API src

Found 93 results.

Stabilität atmosphärischer Schwerewellen

Moderne Wettervorhersagen und Klimaprognosen sind stark abhängig von numerischen Simulationen, welche die atmosphärischen Zustandsgrößen auf ein Gitternetz, das die Erde umspannt, abbilden. Die numerischen Modelle lösen die fluidmechanischen auf Elementarprinzipien basierenden Bewegungsgleichungen für alle Zustandsgrößen auf jedem Gitterpunkt. Die Gitterweite ist begrenzt durch die Rechenleistung, so dass Phänomene kleinerer Skalen als die Gitterweite von den Modellen nicht aufgelöst werden. Das Brechen interner Schwerewellen ist eines dieser Phänomene. Atmosphärische Schwerewellen werden meistens in der Troposphäre angeregt, wandern aufwärts und werden instabil, da ihre Amplitude durch die dünner werdende Hintergrundluft wächst. Schließlich brechen sie. Die höhenmäßige Amplitudenverstärkung ist, im Besonderen, theoretisch nicht gut verstanden. Das Wellenbrechen spielt eine wichtige Rolle für die Genauigkeit der Vorhersagen, so dass es nicht vernachlässigt werden darf. Eine bewährte Abhilfe ist durch Parametrisierungen gegeben. Sie schätzen den Einfluss der nicht aufgelösten Effekte mithilfe der aufgelösten Zustandsgrößen ab. Die Qualität der Parametrisierung hängt konstruktionsbedingt von den betrachteten Skalen ab. Mit zunehmender Rechenleistung wird die Auflösung der Modelle verfeinert, die Skalen dadurch verkürzt und genauere Parametrisierungen werden notwendig. In diesem Projekt wird eine Theorie für Schwerewellenbrechen entwickelt, die in Parametrisierungen der nächsten Generation Anwendung findet und dabei Methoden aus Numerik, Asymptotik und Funkionalanalysis verbindet. Als erstes werden asymptotische wandernde Wellenlösungen der skalierten Bestimmungsgleichungen, welche erstmals die realistische höhenmäßige Amplitudenverstärkung berücksichtigen, hergeleitet. Diese Lösungen werden gegenüber den kompletten nichtlinearen Eulergleichungen, die den Elementarprinzipien entsprechen, validiert und der Einfluss von Dissipation untersucht. Wandernde Wellenlösungen gehören zu einer spezielle Lösungsklasse, die es gestattet Stabilität analytisch zu erforschen. Aus dem Gebiet der Funktionalanalysis wird die spektrale Stabilitätsanalyse angewandt, um Kriterien zur Vorhersage instabiler Wellen herzuleiten. Diese Kriterien werden Parametrisierungen als Schwellwerte für Wellenbrechen dienen.

Sonderforschungsbereich Transregio 181 (SFB TRR): Energietransfer in der Atmosphäre und im Ozean, Teilprojekt (09) T03: Energieaustausch in dichtegetriebenen Strömungen

Vermischungsprozesse in dichtegetriebenen Strömungen erzeugen starke Wassermassenmodifikationen, die in diesem Projekt anhand des Dänemarkstraßen-'Overflows' untersucht werden. Basierend auf Beobachtungen und numerischer Modellierung versuchen wir die Wege und Prozesse zu verstehen, durch die Energie vom mesoskaligen Wirbelfeld zu den Submesoskalen und zu den dissipativen turbulenten Skalen transportiert wird. Der Effekt der Vermischung auf größere Skalen wird durch Vermischungsparametrisierungen in großskaligen Modellsimulationen untersucht.

Reaktion des Photosyntheseapparats in tropischen Pflanzen auf starkes sichtbares und ultraviolettes Licht

Das Vorhaben umfasst Untersuchungen der inhibierenden Wirkung von Sonnenstrahlung auf die Photosynthese in tropischen Pflanzen und deren Akklimatisation an ambiente Lichtbedingungen. Die Reaktion des Photosyntheseapparats auf natürlichen 'Lichtstress' in Schatten- und Sonnenblättern wird mittels verschiedener Messparameter analysiert. Insbesondere werden spezifische Filter für ultraviolettes Licht (UV-B und UV-A) angewandt, um die Reaktion der Blätter auf die solare UV-Strahlung zu untersuchen. Im Vordergrund der Messungen steht der CO2-Gaswechsel, da Studien mit artifizellem UV-Licht eine bevorzugte Inhibition der CO2-Assimilation durch UV-B gezeigt haben. Daneben werden Änderungen der Aktivitäten der Photosysteme II und I durch Chlorophyllfluoreszenz- bzw. Absorptionsmessungen erfasst. Die Akklimatisation von Schattenblättern an tägliche Sonnenexposition wird mehrere Wochen lang anhand der Zusammensetzung der Photosynthesepigmente und Anreicherung von UV-absorbierenden Substanzen verfolgt. Modellversuche mit Mutanten von Arabidopsis thaliana sollen klären, ob das im Xanthophyllzyklus gebildete Zeaxanthin und die assoziierte thermische Dissipation von Anregungsenergie zum Schutz des Photosystems I beiträgt. Die Sonnenexpositions-Experimente und physikalischen Messungen werden weitgehend am Smithsonian Tropical Research Institute in Panama in Kooperation mit Dr. K. Winter durchgeführt. Pigmentanalysen und Datenverarbeitung sowie die Untersuchung einer C4-Pflanzenart und der Arabidopsis-Mutanten erfolgen am Institut für Biochemie der Pflanzen in Düsseldorf.

Water use characteristics of bamboo (South China)

Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Mehrskalendynamik von Schwerewellen (Koordinatorantrag)

Eine Verlässlichkeit von Vorhersagen des Klimawandels ist nur dann gegeben, wenn die dabei verwendeten numerischen Modelle das gegenwärtige Klima aus den richtigen Gründen korrekt simulieren. Offene Fragen betreffen z.B. dynamische Aspekte wie die Vorhersage einer Verstärkung der Brewer-Dobson-Zirkulation, den dynamischen Einfluss der Stratosphäre auf die Troposphäre und ein Überschießen in der Erholung der Ozonschicht. Eine besonders große Unsicherheit stellen in diesem Zusammenhang interne Schwerewellen (SW) dar, die durch gegenwärtige Chemie-Klimamodelle nicht aufgelöst werden. Ihr Einfluss muss durch Parametrisierungen erfasst werden, die heutzutage stark vereinfacht sind. Die Forschergruppe (FG) wird explizite Modelle für die Anregung, Ausbreitung und Dissipation von SW formulieren, die mathematisch und physikalisch konsistent sind. Diese werden anhand von prozessauflösenden Simulationen und Messungen validiert. Spezielle Beachtung werden die Mehrskalenwechselwirkungen von SW mit Turbulenz und der balancierten Strömung finden, sowie die Wechselwirkung von kleinskaligen, nichtaufgelösten SW mit großskaligen, aufgelösten SW. Die entwickelten Modelle werden in eine einheitliche SW-Parametrisierung münden, von den Quellen bis zur Dissipation. Sowohl die SW-Parametrisierung als auch globale SW-erlaubende und lokale SW-auflösende Simulationen sollen verwendet werden, um die Unsicherheiten der SW-Effekte auf die atmosphärische Zirkulation, auf großskalige dynamische Prozesse und auf den Klimawandel einzuschränken. Die Untersuchungen der Wellenprozesse selbst als auch ihrer globalen Auswirkungen werden auf der engen interdisziplinären Wechselwirkung zwischen Mathematik, Theorie, hochauflösender numerischer Modellierung und Messungen basieren. Diese Kombination begründet sich darin, dass nur Messungen den direkten Bezug zur Realität haben, nur Theorie uns verstehen lehrt, und nur hochauflösende Modellierung eine detaillierte Diagnose erlaubt. Ein dergleichen umfassendes Programm übersteigt bei weitem die Möglichkeiten einzelner Institute oder ihrer bilateralen Zusammenarbeit. Es erfordert hingegen eine FG, in der experimentelle, numerische, theoretische und mathematische Erfahrungen zusammengeführt werden. Die langfristigen Ergebnisse der FG sollen sein:- Eine erweiterte und vertiefte Kenntnis der räumlichen, zeitlichen und spektralen Verteilung von SW in der Atmosphäre.- Ein wesentlich verbessertes Verständnis der Prozesse, welche die korrespondierende SW-Dynamik erzeugen und kontrollieren.- Darauf aufbauend eine Verbesserung der Belastbarkeit und Vollständigkeit der Parametrisierung von SW als Subgitterskalenphänomen, Quellprozesse, SW-Ausbreitung, die Wechselwirkung von SW mit der aufgelösten Strömung und SW-Dissipation betreffend.- Als Ergebnis ein verlässlicheres Verhalten von SW-Parametrisierungen unter anomalen Bedingungen, z.B. dem Klimawandel.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Probing the Earth's subdecadal core-mantle dynamics based on satellite geomagnetic field models

The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.

Forschergruppe (FOR) 1898: Mehrskalendynamik von Schwerewellen, Prozesse und Klimatologie von Schwerewellen

PACOG ist ein Projekt im Rahmen der Forschergruppe 'MS-GWaves', bei der es um die Erforschung von Schwerewellen geht. PACOG konzentriert sich dabei auf atmosphärenphysikalische Beobachtungen und Vergleich mit Modellrechnungen. Schwerewellen spielen für unser Verständnis der mittleren Atmosphäre eine entscheidende Rolle, da sie die Atmosphäre um mehr als 100 K vom strahlungsbedingten Zustand treiben können und drastische Veränderungen der Zirkulation und der Zusammensetzung bewirken können. Schwerewellen stellen den wichtigsten Kopplungsprozess zwischen unteren und oberen Schichten der Atmosphäre dar. Leider sind viele Einzelheiten bezüglich Schwerewellen unzureichend verstanden. Dies betrifft z. B. die Erzeugung, Ausbreitung, Filterung, Dissipation und die zeitliche und räumliche Variabilität. Wir möchten die Klimatologie von Schwerewellen auf regionalen und globalen Skalen untersuchen. Dabei wird eine Kombination von hochmodernen Instrumenten eingesetzt, z. B. Lidars und Radars. Die Interpretation der Ergebnisse wird mit Hilfe von Simulationen, die auf Reanalysen aufbauen, unterstützt. Das Ziel von MS-GWaves besteht letzten Endes darin, die Parametrisierung von Schwerewellen in globalen Modellen zu verbessern. Die in PACOG durchgeführten Beobachtungen sollen in allen Teilprojekten von MS-GWaves verwendet werden, z. B. beim Vergleich von lokalen und regionalen Messungen mit globalen Beobachtungen von Satelliten (Projekt SV) oder zur Validierung von Modellrechnungen in den Projekten 3DMSD und GWING.

Windanalyse in der mittleren Atmosphäre mittels nächtlicher RMR-Lidar-Messungen in mittleren Breiten in Kühlungsborn (AMUN)

Der horizontale Wind nimmt eine Schlüsselrolle in der Dynamik der Atmosphäre ein. Insbesondere beeinflusst er die Ausbreitung und Dissipation von Schwerewellen und thermischen Gezeiten in der mittleren Atmosphäre. Simultane Wind- und Temperaturmessungen bieten dabei die einzigartige Möglichkeit, sowohl kinetische als auch potentielle Energiedichten der Schwerewellen zu berechnen, aus denen wiederum intrinsische Wellenparameter ableitbar sind. Windmessungen in der mittleren Atmosphäre sind jedoch insbesondere im Höhenbereich zwischen 35 und 75 km sehr selten, da hier weder Radiosonden noch Radars Daten liefern und Wind-Radiometer bzw. Satelliten keine für die Untersuchung von Schwerewellen ausreichend große Genauigkeit und Auflösung haben. Deshalb wollen wir in Kühlungsborn/Deutschland (54° N, 12° O) ein neues Lidar aufbauen, mit dem bei gekippten Teleskopen der Horizontalwind aus der Dopplerverschiebung der Rayleigh-Rückstreuung bestimmt werden kann. Neben der Erstellung einer Wind-Klimatologie steht vor allem die Untersuchung der Ausbreitung von Trägheitsschwerewellen in der mittleren Atmosphäre im Vordergrund. Dazu werden wir u.a. horizontale und vertikale Impulsflüsse und die Höhe des Impulsübertrags an die Hintergrundatmosphäre bestimmen. Diese für die Energiebilanz der Atmosphäre wesentlichen Parameter liefern wichtige Vergleichsgrößen für Zirkulationsmodelle. Ferner werden wir intrinsische Welleneigenschaften aus Wind-Hodographen analysieren, die für andere bodengebundene Messsysteme in der Regel nicht zugänglich sind. Unter Einbeziehung des lokalen Hintergrundwindes sollen aufwärts und abwärts propagierende Schwerewellen eindeutig getrennt und quantifiziert werden. Die Analysen werden insgesamt unser Verständnis der vertikalen Kopplung und der zu Grunde liegenden Zirkulation in der mittleren Atmosphäre deutlich verbessern. Das neue Lidarsystem ergänzt ein in Nordnorwegen am ALOMAR-Observatorium (69° N, 16° O) vorhandenes Windlidar, welches ebenfalls vom IAP betrieben wird. In diesem Projekt wird die dabei erworbene Expertise genutzt, um die Entwicklungsrisiken für das neue Lidar zu minimieren und schwerpunktmäßig Windmessungen in der mittleren Atmosphäre durchzuführen und zu interpretieren.

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Effekte durch Schwerewellen in der Thermosphäre/Ionosphäre infolge von Aufwärtskopplung

Das Thermosphären/Ionosphären (T/I) System wird sowohl von oben (solar, geomagnetisch), als auch von unten stark beeinflusst. Einer der wichtigsten Einflüsse von unten sind Wellen (z.B. planetare Wellen, Gezeiten, oder Schwerewellen), die größtenteils in der Troposphäre bzw. an der Tropopause angeregt werden. Die vertikale Ausbreitung der Wellen bewirkt hierbei eine vertikale Kopplung der T/I mit der unteren und mittleren Atmosphäre. Vor allem der Einfluss von Schwerewellen (GW) ist hierbei weitestgehend unverstanden. Einer der Gründe hierfür ist, dass GW sehr kleinskalig sind (einige zehn bis zu wenigen tausend km) - eine Herausforderung, sowohl für Beobachtungen, als auch für Modelle. Wir werden GW Verteilungen in der T/I aus verschiedenen in situ Satelliten-Datensätzen ableiten (z.B., sowohl in Neutral-, als auch in Elektronendichten). Hierfür werden Datensätze der Satelliten(-konstellationen) SWARM, CHAMP, GOCE und GRACE verwendet werden. Es sollen charakteristische globale Verteilungen bestimmt, und die wichtigsten zeitlichen Variationen (z.B. Jahresgang, Halbjahresgang und solarer Zyklus) untersucht werden. Diese GW Verteilungen werden dann mit von den Satelliteninstrumenten HIRDLS und SABER gemessenen Datensätzen (GW Varianzen, GW Impulsflüssen und Windbeschleunigungen durch GW) in der Stratosphäre und Mesosphäre verglichen. Einige Datensätze (CHAMP, GRACE, SABER) sind mehr als 10 Jahre lang. Räumliche und zeitliche Korrelationen zwischen den GW Verteilungen in der T/I (250-500km Höhe) und den GW Verteilungen in der mittleren Atmosphäre (Stratosphäre und Mesosphäre) für den gesamten Höhenbereich 20-100km werden untersucht werden. Diese Korrelationen sollen Aufschluss darüber geben, welche Höhenbereiche und Regionen in der mittleren Atmosphäre den stärksten Einfluss auf die GW Verteilung in der T/I haben. Insbesondere Windbeschleunigungen durch GW, beobachtet von HIRDLS und SABER, können zusätzliche Hinweise darauf geben, ob Sekundär-GW, die mutmaßlich in Gebieten starker GW Dissipation angeregt werden, in entscheidendem Maße zur globalen GW Verteilung in der T/I beitragen. Zusätzlich wird der Versuch unternommen, sowohl GW Impulsfluss, als auch Windbeschleunigungen durch GW aus den Messungen in der T/I abzuleiten. Solche Datensätze sind von besonderem Interesse für einen direkten Vergleich mit von globalen Zirkulationsmodellen simulierten GW Verteilungen in der T/I. Diese werden für eine konsistente Simulation der T/I in Zirkulationsmodellen (GCM) benötigt, stellen dort aber auch eine Hauptunsicherheit dar, da eine Validierung der modellierten GW durch Messungen fehlt.

Wechselwirkung von Schwerewellen und Madden Julian Oszillation

Die Madden-Julian Oszillation (MJO) (Madden & Julian 1971, 1972) ist der dominante Teil der intrasessionalen Variabilität der tropischen Atmosphäre. Sie äußert sich vor allem in ostwärts wandernden Gebieten tiefer Konvektion und erhöhten Niederschlages. Weiterhin beeinflusst die MJO durch dynamische Kopplung das lokale Wetter des Indischen Ozeans und der Pazifischen Inseln. Außerdem spielt die durch vertikale Kopplung vermittelte Interaktion mit anderen wiederkehrenden dynamischen Phänomenen, wie zum Beispiel der Quasizweijahresschwingung der inneren Tropen (Quasi-biennial Oscillation, QBO), eine wichtige Rolle für das Verständnis tropischer Winde. Obwohl die Datenbasis über die MJO, der tiefen tropischen Konvektion und des Niederschlag in den Tropen im Verlauf der letzten Jahrzehnte eine deutliche Verbesserung erfuhr, verbleibt die Modellierung und Simulation der MJO als ein ernstes Problem heutiger atmosphärischer Modelle. Aus diesem Grunde beschäftigt sich das hier vorgeschlagene Projekt mit wichtigen Fragestellungen bezüglich dieser Modellierungsprobleme. Dabei wird auf Methoden, welche während der Anfertigung meiner Doktorarbeit zur Modellierung konvektiver Schwerewellen entstanden, zurückgegriffen. Das Projekt gliedert sich hierbei folgendermaßen in zwei wesentliche wissenschaftliche Fragestellungen:Wie beeinflusst die MJO die Ausbreitung und Dissipation konvektiv angeregter Schwerewellen?Wie wirken diese konvektiven Schwerewellen zurück auf die MJO und deren Konvektion?Das zur Beantwortung dieser Fragen notwendige Werkzeug ist ein gekoppeltes Modell konvektiv angeregter Schwerewellen und ihrer Ausbreitung, welches ich bereits sehr erfolgreich für Studien meiner Dissertation nutzte. Zusätzlich wird die Anwendung des WRF (Weather Research and Forecasting) Modells die numerische Modellierung auf der Mesoskala unterstützen. Einen weiteren Fokus setzt das Projekt auf Impulsflussspektren der Schwerewellen und ihrer durch die MJO induzierten Variabilität. Es wird außerdem untersucht, ob diese MJO induzierte Variabilität von Satelliteninstrumenten aus beobachtet werden kann. Dies wird Einsichten in den durch flache und tiefe Konvektion emittierten Schwerewellenimpulsfluss eröffnen. Im Falle der Feedbackmechanismen wird der Schwerpunkt auf den Einfluss des Schwerewellendrag auf die sekundäre Zirkulation der MJO gelegt.

1 2 3 4 58 9 10