Die Sickerwasserrate ist ein Kennwert zur Bewertung des Bodens als Bestandteil des Wasserhaushaltes und beschreibt diejenige Wassermenge, die der Boden aufgrund seines beschränkten Wasserhaltevermögens nicht mehr halten kann und welche daher den Wurzelraum verlässt bzw. versickert (Grundwasserneubildung). Laterale Abflüsse (Drainage, Grabenentwässerung) werden an dieser Stelle nicht betrachtet. Sandige Böden können weniger Wasser halten als lehmige oder tonige Böden, so dass (unter sonst gleichen Bedingungen) die Sickerwasserrate unter sandigen Böden größer ist als unter lehmigen/tonigen Böden. In niederschlagsreichen Gebieten versickert mehr Wasser als in niederschlagsärmeren Gebieten. Mit der Sickerwasserrate wird eine natürliche Bodenfunktionen nach § 2 Abs. 2 BBodSchG bewertet und zwar nach Punkt 1.b) als Bestandteil des Naturhaushalts, insbesondere mit seinen Wasser- und Nährstoffkreisläufen. Das hierfür gewählte Kriterium sind die allgemeinen Wasserhaushaltsverhältnisse mit dem Kennwert Sickerwasserrate. Die Karten liegen für die folgenden Maßstabsebenen vor: - 1 : 1.000 - 10.000 für hochaufgelöste oder parzellenscharfe Planung, - 1 : 10.001 - 35.000 für Planungen auf Gemeindeebene, - 1 : 35.001 - 100.000 für Planungen in größeren Regionen, - 1 : 100.001 - 350.000 für landesweit differenzierte Planung, - 1 : 350.001 - 1000.000 für landesweite bis bundesweite Planung. In dieser Darstellung wird die Sickerwasserrate regionalspezifisch klassifiziert. Unter dem Titel "Bodenbewertung - Sickerwasserrate (SWR), landesweit bewertet" gibt es noch eine Klassifikation der Sickerwasserrate, die die Sickerwasserrate über die Naturraumgrenzen hinweg landesweit einheitlich darstellt.
Der deutschlandweite Datensatz enthält Informationen zum mittleren (2016-2018) gelösten Phosphoreintrag über Dränagen in Gewässer (in kg/ha/a). Der Datensatz liegt vor: Auflösung: MoRE-Modellgebiete (Analysegebiete) Eine grundsätzliche Beschreibung des methodischen Vorgehens und der genutzten Modelleingangsdaten findet sich in (Fuchs, S.; Brecht, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. (2022): Phosphoreinträge in die Gewässer bundesweit modellieren – Neue Ansätze und aktualisierte Ergebnisse von MoRE-DE. UBA Texte | 142/2022. Umweltbundesamt. Online verfügbar unter: https://www.umweltbundesamt.de/publikationen/phosphoreintraege-in-die-gewaesser-bundesweit). Die simulierten Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext erforderlicher methodischer Annahmen bei der Erstellung und Verarbeitung. Sie sind u.a. von im angewandten Modell geltenden Annahmen, der Modellstruktur, der Parameterschätzung, der Kalibrierungsstrategie und der Qualität der Antriebsdaten abhängig.
Am Altstandort des Kraftwerkes Borken sind nach Demontagearbeiten 22000 Liter PCB-haltiges Trafooel ausgelaufen, wobei akute Gefahr fuer das nur 40 Meter entfernt liegende Fliessgewaesser Schwalm bestand. Im Verlauf der Sanierungsarbeiten ist eine weitere Altlast durch Trafooel festgestellt worden . Boden und Grundwasser waren hochgradig kontaminiert, bis zu 2000 mg/l Oel in Phase. Durch rastermaessige Sondierungen wurde das Schadensausmass ermittelt. Als aktive hydraulische Sanierungsmassnahme wurden zwei Sanier- und Spuelbrunnen mit Drainagesystem errichtet. Die langfristige Grundwassersanierung erfolgt durch eigene Reinigungsanlage (chemisch/physikalisch). Das ausgehobene Bodenmaterial (ca. 1500 t) wird mikrobiell aufgearbeitet von der Firma Umweltschutz Nord. - Erstellung von Sanierungsplaenen, genehmigungsrechtliche Antraege. - Die Grundwassersanierung wurde durch eigens konstruierte oberflaechenabsaugende Edelstahlbehaelter, in denen sich Tauchpumpen befanden, welche bewirkten, dass in erster Linie das auf der Oberflaeche der Sanierungsbrunnen aufschwimmende Oel entfernt und zur Abscheide- und Sorptionsanlage gefoerdert wurde, durchgefuehrt.
Die gegenwärtigen europäischen Vorschriften zur Zulassung von Pflanzenschutzmitteln sehen auf der ersten Stufe Einzelartentests unter Laborbedingungen vor. Sie sollen worst-case Szenarien der Exposition abbilden und können keinen Aufschluß über die vielfältigen Wechselbeziehungen sowie über Änderungen im strukturellen Gefüge der Bodenorganismen verschiedener trophischer Ebenen geben. Höherstufige Testverfahren sind mit Ausnahme des funktionellen Streubeuteltests nicht standardisiert. Nur großangelegte und damit kostenintensive Feldstudien liefern strukturelle Endpunkte und können zur adäquaten Beschreibung der komplexen Wirkzusammenhänge in der heterogenen Bodenmatrix beitragen. In der aktuellen Diskussion um die Revision der bestehenden EU-Richtlinien zeichnet sich ab, daß künftig zunehmend strukturelle Endpunkte, auch auf dem Niveau des Halbfreilandes, einbezogen werden sollen, um eine realitätsnahe Bewertungsgrundlage zu bilden. Im Kontext der bestehenden internationalen Leitlinien ist am Institut für Umweltforschung ein TME-System entwickelt worden, das unter natürlichen Witterungsbedingungen und über einen Zeitraum von bis zu einem Jahr artenreiche Gemeinschaften von Bodenorganismen weitgehend in ihrer ursprünglichen Zusammensetzung beherbergen kann. Im Mittelpunkt stehen dabei vier der abundantesten Gruppen der Meso- und Mikrofauna: Collembolen, Oribatiden, Enchytraeen und Nematoden. Diese Systeme sollen ausreichend empfindlich reagieren, um Effekte auf der Ebene von Organismengemeinschaften oder Populationen statistisch nachzuweisen. Umfangreiche Vorstudien befassen sich mit der Variabilität im Boden und der Stabilität der Biozönosen in TMEs, um das Design von Effektstudien den speziellen Gegebenheiten von Wiesenökosystemen anzupassen. Die TMEs bestehen aus großen, intakten und ungestörten Bodenkernen mit einer Höhe von 40 Zentimetern und einem Durchmesser von bis zu 47 Zentimetern. Sie werden unter natürlichen Witterungsbedingungen betrieben, bieten aber die Möglichkeit bei langandauernden Extremverhältnissen (vor allem Dürre) steuernd einzugreifen. Um möglichst empfindliche und diverse Lebensgemeinschaften vorzufinden, wurden die Bodenkerne nicht einem Agrarökosystem entnommen, sondern einer regelmäßig gemähten Wiese, die über Jahrzehnte nicht mit Pflanzenschutzmitteln behandelt worden sind. In Vorstudien im Freiland konnte gezeigt werden, daß die geklumpte Verteilung der Organismen über die Entnahmefläche Anpassungen bei der Gewinnung der Bodenkerne erfordert, welche die Variabilität in nachfolgenden Versuchen senken können. Nach dem Stechen der Bodenkerne werden die TMEs in die Versuchsanlage der RWTH Aachen transportiert, welche eine ausreichende Drainage in Verbindung mit einer intakten Wasserspannung gewährleisten soll, um sowohl Staunässe als auch ein Austrocknen der Kerne zu verhindern. U.s.w.
Die Karte zeigt die mittlere monatliche Grundwasserneubildung für den Monat September im 30-jährigen Zeitraum 1991-2020. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (Herrmann et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
Die Karte zeigt die mittlere jährliche Grundwasserneubildung des hydrologischen Winterhalbjahres für den 30-jährigen Zeitraum 1981-2010. Grundwasser ist ein Rohstoff, der sich regenerieren und erneuern kann. Hauptlieferant für den Grundwasservorrat ist in Niedersachsen versickerndes Niederschlagswasser. Es sorgt dafür, dass die Grundwasservorkommen der Speichergesteine im Untergrund aufgefüllt werden. Besonders hoch ist die Grundwasserneubildung im Winter, da zu dieser Zeit ein großer Teil der Niederschläge im Boden versickert. In den wärmeren Jahreszeiten verdunstet dagegen ein großer Teil des Niederschlags bereits an der Oberfläche oder wird von Pflanzen aufgenommen. Die Grundwasserneubildung ist räumlich stark unterschiedlich verteilt. Sie hängt ab von der Niederschlags- und Verdunstungsverteilung, den Eigenschaften des Bodens, der Landnutzung (Bewuchs, Versiegelungsgrad), dem Relief der Landoberfläche, der künstlichen Entwässerung durch Drainage, dem Grundwasserflurabstand sowie den Eigenschaften der oberflächennahen Gesteine. Da sich diese Parameter in Niedersachsen zum Teil auf kleinstem Raum deutlich unterscheiden, unterliegt auch die Grundwasserneubildung großen lateralen Schwankungen. Um die Grundwasserneubildung zu ermitteln, gibt es verschiedene Verfahren. Die vorliegenden Karten zeigen die flächendifferenzierte Ausweisung der mittleren Grundwasserneubildung, die mit dem Verfahren mGROWA (kurz für „monatlicher Großräumiger Wasserhaushalt“) berechnet wurde. Das Model mGROWA wurde für die großräumige Simulation des Wasserhaushalts am Forschungszentrum Jülich in Zusammenarbeit mit dem LBEG entwickelt (HERRMANN et al. 2013) und seit 2016 für Niedersachsen methodisch aktualisiert. Zusätzlich wurde eine Reihe neuer Eingangsdaten verwendet, um ein aktuelle Datengrundlagen für wasserwirtschaftliche Planungsarbeiten und wasserrechtliche Genehmigungsverfahren zu liefern. Als klimatische Inputdaten wurden tägliche und monatliche gemessene und anschließend räumlich interpolierte Klimabeobachtungsdaten des Deutschen Wetterdienstes genutzt. Diese sind die potenzielle Verdunstung, die auf Grundlage der FAO-Grasreferenzverdunstung berechnet wurde (DWD, unveröffentlicht) und der Niederschlag basierend auf dem REGNIE-Produkt (Rauthe et al, 2013), welche nach Richter korrigiert wurden (Richter, 1995). Für eine bessere Regionalisierung wurden die klimatischen Eingangsparameter Niederschlag und potentielle Verdunstung mit bilinearer Interpolation auf ein 100 x 100 m Raster für mGROWA22 herunterskaliert.
Watershed Boundaries of approx. 7500 GRDC Stations generated on the basis of the HydroSHEDS drainage network (Lehner et al., 2008). The "Watershed Boundaries of GRDC Stations" are provided in GeoJSON format.
Der deutschlandweite Datensatz enthält Informationen zum mittleren (2016-2018) Phosphoreintrag insgesamt über die diffusen Eintragspfade in Gewässer (in kg/a). Die Berücksichtigten Eintragspfade sind Grundwasser, Oberflächenabfluss, Dränagen, Erosion und Deposition auf Gewässerflächen. Der Datensatz liegt vor: Auflösung: MoRE-Modellgebiete (Analysegebiete) Eine grundsätzliche Beschreibung des methodischen Vorgehens und der genutzten Modelleingangsdaten findet sich in (Fuchs, S.; Brecht, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. (2022): Phosphoreinträge in die Gewässer bundesweit modellieren – Neue Ansätze und aktualisierte Ergebnis-se von MoRE-DE. UBA Texte | 142/2022. Umweltbundesamt. Online verfügbar unter: https://www.umweltbundesamt.de/publikationen/phosphoreintraege-in-die-gewaesser-bundesweit). Die simulierten Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext erforderlicher methodischer Annahmen bei der Erstellung und Verarbeitung. Sie sind u.a. von im angewandten Modell geltenden Annahmen, der Modellstruktur, der Parameterschätzung, der Kalibrierungsstrategie und der Qualität der Antriebsdaten abhängig.
Der deutschlandweite Datensatz enthält Informationen zum mittleren (2016-2018) Phosphoreintrag insgesamt über punktuellen und diffusen Eintragspfade in Gewässer (in kg/a). Die Berücksichtigten Eintragspfade sind Kleinkläranlagen, kommunale Kläranlagen ab > 50 Einwohnerwerten (EW), Regenwassereinleitungen (Trennsystem), Mischwasserentlastungen (Mischsystem), industrielle Direkteinleiter, erosiver Sedimenteintrag (Erosion), Deposition auf Gewässerflächen, Grundwasser, Oberflächenabfluss und Dränagen. Der Datensatz liegt vor: Auflösung: MoRE-Modellgebiete (Analysegebiete) Eine grundsätzliche Beschreibung des methodischen Vorgehens und der genutzten Modelleingangsdaten findet sich in (Fuchs, S.; Brecht, K.; Gebel, M.; Bürger, S.; Uhlig, M.; Halbfaß, S. (2022): Phosphoreinträge in die Gewässer bundesweit modellieren – Neue Ansätze und aktualisierte Ergebnisse von MoRE-DE. UBA Texte | 142/2022. Umweltbundesamt. Online verfügbar unter: https://www.umweltbundesamt.de/publikationen/phosphoreintraege-in-die-gewaesser-bundesweit). Die simulierten Daten sind keine absolut gültigen Ergebnisse, sondern stehen im Kontext erforderlicher methodischer Annahmen bei der Erstellung und Verarbeitung. Sie sind u.a. von im angewandten Modell geltenden Annahmen, der Modellstruktur, der Parameterschätzung, der Kalibrierungsstrategie und der Qualität der Antriebsdaten abhängig.
Der vorliegende Datenbestand (ezg25.shp,Version 4.4) beinhaltet die Geometrien der Einzugsgebiete Version 4.4. Als Grundlage für die Konstruktion der Einzugsgebietsgrenzen dienten die Höheninformationen der topografischen Karten im Maßstab 1:10.000 und die digitalen Geländemodelle mit Rasterweiten von 2m, 5m und 25m. Zusätzlich wurden für die Konstruktion der Wasserscheiden die Informationen zu Fließgewässern, Entwässerungsgräben und Drainagen aus dem digitalen Gewässernetz gewnet25 sowie den Katastern der Wasser- und Bodenverbände verwendet. Zur Herstellung eines hydrologisch und wasserwirtschaftlich vollständigen Datenbestandes reichen die Einzugsgebiete teilweise über die Landesgrenze hinaus. Der Datenbestand enthält zumindest die Einzugsgebiete aller Fließgewässer, die gemäß Wasserrahmenrichtlinie berichtsrelevant sind (Einzugsgebiet > 10 km²). Die Dokumentation beinhaltet eine detailierte Änderungsliste in Bezug auf die Vorgängerversion ezg Version V 4.3 Der vorliegende Datenbestand (ezg25.shp,Version 4.4) beinhaltet die Geometrien der Einzugsgebiete Version 4.4. Als Grundlage für die Konstruktion der Einzugsgebietsgrenzen dienten die Höheninformationen der topografischen Karten im Maßstab 1:10.000 und die digitalen Geländemodelle mit Rasterweiten von 2m, 5m und 25m. Zusätzlich wurden für die Konstruktion der Wasserscheiden die Informationen zu Fließgewässern, Entwässerungsgräben und Drainagen aus dem digitalen Gewässernetz gewnet25 sowie den Katastern der Wasser- und Bodenverbände verwendet. Zur Herstellung eines hydrologisch und wasserwirtschaftlich vollständigen Datenbestandes reichen die Einzugsgebiete teilweise über die Landesgrenze hinaus. Der Datenbestand enthält zumindest die Einzugsgebiete aller Fließgewässer, die gemäß Wasserrahmenrichtlinie berichtsrelevant sind (Einzugsgebiet > 10 km²). Die Dokumentation beinhaltet eine detailierte Änderungsliste in Bezug auf die Vorgängerversion ezg Version V 4.3 Der vorliegende Datenbestand (ezg25.shp,Version 4.4) beinhaltet die Geometrien der Einzugsgebiete Version 4.4. Als Grundlage für die Konstruktion der Einzugsgebietsgrenzen dienten die Höheninformationen der topografischen Karten im Maßstab 1:10.000 und die digitalen Geländemodelle mit Rasterweiten von 2m, 5m und 25m. Zusätzlich wurden für die Konstruktion der Wasserscheiden die Informationen zu Fließgewässern, Entwässerungsgräben und Drainagen aus dem digitalen Gewässernetz gewnet25 sowie den Katastern der Wasser- und Bodenverbände verwendet. Zur Herstellung eines hydrologisch und wasserwirtschaftlich vollständigen Datenbestandes reichen die Einzugsgebiete teilweise über die Landesgrenze hinaus. Der Datenbestand enthält zumindest die Einzugsgebiete aller Fließgewässer, die gemäß Wasserrahmenrichtlinie berichtsrelevant sind (Einzugsgebiet > 10 km²). Die Dokumentation beinhaltet eine detailierte Änderungsliste in Bezug auf die Vorgängerversion ezg Version V 4.3
Origin | Count |
---|---|
Bund | 322 |
Land | 1441 |
Wissenschaft | 2 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Ereignis | 1 |
Förderprogramm | 259 |
Kartendienst | 1 |
Lehrmaterial | 1 |
Messwerte | 17 |
Taxon | 3 |
Text | 67 |
Umweltprüfung | 33 |
WRRL-Maßnahme | 1155 |
unbekannt | 211 |
License | Count |
---|---|
geschlossen | 111 |
offen | 1618 |
unbekannt | 19 |
Language | Count |
---|---|
Deutsch | 1704 |
Englisch | 1235 |
Resource type | Count |
---|---|
Archiv | 30 |
Bild | 4 |
Datei | 7 |
Dokument | 56 |
Keine | 278 |
Unbekannt | 2 |
Webdienst | 177 |
Webseite | 1421 |
Topic | Count |
---|---|
Boden | 1748 |
Lebewesen & Lebensräume | 1748 |
Luft | 422 |
Mensch & Umwelt | 1748 |
Wasser | 1748 |
Weitere | 1748 |