messungen des Niederschlags auf Ostseefaehren, und waehrend einer Intensivmessphase, auf dem FS Heincke ergaenzt durch Messungen der Tropfengroessenverteilungen mit einem optischen Disdrometer. Zusaetzlich werden Messungen der Verdunstung ueber einen laengeren Zeitraum an verschiedenen Kuesten im Ostseeraum sowie umfangreiche Modellrechnungen zu Niederschlag und Verdunstung durchgefuehrt.
Ground-based and spaceborne weather radars provide a wealth of remotely sensed precipitation measurements. A key issue for the quantitative use of these data in various applications is the space-time variability of the microstructure of precipitation, described by the drop size distribution (DSD hereafter). Although the variability of rainfall intensity at scales smaller than the radar resolution (radar-subgrid scales hereafter) has been studied extensively, there is no large-enough data set on the spatial variability of the DSD at radar-subgrid scales to perform robust spatial analyses. The aim of this proposal is to set up an experiment addressing this lack by deploying a network of 14 disdrometers covering the typical radar pixel (i.e. about 1x1ca.km2 for ground-based radars, and about 5x5 km2 for spaceborne radars). From the data collected, the space-time variability of the DSD will be quantified and characterized. Its influence on the accuracy of the estimation of precipitation using radar will be investigated. In particular, a stochastic simulator of space-time fields of DSD will be developed to provide a useful tool for the evaluation of the different precipitation remote sensing techniques and the associated retrieval algorithms.