<p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a> eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2 aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5 % zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOx und Stickstoff, N2). Dieser Bereich trägt zu 16,2 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> unberücksichtigt.</p><p> </p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von <a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a> (Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirtschaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die <strong>direkten Emissionen</strong> stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für <strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte <a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a> legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62 Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen finden Sie auf den Themenseiten <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>, <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a> und <a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>
Arsen-kontaminiertes Grundwasser stellt eine große Gefahr für zig Millionen von Menschen dar, insbesondere in Süd- und Südost-Asien, durch seine Verwendung als Trinkwasser und für die Bewässerung von Reisfeldern. Das Hauptziel dieses Projekts ist es gemeinsam mit Wissenschaftlern der Stanford University die Menge an giftigem Arsen in den beiden wichtigsten Expositionsquellen, Wasser und Reis, zu reduzieren und zu bestimmen wie i) Arsen effizient mit Wasserfiltern aus dem Trinkwasser entfernt und ii) die Arsenaufnahme durch Reis während der Nasskultivierung reduziert werden kann. Im ersten Teilprojekt planen wir in Vietnam zu untersuchen, unter welchen Bedingungen Wasserfilter Arsen effizient entfernen, wie lange die Filter verwendet werden können und ob gesundheits-schädigende Konzentrationen von Nitrate in den Filtern gebildet werden. Wir werden einen visuell sichtbaren Indikator in den Filtern entwickeln, der es der breiten Bevölkerung erlaubt, ohne analytische Verfahren oder besonderen Bildungsstand zu bestimmen, wann die Effizienz des Filters aufgrund der Sättigung mit Arsen verschwindet und das Filtermaterial ersetzt werden muss. Darüber hinaus werden wir untersuchen, wie das Arsen-verschmutzte Filtermaterial ohne weitere Risiken entsorgt werden kann. Im zweiten Teilprojekt werden wir untersuchen, ob die Stimulation von nitrat-reduzierenden, eisenoxidierenden Bakterien in Reisfeldböden die Arsenaufnahme in Reis reduziert durch die Bindung von Arsen an die gebildeten Minerale. Wir werden bestimmen, wie die Zugabe definierter Mengen an Nitrat helfen kann, gleichzeitig die Arsenaufnahme in den Reis und die Emission des Treibhausgases N2O zu minimieren. Dieses Projekt wird für die Bevölkerung in Arsen-betroffenen Ländern praktische Lösungen bieten, um mögliche Schädigungen durch Arsen und Nitrat zu reduzieren und ihre Gesundheit und Lebenssituation zu verbessern.
Das hier beantragte Projekt widmet sich der gesellschaftlichen Dimension von Stickstoff. Reaktiver Stickstoff, der in der Lage ist, Verbindung mit anderen Elementen einzugehen, ist eine unverzichtbare Grundlage für pflanzlichen und tierischen Stoffwechsel - und damit auch der Landwirtschaft und der Welternährung. Gemessen an der Gesamtmenge des Stickstoffs auf der Erde, des häufigsten Elements in der Atmosphäre, ist die Menge an reaktivem Stickstoff extrem limitiert. Zugleich stellt reaktiver Stickstoff aber auch ein erhebliches ökologisches Problem dar. Auf Äckern und in Ställen reagiert er zu Stickoxiden wie Lachgas, einem bedeutenden Treiber der Klimaerwärmung. Er gelangt über Oberflächengewässer und Kanalisationen ins Trinkwasser, wo er in Form von Nitrit eine Bedrohung für die menschliche Gesundheit darstellt. Stromabwärts sammelt er sich schließlich in Senken wie Seen und Meeren. Dort führt seine übermäßige Verfügbarkeit zur Eutrophierung, massenhaftem Algenwachstum und damit zur Zerstörung von aquatischen, vor allem küstennahen Ökosystemen. Die fortschreitende Zunahme von reaktivem Stickstoff in Gewässern und auf ökologisch sensiblen Magerflächen gilt als eines der drängendsten Umweltprobleme unserer Zeit: Die ökologisch verkraftbare Menge an reaktivem Stickstoff weltweit gilt als längst überschritten. Seit einiger Zeit haben es sich Industrienationen daher nicht mehr allein zur Aufgabe gemacht, die Verfügbarkeit von reaktivem Stickstoff zu erhöhen, um für Ernährungssicherheit zu sorgen. Sie versuchen heute zugleich auch, sie umgekehrt wieder einzudämmen, um Schäden für Mensch und Umwelt zu minimieren. Dabei werden verschiedene Akteurinnen, Akteure und Instanzen mit in die Pflicht genommen: kommunale Wasserwerke, landwirtschaftliche Betriebe, staatliche Messstellen und Umweltbehörden. Ihnen wird aufgetragen, sinnvoll mit Stickstoff zu wirtschaften, um seine negativen Auswirkungen auf Mensch und Natur zu minimieren. Dabei agieren die in der Stickstoffwirtschaft Involvierten auf Basis unterschiedlicher Interessen, Anreize, Wissensbestände und Handlungsspielräume, was die Stickstofffrage zu einem klassischen Untersuchungsfall für sozialwissenschaftliche Analyse macht. Trotz der gesellschaftlichen Bedeutung von Stickstoff und der Tragweite der mit ihm verbundenen Probleme hat es in Deutschland in den vergangenen 30 Jahren nur wenig Forschung aus Soziologie oder anderen Sozialwissenschaften zu seiner sozialen Zirkulation gegeben. Das hier vorgestellte Projekt möchte dies beheben. Auf Basis einer empirischen Untersuchung der zeitgenössischen Stickstoffwirtschaft und -regulierung soll es eine Übersicht über den Stand der Debatten und Probleme liefern, einen soziologischen Zugriff auf Stickstoff und seine Rolle in modernen Gesellschaften erarbeiten sowie einen Beitrag zur Umweltsoziologie im Allgemeinen leisten.
Im Rahmen des Forschungsvorhabens soll ein prozessorientiertes Modell zur Beschreibung von biogeochemischen Stoffumsetzungen in landwirtschaftlich genutzten Böden derart weiterentwickelt werden, daß es zur Prognose von CH4- und N2O-Spurengasemissionen aus dem Reisanbau eingesetzt werden kann. Insbesondere soll die numerische Beschreibung der in der CH4- und N2O-Produktion und Konsumption involvierten mikrobiologischen Prozesse Methanogenese, Methan-Oxidation, Nitrifikation und Denitrifikation und deren Abhängigkeit von Änderungen des Redoxpotentials im Boden implementiert bzw. verbessert werden. Zudem sollen die verschiedenen Mechanismen, die zur Emission von Spurengasen aus dem Reisanbau beitragen (Diffusion, Gasblasenbildung bei Überstauung, Pflanzentransport) sowie die Auswirkung von radialen Sauerstoffverlusten der Reiswurzeln auf die mikrobiologischen Prozesse in einer durch Anaerobiosis dominierten Umgebung in das Modell implementiert werden.
In Dauerfeldexperimenten werden in ökologischen und konventionellen Anbausystemen an drei Versuchsstandorten zeitlich hochauflösend Lachgasemissionen und Ammoniakemissionen gemessen, um Mechanismen der Treibhausgasbildung aufzuklären, pflanzenbauliche Strategien zur Treibhausgasminderung zu prüfen und standortspezifische Emissionsfaktoren abzuleiten. Die Messung von Treibhausgasflüssen erfolgt in Versuchen mit unterschiedlichen Fruchtfolge-, Bodenbearbeitungs- und Düngungssystemen zur Bestimmung von flächen- und produktbezogenen Emissionen. In zwei Feldexperimenten wird Pflanzenkohle in Kombination mit organischen und mineralischen Düngern eingesetzt um zu analysieren, wie der Stickstoffumsatz im Boden, der Stickstofftransfer in der Fruchtfolge und die Stickstoffemissionen beeinflusst werden. Auf der Grundlage der experimentellen Daten wird bewertet, ob es möglich ist, NH3- und N2O-Emissionen durch den Einsatz von Pflanzenkohle signifikant zu vermindern. In einem weiteren Versuch werden die Stickstoffdynamik und Lachgasemissionen in ökologischen und konventionellen Anbausystemen untersucht. Auf der Grundlage der Messdaten wird das Emissionspotenzial sowie das N2O-Minderungspotenzial von Anbausystemen bewertet. Lachgas- und Ammoniakemissionen werden in Beziehung zur Stickstoffdynamik gesetzt, um Ursachen und Prozesse aufzuklären, die zu hohen Emissionen führen. Alle pflanzenbaulichen Maßnahmen werden hinsichtlich der Effekte auf die Erträge und Produktqualität, die Stickstoffsalden und Stickstoffeffizienz bewertet, um die Umsetzbarkeit in der landwirtschaftlichen Praxis einschätzen zu können. Die experimentellen Daten verbessern die Datenbasis für die nationale Klimaberichterstattung. Sie sind für die Regionalisierung von NH3- und N2O-Minderungsmaßnahmen umfassend nutzbar. Der Transfer der Ergebnisse in die landwirtschaftliche Praxis erfolgt durch Publikationen in angewandten Zeitschriften, die Durchführung von Workshops und Feldtagen.
Im Rahmen des Projektes werden flugzeuggetragene Untersuchungen von Ferntransport und Austauschprozessen an der sogenannten Tropopause durchgeführt, die die Grenzfläche zwischen der turbulenten Troposphäre und der stabil geschichteten Stratosphäre bildet. Die Region spielt eine zentrale Rolle für die Strahlungsbilanz der Atmosphäre, sodass Änderungen der chemischen Zusammensetzung sich direkt auf die Oberflächentemperatur auswirken können. Die flugzeuggetragenen Messungen in der arktischen Tropopause im Winter haben zum Ziel, speziell die Rolle von gebirgsinduzierten Schwerewellen für einen Spurenstoffaustausch zu untersuchen und die Zeitskalen und Effizienz dieser Prozesse zu bestimmen. Hierzu werden mit hoher zeitlicher Auflösung geeignete Marker für den Transport (CO, N2O) gemessen. Insbesondere N2O eignet sich hervorragend zur Untersuchung dieser dynamischen Vorgänge, da es in der Troposphäre chemisch inert und fast homogen verteilt ist. Auf Grund dieser Tatsache und des stratosphärischen Vertikalgradientes eignet es sich damit hervorragend, die dynamische Prozesse und Wellenausbreitung innerhalb der Stratosphäre zu untersuchen. Jedoch ist der N2O Gradient an der Tropopause nur schwach ausgeprägt, was eine hohe Messpräzision erfordert. Das Institut für Atmosphärenphysik der Universität Mainz verfügt seit Sommer 2013 über eine flugfähige Messinstrumentierung, die die notwendige Präzision des N2O Nachweises erreicht. Mit dieser Technik sollen im Rahmen einer Messkampagne des Deutschen Zentrums für Luft- und Raumfahrt (DLR) mit dem Messflugzeug Falcon im Januar 2016 in Kiruna / Nordschweden Untersuchungen im Bereich sogenannter Schwerewellen durchgeführt werden, um:1) den Effekt der Wellen auf die Spurengasverteilungen nachzuweisen und turbulente Transportprozesse mit nie dagewesener zeitlicher und räumlicher Auflösung zu vermessen 2) die relevanten Zeitskalen und Wellenlängen für Transport und Mischung zu bestimmen3) Flüsse durch die Tropopause nachzuweisen und zu bestimmen4) die atmosphärischen Prozesse, die zur welleninduzierten Entstehung von Turbulenz und Mischung führen, zu bestimmen Ein in-situ Nachweis von Mischung und Turbulenz war in dieser Form mit N2O und CO Korrelationen bisher nicht möglich und ist mit der erreichten Zeitauflösung und Präzision momentan weltweit einzigartig. Die Kombination mit den Wind- und Turbulenzmessugen der Falcon erlauben es, Austauschflüsse zu quantifizieren und die relevanten Wellenlängen des Spurenstofftransports zu identifizieren. Vergleiche mit dem EULAG Modell erlauben es, die für die Entstehung von welleninduzierter Turbulenz und Mischung relevanten atmosphärischen Bedingungen zu identifizieren.
Das übergeordnete Projektziel von ISLAND ist die Wissensgrundlage zu den Effekten von Leguminosen in Fruchtfolgen unterschiedlicher Produktionsintensität zu erweitern und Strategien der optimierten Integration zu entwickeln. Hierbei soll ein Schwerpunkt auf der Berücksichtigung und Minimierung der Verlustpotentiale und auf die adäquate Anrechnung der Fixierungsleistung/Vorfruchtwirkung gelegt werden. Dafür soll das Verständnis der relevanten Prozesse im Stickstoffkreislauf umfänglich erweitert und plausible Bewertungsalgorithmen und -kennzahlen (Schätzung N2-Fixierung) für eingesetzte Maßnahmen (z.B. Behandlung der Ernterückstände), Betriebsmittel (z.B. mineralische/organische Dünger) und deren Wechselwirkungen entwickelt werden. Als Bindeglied zwischen der empirischen Datenerhebung in Feldversuchen und der aggregierten Kennzahlentwicklung sollen prozessorientierte Simulationsmodelle weiterentwickelt und zur Datenanalyse sowie in Form von Szenarienrechnungen eingesetzt werden. Die zentralen Forschungsfragen lauten: (1) Welchen Beitrag leisten Leguminosen zur Klimabilanz in unterschiedlichen Stellungen innerhalb standorttypischer Fruchtfolgen variierender Produktionsintensität? (2) Gibt es einen Zusammenhang zwischen direkten (und indirekten) Lachgasemissionen und der N2-Fixierungsleistung bei ausgewählten Körnerleguminosen und lässt sich die Fixierungsleistung auch über fernerkundlich erhobenen Spektraldaten abschätzen? (3) Wie wirken sich die Vorfrucht- und Fruchtfolgeeffekte von Leguminosen auf die THG-Bilanzen standorttypischer Fruchtfolgen unterschiedlicher Intensität unter prognostizierten Klimawandelszenarien an ausgewählten Standorten aus?
Die Forschung im Teilantrag P4 befasst sich mit den Einflüssen von Kulturpflanzen auf Prozesse und Raten der Denitrifikation in landwirtschaftlichen Böden. Diese Effekte konzentrieren sich auf Aktivitäten von Wurzeln, die erheblichen Einfluss auf die Bedingungen für Prozesse, Raten und Organismen der Denitrifikation ausüben. Die Wirkungen der Pflanzen werden systematisch nach vier Gruppen analysiert: Rhizodeposition, Stickstoffaufnahme durch Wurzeln, Wasseraufnahme und Wirkungen residualer Biomasse im Nach-Erntezeitraum. Da diese Wirkungen z.T. massive Verschiebungen in der Verfügbarkeit und im Verhältnis der Substrate verursachen, wird in die Stöchiometrie der Denitrifkationsprozesse eingegriffen, was u.a. zu Veränderungen im Verhältnis von N2O zu N2-Emissionen führt. Dies hat große Umweltrelevanz. In systematisch angelegten Mesokosmen-Versuchen mit Pflanzen sollen die genannten Wirkgruppen isoliert betrachtet werden. Neben der klassischen Online- und manuellen Spurengasanalytik werden 15N- und 13C-Markierungs- und Isotopomeransätze verwendet, um Gasflussraten und Produktstöchiometrie quantitativ zu erfassen und Pflanzenprozessen zuzuordnen. Angestrebt wird auch, die aus Isotopomeranalysen abgeleiteten Erkenntnisse zu verantwortlichen Organismen in Zusammenarbeit mit P2 zu verifizieren. Die Studien fließen in die Prozessparametrisierung der verschiedenen Modellebenen ein.
Die Denitrifikation stellt eine zentrale Größe im N-Haushalt insbesondere in gedüngten Agrarökosystemen dar, ist aber wegen methodischer Schwierigkeiten bei der Messung von N2- Emissionen auf der Feldskala sehr schwer bestimmbar und daher unzureichend untersucht. Die Produktion und Reduktion von N2O im Zuge der Denitrifikation und die damit verbundenen Isotopeneffekte hinterlassen im N2O-Molekül eine spezifische Isotopologensignatur, die sich aus der relativen An- oder Abreicherung von 15N und der schweren O-Isotope (17O, 18O) sowie aus der Verteilung von 15N innerhalb des Moleküls zusammensetzt. Diese Signatur wird durch folgende Größen geregelt: Die 15N und 17O/18O-Signaturen der Vorläuferverbindungen (Nitrat, Bodenwasser), den O-Austausch mit dem Bodenwasser bei der N2O-Produktion, die Raten der N2O-Produktion und der N2O-Reduktion zu N2 sowie die Isotopeneffekte (Fraktionierungsfaktoren) der verschiedenen Teilprozesse. Theoretisch lässt sich die N2O-Reduktion zu N2 - und damit die N2-Emission - sowohl aus den 15N-Signaturen als auch aus der 18O-Signatur des emittierten N2O ableiten, wenn die übrigen Parameter, die die Isotopologensignatur beeinflussen, ausreichend sicher bestimmbar sind. Ziel ist es, diesen methodischen Ansatz für die 18O-Signatur anhand von Laborversuchen mit Böden zu prüfen. Durch den Vergleich gemessener und mit einem Modell berechneter Isotopensignaturen sowie Emissionen von N2O- und N2 wird geprüft und bewertet, inwieweit die N2O-Fraktionierungsmethode für die Bestimmung von N2- Emissionen geeignet ist und eine neue Option für die Erfassung der N2-Emissionen auf der Feldskala bietet.
Kaminöfen bringen Wärme und Gemütlichkeit in jeden Raum. Doch das Heizen mit Holz stößt erhebliche Mengen an Feinstaub und Schadstoffen aus. Mit unseren Rein-Heiz-Geboten heizen Sie besser an: Wer seinen Kaminofen richtig nutzt, minimiert die Belastungen für Umwelt und Klima, spart Geld und sorgt dafür, dass die Nachbarschaft aufatmet. Mit den Rein-Heiz-Geboten und dem Berliner Ofenführerschein unterstützt die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt alle Berliner und Berlinerinnen dabei, ihre Kaminöfen effizient und emissionsarm zu nutzen. Gute Nachrichten für alle zukünftigen Ofenprofis Seit Juli 2025 ist der Berliner Ofenführerschein wieder kostenlos verfügbar. Dank einer neuen Förderung im Rahmen des Luftreinhalteplans Berlin ist die Teilnahme am digitalen Lernangebot erneut kostenfrei möglich – solange das Kontingent reicht. Das Angebot richtet sich an alle Berliner Ofenbesitzerinnen und -besitzer. Das ist enthalten: Ein Online-Kurs (ca. 90 Minuten) mit anschaulichen Informationen zu: Auswahl und Lagerung von Brennholz Tipps und Tricks zum richtigen Betrieb des Ofens: Holz sparen und Schadstoffe vermeiden Reinigung, Wartung und Aufgaben der Schornsteinfegerinnen und Schornsteinfeger optional: Nachrüstung oder Neukauf von Öfen Ihr persönlicher Berliner Ofenführerschein als digitales Teilnahmezertifikat nach erfolgreichem Abschluss Jetzt kostenfrei anmelden Dank moderner Fahrzeugtechnik hat sich die Luftqualität in den letzten Jahren verbessert. Doch nun rücken Kaminöfen zunehmend in den Fokus –.da sie als relevante Schadstoffquelle verstärkt zur Feinstaubbelastung beitragen. Berlinweit sind rund 115.000 Kaminöfen in Betrieb – und sie belasten die Luft stärker als viele denken. Selbst neue Modelle stoßen pro Stunde so viele Schadstoffe aus wie ein Diesel-Pkw auf 100 Kilometern . Ein bewussterer Umgang mit Heizmöglichkeiten ist daher ein wichtiger Beitrag zur Verbesserung der Luftqualität – und damit auch zum Schutz von Gesundheit und Klima in Berlin. Umweltbundesamt: Heizen mit Holz “Beim Verbrennen von Holz können klima- und gesundheitsschädliche Stoffe entstehen.” Umweltbundesamt: Umweltaspekte “Verzichten Sie aus Klimaschutz-, Luftreinhalte- und ökologischen Gründen auf die Nutzung von Holz zur Wärmeversorgung Ihres Hauses.” Was beim Heizen entsteht . Beim Verbrennen von Holz entstehen u. a. Feinstaub (PM 10 und PM 2,5 ), Kohlenmonoxid, polyzyklische aromatische Kohlenwasserstoffe, Methan, Lachgas und Ruß – gesundheitsschädliche und klimaschädliche Stoffe. Sie gelangen durch den Schornstein in die Außenluft und können Atemwegserkrankungen und Herz-Kreislauf-Probleme verursachen. Dies macht sich vor allem im Winter bemerkbar, wenn mehr geheizt wird und austauscharme Wetterlagen zu dicker Luft führen. Für die Wärmeversorgung durch die rund 115.000 Berliner Kaminöfen werden jährlich etwa 770 Hektar Wald benötigt – das entspricht etwa einem Sechstel der Fläche des Berliner Grunewalds . Weitere Informationen Achtsames Heizen ist das Gebot der Stunde – Genau dazu hat die Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt aufgerufen. Ofenprofi-Werdende, die die Chance nutzen möchten, können sich das notwendige Wissen noch bis April 2026 kostenlos aneignen. Mit Beachtung der Rein-Heiz-Gebote und dem Berliner Ofenführerschein in der Tasche heizen sie zukünftig garantiert kostengünstiger, klimaschonender und gesünder -– denn richtiges Heizen reduziert Schadstoffe und sorgt so nicht nur für ein angenehmes Wohnklima, sondern auch für saubere Luft in der ganzen Umgebung . Kontakt für weitere Fragen zu diesem Thema: Tel.: 0170-5645873 E-Mail: SauberHeizen@senmvku.berlin.de Anmeldemöglichkeit zum Video: „Schlauer Heizen mit dem Ofenführerschein“ Auch die Schornsteinfegerinnen und Schornsteinfeger können mit ihrer Expertise bei der nächsten Abgasuntersuchung oder Feuerstättenschau Auskunft geben. Auf der Internetseite der Senatsverwaltung für Umwelt finden Sie unter dem Titel “Schornsteinfeger: Aufgaben und Zuständigkeiten” alle wichtigen Informationen zu den Aufgabenbereichen der Schornsteinfegerinnen und Schornsteinfeger sowie die Kontaktdaten der bevollmächtigten Schornsteinfegerinnen und Schornsteinfeger auf der interaktiven Karte der Schornsteinfegerkehrbezirke des Geoportals Berlin. Die Kontaktdaten der Innungsmitglieder des Schornsteinfegerhandwerks sind zudem auch auf Seite der Berliner Schornsteinfeger-Innung www.schornsteinfeger-berlin.de zu finden. Schornsteinfegermeister Sascha Graf gibt Tipps fürs kluge Heizen. Bild: Berliner Forsten Überblick zur Holzverbrennung Die Beliebtheit von Kaminöfen ist hoch. Die Energiekrise sorgt aktuell mit steigenden Gas- und Heizölpreisen sowie der Sorge um eine unzureichende Heizversorgung im Winter zu einer erhöhten Nachfrage von Kaminöfen. Weitere Informationen Bild: gioiak2 / Depositphotos.com Richtig Heizen mit Holz Der richtige Betrieb des Kaminofens ist wichtig für eine saubere und damit umweltverträgliche Verbrennung. Das kann spürbar dazu beitragen die gesundheitlichen Folgen zu minimieren. Wenn Sie mit Holz heizen, sollten Sie diese Punkte beachten. Weitere Informationen Bild: Melica / Depositphotos.com Wie wird der Schadstoffausstoß von Kaminöfen begrenzt? Die Begrenzung des Schadstoffaustoßes aus Feuerungsanlagen gewinnt zunehmend an Bedeutung und stellt eine große Herausforderung dar. Besonders mit Holz befeuerte Kleinfeuerungsanlagen tragen maßgeblich zur Feinstaubbelastung bei. Weitere Informationen Bild: SenMVKU Messbericht Holzverbrennung (Zeitraum 2012-2014) Holzverbrennung in Öfen und Kaminen ist eine potentielle Feinstaubquelle in Berlin und Brandenburg, die zu erhöhten Feinstaubbelastungen und zur Überschreitung des Feinstaub-Tagesgrenzwertes gerade in der kalten Jahreszeit beitragen kann. Weitere Informationen
| Origin | Count |
|---|---|
| Bund | 988 |
| Kommune | 7 |
| Land | 91 |
| Wissenschaft | 14 |
| Zivilgesellschaft | 19 |
| Type | Count |
|---|---|
| Chemische Verbindung | 27 |
| Daten und Messstellen | 48 |
| Ereignis | 2 |
| Förderprogramm | 748 |
| Gesetzestext | 8 |
| Infrastruktur | 18 |
| Kartendienst | 1 |
| Text | 232 |
| unbekannt | 65 |
| License | Count |
|---|---|
| geschlossen | 219 |
| offen | 805 |
| unbekannt | 62 |
| Language | Count |
|---|---|
| Deutsch | 982 |
| Englisch | 282 |
| Resource type | Count |
|---|---|
| Archiv | 78 |
| Bild | 7 |
| Datei | 115 |
| Dokument | 180 |
| Keine | 655 |
| Multimedia | 1 |
| Unbekannt | 1 |
| Webdienst | 13 |
| Webseite | 293 |
| Topic | Count |
|---|---|
| Boden | 1086 |
| Lebewesen und Lebensräume | 1086 |
| Luft | 1086 |
| Mensch und Umwelt | 1086 |
| Wasser | 1086 |
| Weitere | 1044 |