Die Sickerwasserrate ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Wasserhaushaltes und beschreibt diejenige Wassermenge, die der Boden aufgrund seines beschränkten Wasserhaltevermögens nicht mehr halten kann und welche daher den Wurzelraum verlässt bzw. versickert (Grundwasserneubildung). Laterale Abflüsse (Drainage, Grabenentwässerung) werden an dieser Stelle nicht betrachtet. Sandige Böden können weniger Wasser halten als lehmige oder tonige Böden, so dass (unter sonst gleichen Bedingungen) die Sickerwasserrate unter sandigen Böden größer ist als unter lehmigen/tonigen Böden. In niederschlagsreichen Gebieten versickert mehr Wasser als in niederschlagsärmeren Gebieten. Mit der Sickerwasserrate wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium sind die allgemeinen Wasserhaushaltsverhältnisse mit dem Kennwert Sickerwasserrate. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird die Sickerwasserrate regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Sickerwasserrate (SWR), landesweit bewertet" gibt es noch eine Klassifikation der Sickerwasserrate, die die Sickerwasserrate über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.
Das Projekt "Sanierung des Altstandortes Kraftwerk Borken" wird/wurde ausgeführt durch: Analytisches Labor Dr. Wüsteneck.Am Altstandort des Kraftwerkes Borken sind nach Demontagearbeiten 22000 Liter PCB-haltiges Trafooel ausgelaufen, wobei akute Gefahr fuer das nur 40 Meter entfernt liegende Fliessgewaesser Schwalm bestand. Im Verlauf der Sanierungsarbeiten ist eine weitere Altlast durch Trafooel festgestellt worden . Boden und Grundwasser waren hochgradig kontaminiert, bis zu 2000 mg/l Oel in Phase. Durch rastermaessige Sondierungen wurde das Schadensausmass ermittelt. Als aktive hydraulische Sanierungsmassnahme wurden zwei Sanier- und Spuelbrunnen mit Drainagesystem errichtet. Die langfristige Grundwassersanierung erfolgt durch eigene Reinigungsanlage (chemisch/physikalisch). Das ausgehobene Bodenmaterial (ca. 1500 t) wird mikrobiell aufgearbeitet von der Firma Umweltschutz Nord. - Erstellung von Sanierungsplaenen, genehmigungsrechtliche Antraege. - Die Grundwassersanierung wurde durch eigens konstruierte oberflaechenabsaugende Edelstahlbehaelter, in denen sich Tauchpumpen befanden, welche bewirkten, dass in erster Linie das auf der Oberflaeche der Sanierungsbrunnen aufschwimmende Oel entfernt und zur Abscheide- und Sorptionsanlage gefoerdert wurde, durchgefuehrt.
Wälder, Böden und ihre Vegetation speichern Kohlenstoff. Bei intensiver Nutzung wird Kohlendioxid freigesetzt. Maßnahmen, die die Freisetzung verhindern sollen, richten sich vor allem auf eine nachhaltige Bewirtschaftung der Wälder, den Erhalt von Dauergrünland, bodenschonende Bearbeitungsmethoden im Ackerbau, eine Reduzierung der Entwässerung und Wiedervernässung von Moorböden. Bedeutung von Landnutzung und Forstwirtschaft Der Kohlenstoffzyklus stellt im komplexen Klimasystem unserer Erde ein regulierendes Element dar. Durch die Vegetation wird Kohlendioxid (CO 2 ) aus der Luft mittels Photosynthese gebunden und durch natürlichen mikrobiellen Abbau freigesetzt. Zu den größten globalen Kohlenstoffspeichern gehören Meere, Böden und Waldökosysteme. Wälder bedecken weltweit ca. 31 % der Landoberfläche (siehe FAO Report 2020 ). Bedingt durch einen höheren Biomassezuwachs wirken insbesondere boreale Wälder in der nördlichen Hemisphäre als Kohlendioxid-Senken. Nach § 1.8 des Klimarahmenabkommens der Vereinten Nationen werden Senken als Prozesse, Aktivitäten oder Mechanismen definiert, die Treibhausgase (THG), Aerosole oder Vorläufersubstanzen von Treibhausgasen aus der Atmosphäre entfernen. Im Boden wird Kohlenstoff langfristig durch sog. Humifizierungsprozesse eingebaut. Global ist etwa fünfmal mehr Kohlenstoff im Boden gespeichert als in der Vegetation (siehe IPCC Special Report on Land Use, Land Use Change and Forestry ). Boden kann daher als wichtigster Kohlenstoffspeicher betrachtet werden. Natürliche Mineralisierungsprozesse führen im Boden zum Abbau der organischen Bodensubstanz und zur Freisetzung von den Treibhausgasen CO 2 , Methan und Lachgas. Der Aufbau und Abbau organischer Substanz steht in einem dynamischen Gleichgewicht. Die voran genannten Prozesse werden unter der Kategorie/Sektor „Landnutzung, Landnutzungsänderung und Forstwirtschaft“ (kurz LULUCF ) bilanziert. Modellierung von Treibhausgas-Emissionen aus Landnutzungsänderung Jährliche Veränderungen des nationalen Kohlenstoffhaushalts, die durch Änderungen der Landnutzung entstehen, werden über ein Gleichgewichtsmodell berechnet, welches für Deutschland auf einem Stichprobensystem mit rund 36 Millionen Stichprobenpunkten basiert. Für die Kartenerstellung der Landnutzung und -bedeckung werden zunehmend satellitengestützte Daten eingesetzt, um so die realen Gegebenheiten genauer abbilden zu können. Die nationalen Flächen werden in die Kategorien Wald, Acker- sowie Grünland, Feuchtgebiete, Siedlungen und Flächen anderer Nutzung unterteilt (siehe auch Struktur der Flächennutzung ). Die Bilanzierung (Netto) erfolgt über die Summe der jeweiligen Zu- bzw. Abnahmen der Kohlenstoffpools (ober- und unterirdische Biomasse, Totholz, Streu, organische und mineralische Böden und Holzprodukte) in den verschiedenen Landnutzungskategorien. Allgemeine Emissionsentwicklung Die aktuelle Emissionsentwicklung ist für den Sektor LULUCF zunehmend dramatisch. In den letzten Jahren ist der Sektor von einer abnehmenden Netto-Kohlenstoffspeicherung im Wald sowie von hohen THG-Emissionen der organischen Böden des Acker- und Grünlands geprägt (Netto THG-Emissionen in 1990: rund +40 Mio. t CO 2 Äquivalente und in 2022: + 4 Mio. t CO 2 Äquivalente). Im Rahmen des novellierten Klimaschutzgesetzes (KSG) wird eine Schätzung für das Vorjahr Vorjahr 2023 vorgelegt. Diese liefert für LULUCF nur Gesamtemissionen, deren Werte als unsicher einzustufen sind. Die Werte liegen bei 3,6 Mio. t CO 2 Äquivalenten. Aus diesem Grunde werden in den folgenden Abschnitten nur die Daten der Berichterstattung 2024 für das Jahr 2022 betrachtet. Veränderung des Waldbestands Die Emissionen sowie die Speicherung von Kohlenstoff bzw. CO 2 für die Kategorie Wald werden auf Grundlage von Bundeswaldinventuren berechnet. Bei der Einbindung von Kohlenstoff spielt insbesondere der Wald eine entscheidende Rolle als Netto-Kohlenstoffsenke. In der Waldkategorie sind die Pools Biomasse (69,6%), mineralische Böden (21,8 %) und Totholz (8,6 %) ausschlaggebend. Zu den Emissionsquellen im Wald zählen Streu, Drainage organischer Böden, Mineralisierung und Waldbrände. Zusammen machen diese Emissionsquellen nur einen Anteil von 7,4 % an der Treibhausgasmenge des deutschen Waldes aus. In den Jahren 1990 und 2007 trafen auf Deutschland Orkane (2007 war es der Sturm Kyrill), die zu erheblichem Holzbruch mit einem daraus resultierenden hohen Sturmholzaufkommen in den Folgejahren führten (siehe dazu NIR ). In 1990 wurden rund -19,5 Mio. t CO 2 -Äquivalente im Wald an CO 2 -Emissionen gespeichert. Im Jahr 2022 waren es -39,7 Mio. t CO 2 -Äquivalente (siehe Tab. „Emissionen und Senken im Bereich Landnutzung , Landnutzungsänderung und Forstwirtschaft“). Inwieweit die Ereignisse der letzten Jahre wie Stürme, Dürre und Insekten Einfluss auf den Kohlenstoffspeicher Wald haben, werden erst die Analysen der Bundeswaldinventur 2022 aufzeigen, deren Ergebnisse kontinuierlich ab dem Jahr 2023 (und der Berichterstattung 2025) im LULUCF -Inventar berücksichtigt werden können. Offensichtlich ist aber: Der Zustand des deutschen Waldes ist zunehmend besorgniserregend. Treibhausgas-Emissionen aus Waldbränden Bei Waldbränden werden neben CO 2 auch sonstige Treibhausgase bzw. Vorläufersubstanzen (CO, CH 4 , N 2 O, NOx und NMVOC ) freigesetzt. Aufgrund der klimatischen Lage Deutschlands und der Maßnahmen zur Vorbeugung von Waldbränden sind Waldbrände ein eher seltenes Ereignis, was durch die in der Waldbrandstatistik erfassten Waldbrandflächen bestätigt wird. Das Jahr 2022 war ein überdurchschnittliches Waldbrandjahr im Vergleich zum langjährigen Mittel. Dies gilt sowohl hinsichtlich der Anzahl auftretender Waldbrände als auch in Bezug auf die jeweils betroffene Waldfläche pro Brand (siehe mehr zu Waldbränden ). Durch die Brände wurden ca. 0,28 Mio. t CO 2 -Äquivalente an Treibhausgasen freigesetzt. Werden nur die CO 2 -Emissionen aus Waldbrand (0,25 Mio. t CO 2 -Äquivalente) betrachtet, machen diese im Verhältnis zu den CO 2 -Emissionen des deutschen Gesamtinventars nur einen verschwindend kleinen Bruchteil aus. Veränderungen bei Ackerland und Grünland Mit den Kategorien Ackerland und Grünland werden die Emissionen sowie die Einbindung von CO 2 aus mineralischen und organischen Böden, der ober- und unterirdischen Biomasse sowie direkte und indirekte Lachgasemissionen durch Humusverluste aus Mineralböden nach Landnutzungsänderung sowie Methanemissionen aus organischen Böden und Entwässerungsgräben berücksichtigt. Direkte Lachgas-Emissionen aus organischen Böden werden im Bereich Landwirtschaft unter landwirtschaftliche Böden berichtet. Für die Landnutzungskategorie Ackerland betrugen im Jahr 2022 die THG-Gesamtemissionen 15,6 Mio. t CO 2 Äquivalente und fielen damit um 0,9 Mio. t CO 2 Äquivalente ≙ 6 % größer im Vergleich zum Basisjahr 1990 aus (siehe Tab. „Emissionen und Senken im Bereich Landnutzung , Landnutzungsänderung und Forstwirtschaft“). Hauptquellen sind die ackerbaulich genutzten organische Böden (74,1 %) und die Mineralböden (21,2 %), letztere hauptsächlich infolge des Grünlandumbruchs. Die anthropogen bedingte Netto-Freisetzung von CO 2 aus der Biomasse (4,7 %) ist im Ackerlandsektor gering. Dominierendes Treibhausgas in der Kategorie Ackerland ist CO 2 (2022: 14,7 Mio. t CO 2 Äquivalente, rund 97 %). Die Landnutzungskategorie Grünland wird in Grünland im engeren Sinne, in Gehölze und weiter in Hecken unterteilt. Die Unterkategorien unterscheiden sich bezüglich ihrer Emissionen sowohl qualitativ als auch quantitativ deutlich voneinander. Die Unterkategorie Grünland im engeren Sinne (dazu gehören z.B. Wiesen, Weiden, Mähweiden etc.) ist eine CO 2 -Quelle, welche durch die Emissionen aus organischen Böden dominiert wird. Für die Landnutzungskategorie Grünland wurden Netto-THG-Emissionen insgesamt in Höhe von 22,1 Mio. t CO 2 Äquivalenten errechnet. Diese fallen um rund 6,7 Mio. t CO 2 Äquivalente ≙ 23 % niedriger als im Basisjahr 1990 aus. Dieser abnehmende Trend wird durch die Pools Biomasse und Mineralböden beeinflusst. Mineralböden stellen eine anhaltende Kohlenstoffsenke dar. Die zunehmende Senkenleistung der Mineralböden der Unterkategorie Grünland im engeren Sinne beträgt in 2022 -5,1 Mio. t CO 2 . Moore (organische Böden) Drainierte Moorböden (d.h. entwässerte organische Böden) gehören zu den Hotspots für Treibhausgase und kommen in den meisten Landnutzungskategorien vor. Im Torf von Moorböden ist besonders viel Kohlenstoff gespeichert, welches als Kohlenstoffdioxid freigesetzt wird, wenn diese Torfschichten austrocken. Bei höheren Wasserständen werden mehr Methan-Emissionen freigesetzt. Zusätzlich entstehen Lachgas-Emissionen. Im Jahr 2022 wurden aus Moorböden um die 53,4 Mio. t CO 2 Äquivalente an THG-Emissionen (CO 2 -Emissionen: 47,9 Mio. t CO 2 Äquivalente, Methan-Emissionen: 1,7 Mio. t CO 2 Äquivalente, Lachgas-Emissionen: 0,4 Mio. t CO 2 Äquivalente) freigesetzt. Das entspricht etwas mehr als 7 % der gesamten Treibhausgasemissionen in Deutschland im Jahr 2022. (siehe Abb. " Treibhausgas -Emissionen aus Mooren"). Die Menge an freigesetzten CO 2 -Emissionen aus Mooren ist somit höher als die gesamten CO 2 -Emissionen des Industriesektors (41,0 Mio. t CO 2 ). Landwirtschaftlich genutzte Moorböden Drainierte Moorböden werden überwiegend landwirtschaftlich genutzt. Die dabei entstehenden Emissionen aus organischen Böden werden deshalb in den Landnutzungskategorien Ackerland und Grünland im engeren Sinne (d.h. Wiesen, Weiden, Mähweiden) erfasst. Hinzu kommen die Lachgasemissionen aus den organischen Böden (Histosole) des Sektors Landwirtschaft. Insgesamt wurde für diese Bereiche eine Emissionsmenge von rund 43,0 Mio. t CO 2 -Äquivalente in 2022 (folgende Angaben in Mio. t CO 2 -Äquivalente: CO 2 : 38,6, Methan: 1,0 und Lachgas: 3,2) freigesetzt, was insgesamt einem Anteil von 80,5 % an den THG-Emissionen aus Mooren entspricht. Feuchtgebiete Unter der Landnutzungskategorie „Feuchtgebiete“ werden in Deutschland verschiedene Flächen zusammengefasst: Zum einen werden Moorgebiete erfasst, die vom Menschen kaum genutzt werden. Dazu gehören die wenigen, naturnahen Moorstandorte in Deutschland, aber auch mehr oder weniger stark entwässerte Moorböden (sogenannte terrestrische Feuchtgebiete). Zum anderen werden unter Feuchtgebiete auch Emissionen aus Torfabbau (on-site: Emission aus Torfabbauflächen; off-site: Emissionen aus produziertem und zu Gartenbauzwecken ausgebrachtem Torf) erfasst. Allein die daraus entstehenden CO 2 -Emissionen liegen bei rund 2,0 Mio. t CO 2 -Äquivalente. Im Inventar neu aufgenommen sind die Emissionen aus natürlichen und künstlichen Gewässern. Zu letzteren gehören Fischzuchtteiche und Stauseen ebenso wie Kanäle der Wasserwirtschaft. Durch diese Neuerung fließen nun Methanemissionen in das Treibhausgasinventar ein, die bislang nicht berücksichtigt wurden. Dadurch liegen nun die Netto-Gesamtemissionen der Feuchtgebiete bei 9,7 Mio. t CO 2 -Äquivalenten im Jahr 2022 und haben im Trend gegenüber dem Basisjahr 1990 um 10 % zugenommen. Diese Zunahme im Trend lässt sich auf eine zwischenzeitlich verstärkte Umwidmung von Grünland-, Wald- und Siedlungsflächen zurückführen. Nachhaltige Landnutzung und Forstwirtschaft sowie weitere Maßnahmen Im novellierten Bundes-Klimaschutzgesetz sind in § 3a Klimaziele für den LULUCF -Sektor 2021 festgeschrieben worden. Im Jahr 2030 soll der Sektor eine Emissionsbilanz von minus 25 Mio. t CO2 -Äquivalenten erreichen. Dieses Ziel könnte unter Berücksichtigung der aktuellen Zahlen deutlich verfehlt werden. Um dieses Ziel zu erreichen, sind ambitionierte Maßnahmen zur Emissionsminderung, dem Erhalt bestehender Kohlenstoffpools und der Ausbau von Kohlenstoffsenken notwendig. Im Koalitionsvertrag adressieren die Regierungsparteien diese Herausforderungen. Das BMUV hat bereits den Entwurf eines „Aktionsprogramm natürlicher Klimaschutz“ vorgelegt, das nach einer Öffentlichkeitsbeteiligung im letzten Jahr innerhalb der Regierung abgestimmt wird. Auf die Notwendigkeit für ambitionierte Klimaschutzmaßnahmen und die Bedeutung von naturbasierten Lösungen für den Klimaschutz hat das Umweltbundesamt in verschiedenen Studien (siehe hierzu Treibhausgasminderung um 70 Prozent bis 2030: So kann es gehen! ) hingewiesen Seit dem Jahr 2015 wird die Grünlanderhaltung im Rahmen der EU-Agrarpolitik über das sogenannte Greening geregelt (Verordnung 1307/2013/EU) . Das bedeutet, dass zum ein über Pflug- und Umwandlungsverbot Grünland erhalten und zum anderen aber auch durch staatliche Förderung die Grünlandextensivierung vorangetrieben werden soll. Die Förderung findet auf Bundesländerebene statt. In der Forstwirtschaft sollen Waldflächen erhalten oder sogar mit Pflanzungen heimischer Baumarten ausgeweitet und die verstärkte Holznutzung aus nachhaltiger Holzwirtschaft (siehe Charta für Holz 2.0 ) gefördert werden. Weitere Erstaufforstungen sind bereits bewährte Maßnahmen, um die Senkenwirkung des Waldes zu erhöhen. Des Weiteren werden durch das Bundesministerium für Ernährung und Landwirtschaft ( BMEL ) internationale Projekte zur nachhaltigen Waldwirtschaft, die auch dem deutschen Wald zu Gute kommen, zunehmend gefördert. Eine detailliertere Betrachtung dazu findet sich unter Klimaschutz in der Landwirtschaft . Die Treibhausgas -Emissionen aus drainierten Moorflächen lassen sich verringern, indem man den Wasserstand gezielt geregelt erhöht, was zu geringeren CO 2 -Emissionen führt. Weitere Möglichkeiten liegen vor allem bei Grünland und Ackerland in der landwirtschaftlichen Nutzung nasser Moorböden, der sogenannten Paludikultur (Landwirtschaft auf nassen Böden, die den Torfkörper erhält oder zu dessen Aufbau beiträgt). Eine weitere Klimagasrelevante Maßnahme ist die Reduzierung des Torfabbaus und der Torfanwendung (siehe Moorklimaschutz ).
Das Projekt "Methodische Entwicklung einer satellitendatengestützten bundesweiten Erfassung von Drainageflächen und Gewässerrandstreifen zur Weiterentwicklung der Modellierung von Stoffeinträgen in Gewässer (Bereich Digitalisierung)" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie, Institut für Wasser und Gewässerentwicklung, Bereich Siedlungswasserwirtschaft und Wassergütewirtschaft (IWG-SWW).Ein Ziel dieses Vorhabens ist die Entwicklung methodischer Ansätze zur deutschlandweiten Ausweisung von Drainageflächen auf Basis von Satellitendaten. Diese Information ist die Basis (Eingangsdatum) für die Bilanzierung von Stoffeinträgen über den Eintragspfad Drainagen in Oberflächengewässer. Ein weiteres Ziel ist die deutschlandweite Kartierung von Landschaftselementen, die bezogen auf den Sedimenteintrag in Gewässer als Barrieren fungieren, insbesondere auch Gewässerrandstreifen. Diese Datenbasis ermöglicht die Neuanalyse des erosiven Stoffeintrags in Oberflächengewässer. Die Methodenentwicklung soll in repräsentativen Testgebieten mit ground truthing Möglichkeiten erfolgen und anschließend auf Gesamtdeutschland übertragen werden.
Das Projekt "Bodenverbesserungsmassnahmen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Gießen, Institut für Bodenkunde und Bodenerhaltung.Tiefenbearbeitung (Tiefpfluegen bzw. Tieflockern) von Parabraunerden, Pseudogleyen, Pararendzinen sowie Buntsandstein- und Schieferboeden; Primaerloessmelioration und Meliorationskalkung von Parabraunerden; Draenung von durch Hangwasser vernaessten Boeden mit Hilfe von Fangdruens; Einfluss der genannten Massnahmen auf die chemischen und physikalischen Bodeneigenschaften, auf die Naehrstoffdynamik und auf die Ertragsfaehigkeit der Boeden.
Das Projekt "Entwicklung Terrestrischer Modellökosysteme: Neue Möglichkeiten zum Einsatz als Standardtestverfahren in der Abschätzung des Risikos von Pflanzenschutzmitteln auf Bodenorganismen" wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Umweltforschung, Lehr- und Forschungsgebiet Ökosystemanalyse (ESA).Die gegenwärtigen europäischen Vorschriften zur Zulassung von Pflanzenschutzmitteln sehen auf der ersten Stufe Einzelartentests unter Laborbedingungen vor. Sie sollen worst-case Szenarien der Exposition abbilden und können keinen Aufschluß über die vielfältigen Wechselbeziehungen sowie über Änderungen im strukturellen Gefüge der Bodenorganismen verschiedener trophischer Ebenen geben. Höherstufige Testverfahren sind mit Ausnahme des funktionellen Streubeuteltests nicht standardisiert. Nur großangelegte und damit kostenintensive Feldstudien liefern strukturelle Endpunkte und können zur adäquaten Beschreibung der komplexen Wirkzusammenhänge in der heterogenen Bodenmatrix beitragen. In der aktuellen Diskussion um die Revision der bestehenden EU-Richtlinien zeichnet sich ab, daß künftig zunehmend strukturelle Endpunkte, auch auf dem Niveau des Halbfreilandes, einbezogen werden sollen, um eine realitätsnahe Bewertungsgrundlage zu bilden. Im Kontext der bestehenden internationalen Leitlinien ist am Institut für Umweltforschung ein TME-System entwickelt worden, das unter natürlichen Witterungsbedingungen und über einen Zeitraum von bis zu einem Jahr artenreiche Gemeinschaften von Bodenorganismen weitgehend in ihrer ursprünglichen Zusammensetzung beherbergen kann. Im Mittelpunkt stehen dabei vier der abundantesten Gruppen der Meso- und Mikrofauna: Collembolen, Oribatiden, Enchytraeen und Nematoden. Diese Systeme sollen ausreichend empfindlich reagieren, um Effekte auf der Ebene von Organismengemeinschaften oder Populationen statistisch nachzuweisen. Umfangreiche Vorstudien befassen sich mit der Variabilität im Boden und der Stabilität der Biozönosen in TMEs, um das Design von Effektstudien den speziellen Gegebenheiten von Wiesenökosystemen anzupassen. Die TMEs bestehen aus großen, intakten und ungestörten Bodenkernen mit einer Höhe von 40 Zentimetern und einem Durchmesser von bis zu 47 Zentimetern. Sie werden unter natürlichen Witterungsbedingungen betrieben, bieten aber die Möglichkeit bei langandauernden Extremverhältnissen (vor allem Dürre) steuernd einzugreifen. Um möglichst empfindliche und diverse Lebensgemeinschaften vorzufinden, wurden die Bodenkerne nicht einem Agrarökosystem entnommen, sondern einer regelmäßig gemähten Wiese, die über Jahrzehnte nicht mit Pflanzenschutzmitteln behandelt worden sind. In Vorstudien im Freiland konnte gezeigt werden, daß die geklumpte Verteilung der Organismen über die Entnahmefläche Anpassungen bei der Gewinnung der Bodenkerne erfordert, welche die Variabilität in nachfolgenden Versuchen senken können. Nach dem Stechen der Bodenkerne werden die TMEs in die Versuchsanlage der RWTH Aachen transportiert, welche eine ausreichende Drainage in Verbindung mit einer intakten Wasserspannung gewährleisten soll, um sowohl Staunässe als auch ein Austrocknen der Kerne zu verhindern. U.s.w.
Das Projekt "Meliorations- und Draenversuche" wird/wurde ausgeführt durch: Bayerische Landesanstalt für Bodenkultur und Pflanzenbau.Bodenwasserhaushalt landwirtschaftlich genutzter Boeden: 1. Optimale Wasserregulierung auf staunassen Boeden durch Rohrdraenung, Unterbodenmelioration und kombinierte Draenung mit ganzjaehrigen Draenabfluss- und Niederschlagsmessungen und Ertragsfeststellungen. 2. Pruefung von Sickerstoffen - Kies, Styromull, Mutterboden, Grabenaushub - mit ganzjaehrigen Draenabfluss- und Niederschlagsmessungen und Ertragsfeststellungen. 3. Pruefung von Unterbodenmeliorationsgeraeten in Verbindung mit NPK-Krumen- und Unterbodenduengung und ganzjaehrigen Draenabfluss- und Niederschlagsmessungen und Ertragsfeststellungen.
Das Projekt "Pertes en elements fertilisants (FRA)" wird/wurde ausgeführt durch: Station Federale de Recherches Agronomiques de Changins.Ces travaux sont une contribution a l'etablissement du bilan global des elements fertilisants au niveau d'une parcelle, d'un domaine ou d'un bassin versant. Les mesures portent essentiellement sur les bilans de N, P, K, Ca et Mg, dans differents types de sols. Les eaux du drainage de terres legeres, moyennes, lourdes et humiferes sont recoltees dans nos lysimetres sous 1 metre de terre, pour des surfaces de 1 et 4 m2. Dans les serres des Rives de Prangins nous recoltons les eaux de drainages pour des surfaces de 150 m2, recevant respectivement des doses simples et doubles d'engrais sur lesquelles se succedent des cultures maraicheres. (FRA)
Der Freistaat Bayern, vertreten durch das Wasserwirtschaftsamt Landshut, beantragte beim Landratsamt Landshut die Erteilung einer Planfeststellung nach § 67 und § 68 Wasserhaushaltsgesetz (WHG) für die Errichtung des Hochwasserschutzes Altdorf, Bauabschnitt 3: Altdorf Nord samt Umweltverträglichkeitsprüfung. Folgende Maßnahmen sind geplant: - Errichtung von Hochwasserschutzbauwerken Die Schutzbauwerke werden entlang der Pfettrach bzw. entlang der bebauten Flächen mit dem Ziel errichtet, den Hochwasserschutz der Bebauung bei bestmöglichem Erhalt der Retentionsflächen im Außenbereich zu ermöglichen. Dabei soll die Zugänglichkeit zum Gewässer sowie zu bewirtschafteten Agrarflächen wasserseitig der Schutzbauwerke aufrechterhalten werden. Mit Ausnahme von mobil verschließbaren Öffnungen an Verkehrswegen werden ortsfeste Schutzwände vorgesehen. - Sickerwasserdränagen entlang der Hochwasserschutzwände Zur Gewährleistung der Standsicherheit der Bauwerke und um zu verhindern, dass Sickerwasser in derartigen Fällen landseitig der Wände bis über die Geländeoberkante ansteigt und dadurch Überflutungen bewirkt, werden Dränagen angeordnet. Das dort gefasste Sickerwasser wird über Schachtpumpwerke in die Pfettrach gefördert. - Gewässerausbau der Pfettrach Im Bereich der Engstellen innerhalb des bebauten Gebiets soll die Pfettrach ausgebaut werden, um einen möglichst großen Hochwasserabflussquerschnitt zur Verfügung zu stellen. Zu diesem Zweck soll vor allem oberstrom der Bahnhofstraße eine Aufweitung des Gewässerquerschnitts erfolgen, die soweit möglich als bepflanztes Hochwasserabflussbett gestaltet wird. Kleinere Aufweitungen sind auch im Bereich zwischen der Brücke und dem Schlauchwehr vorgesehen. Außerdem soll hier eine Räumung von Schlamm und Sedimenten erfolgen, die sich im Lauf der Zeit abgelagert haben. - Maßnahmen am Mühlbach Am nördlichen Durchlass des Mühlbachs unter der Bahnlinie wird ein Sielbauwerk angeordnet, dass bei Hochwasserführung der Pfettrach verschlossen wird. An der Mündung des Mühlbachs in die Pfettrach wird ein Schöpfwerk mit Siel errichtet.
Das Projekt "Spatial Dynamics of Wetland Plant Populations: Reponses to Habitat Fragmentation and Land-Use Changes" wird/wurde ausgeführt durch: Universität Zürich, Institut für Umweltwissenschaften.Fen meadows belong to the few remaining semi-natural plant communities with high species diversity and a high proportion of rare and endangered species. They are influenced by groundwater or aquifer discharge. Their existence depends on continued but low-intensity agricultural use, i.e. lat-season mowing or extensive grazing. Agricultural practices in the past have led to a demise and fragmentation of fen areas. Even though protected by law the persistence of the remaining fens is still threatened by intensified farming (drainage, fertilization) or abandonment (cessation of mowing). The goal of this project is to investigate patterns of diversity and to develop conservation strategies. The following questions are asked: How do different agricultural practices, habitat fragmentation and altitude of the fens influence the diversity of mosses, higher plants and insects? Do the same factors also affect the morphology and the population structure of a typical fen plant species? How does productivity influence the vegetation composition and plant species richness of montane fen meadows? How does fertilization affect the competitive ability of selected plant species? Which conservation measures can protect the endangered montane fens? For the study we randomly selected 36 montane fens from the wetland inventory of Switzerland. For three altitude classes (800-1000 meters above sea level, 1000-1200 meters a.s.l. and 1200-1400 meters a.s.l.) 12 fens each were selected for our investigation, six of them mown once a year, six grazed by cattle's. Species diversity and -composition, vegetation structure, productivity and the population structure of single species were recorded for each of the 36 fens. The influence of nutrient inputs and habitat quality on the competitive ability of fen-species was assessed in a field-experiment. Previous results: Biodiversity of montane fen meadows is mainly influenced by the agricultural practices. Mown sites exhibit more species of vascular plants and butterflies than cattle-grazed areas, whereas grasshoppers prefer grazed sites with complex Vegetation structure. The species richness of vascular plants is closely related to the aboveground biomass. Highest diversity occurs at intermediate levels of bio-mass. High soil fertility reduces species richness. The diversity of mobile organisms such as butterflies not only depends on the habitat quality of the fen sites but additionally on that of the adjacent areas. Habitat fragmentation clearly reduces the diversity of all investigated organisms. In conclusion, only a diverse land-use can maintain the species diversity of different groups of organisms. Additionally, the remaining fen meadows have to be protected from fragmentation and nutrient influx.
Origin | Count |
---|---|
Bund | 301 |
Land | 271 |
Wissenschaft | 1 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 249 |
Kartendienst | 1 |
Messwerte | 17 |
Taxon | 3 |
Text | 64 |
Umweltprüfung | 27 |
unbekannt | 206 |
License | Count |
---|---|
geschlossen | 100 |
offen | 449 |
unbekannt | 19 |
Language | Count |
---|---|
Deutsch | 524 |
Englisch | 75 |
Resource type | Count |
---|---|
Archiv | 26 |
Bild | 5 |
Datei | 7 |
Dokument | 50 |
Keine | 268 |
Unbekannt | 1 |
Webdienst | 177 |
Webseite | 258 |
Topic | Count |
---|---|
Boden | 568 |
Lebewesen & Lebensräume | 568 |
Luft | 414 |
Mensch & Umwelt | 568 |
Wasser | 568 |
Weitere | 568 |