Das Projekt "Dezentrale Wasserstoffaufbereitung von Biogas durch Dampfreformierung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Industrieofenbau und Wärmetechnik.
Das Projekt "Dezentrale Wasserstoffaufbereitung von Biogas durch Dampfreformierung, Teilvorhaben: Aufstellung und Versuchsbetrieb einer Pilotanlage" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: BtX energy GmbH.
Das Projekt "Dezentrale Wasserstoffaufbereitung von Biogas durch Dampfreformierung, Teilvorhaben: Bereitstellung von Biogas und Überwachung des Versuchsbetriebes der Pilotanlage" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Werner Schleupen Stromerzeugung.
Das Projekt "Dezentrale Wasserstoffaufbereitung von Biogas durch Dampfreformierung, Teilvorhaben: Prozessanalyse und Treibhausgas- /Ökobilanzierung der Wasserstoffaufbereitung" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Industrieofenbau und Wärmetechnik.
Das Projekt "Carbon2Chem-2: Synthesegas - Gasreinigung von Koksofen-, Hochofen- und Konvertergasen, Teilprojekt: Einsatz von nicht-thermischen Plasma zur Gasreinigung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Universität Bochum, Fakultät für Elektrotechnik und Informationstechnik (EI), Lehrstuhl Allgemeine Elektrotechnik und Plasmatechnik (AEPT).
Das Projekt "Carbon2Chem-L3, Gasreinigung von Koksofen-, Hochofen- und Konvertergasen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Linde GmbH.
Das Projekt "SichElAn - Erhöhung der funktionalen Sicherheit sowie der Fehlertoleranz des elektrischen Antriebssystems, Teilvorhaben: Modellgestützte Fehlerdiagnose und fehlertolerante Regelungsverfahren (MFFR)" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Paderborn, Fakultät für Elektrotechnik, Informatik und Mathematik, Fachgebiet Leistungselektronik und Elektrische Antriebstechnik (LEA).Im Gesamtverbundvorhaben 'Erhöhung der funktionalen Sicherheit sowie der Fehlertoleranz des elektrischen Antriebssystems (SichElAn)' werden Ziele zur Erhöhung der funktionalen Sicherheit und der Verfügbarkeit durch Steigerung der Fehlertoleranz (gegenüber beherrschbaren Arten von Fehlern) des elektrischen Antriebssystems thematisiert. Dazu werden Möglichkeiten und Potentiale modellgestützter Verfahren zur Realisierung eines 'Fail-Safe-Betriebs' sowie eines 'Fault-Operational-Betriebs' (als Rückfallebene) bei Auftritt eines Fehlers im System betrachtet. Als Verbundpartner arbeiten die Universität Paderborn und die ZF Friedrichshafen AG an spezifischen Teilvorhaben. Das Teilvorhaben der Universität Paderborn: 'Modellgestützte Fehlerdiagnose und fehlertolerante Regelungsverfahren (MFFR)' zielt auf die Untersuchung vorhabenspezifischer Fragestellungen zu modellgestützten Überwachungs- und Fehlerdiagnoseverfahren sowie fehlertoleranten Regelungsverfahren ab. Im Wesentlichen sind die Ziele: 1. Gewinn eines möglichst umfassenden Kenntnisstands aller möglichen Fehlerfälle und Auswirkungen innerhalb des Gesamtsystems, 2. Gewinn detaillierter bzw. fundierter Kenntnisse über Methoden und Modellbeschreibungen zur echtzeitfähigen, robusten Überwachung und Fehlerdiagnose (Fehlererkennung, -detektion und -isolation) elektrischer Traktionsantriebe, 3. Bereitstellung weiterentwickelter Methoden und Verfahren zur Steigerung der wissenschaftlichen Kompetenz auf diesem Themengebiet. Das Teilvorhaben der ZF Friedrichshafen AG 'Spezifikation und Validierung' umfasst die Beschreibung der Anforderungen, Zusammenstellung von marktgerechten und gesetzlichen Zielen für elektrische Antriebssysteme, die Mitarbeit bei Konzept-Erstellung und -Bewertung sowie die Validierung am Prüfstand des erstellten Funktionsdemonstrators. Dazu soll ein bei ZF vorhandener Prüfstand und Antrieb verwendet werden. Die Ziele des Teilvorhabens sind: 1. Erkenntnisse, wie Normen und Standards zur funktionalen Sicherheit zu erfüllen sind 2. Kenntnisse über die Eignung von Methoden zur Fehlerdetektion und -beherrschung für elektrische Antriebssysteme 3. Bewertung dieser Methoden 4. Schaffung einer Entscheidungsgrundlage für zukünftige Produktentwicklungen Zum strukturierten Vorgehen bei der Umsetzung orientieren sich die einzelnen Projektschritte der beiden Projektpartner am weit verbreiteten V-Modell. Die Universität Paderborn übernimmt während der jeweiligen Projektphasen schwerpunktmäßig die Teilaufgaben: Systemanalyse mit Methoden und Verfahren der Probabilistischen Sicherheitsanalyse (PSA), Entwurf des Gesamtsystemkonzepts, Entwicklung der Softwaremodule und Verifikation der entwickelten Methoden. Die ZF Friedrichshafen AG bearbeitet schwerpunktmäßig die Teilaufgaben: Gesamtsystemanalyse, Spezifikation, Hardwareentwicklung und Konzept zur Fehlersignalstimulation, Implementierung am Prüfstand sowie die Validierung des Gesamtkonzeptes und kritische Bewertung der erzielten Ergebnisse.
Gewinnung von flüssigem Stickstoff durch Lutzerlegung nach dem Lindeverfahren. In dieser Prozeßeinheit wird die Stickstoffherstellung durch Luftzerlegung nach dem Niederdruckverfahren (Lindeverfahren) bilanziert. Bei diesem Verfahren werden aus der atmosphärischen Luft gleichzeitig deren drei wesentlichen Komponenten gewonnen: Stickstoff (N2, 75,5 Massen-%), Sauerstoff (O2, 23,1 Massen-%) und Argon (1,3 Massen-%). Nach der Abtrennung von Staubpartikeln wird die Luft auf ungefähr 6 bis 7 bar verdichtet und gleichzeitig abgekühlt. Dadurch werden Wasser, Kohlendioxid und hochsiedende Kohlenwasserstoffe abgetrennt. Danach wird die abgekühlte Luft in eine Doppelrektifikationssäule geführt, wo eine Zerlegung in Stickstoff und mittelreinen Sauerstoff erfolgt. In der zweiten Säule geschieht dann die Feintrennung in Stickstoff und Sauerstoff. Die Flüchtigkeit des Argons liegt etwa zwischen derjenigen von Stickstoff und Sauerstoff. Es reichert sich deshalb in der Zwischenzone an, wo es entnommen und in einer speziellen Rektifikationskolonne gereinigt wird. Der Trennung der Komponenten schließen sich Verflüssigungs- und Verdichtungsschritte an. Derzeit werden ungefähr 90 % der gesamten Produktion über das hier bilanzierte Niederdruckverfahren hergestellt (Sauerstoff 1996). Andere Verfahren wie PSA (pressure swing adsorption) oder das Membranverfahren werden hier nicht betrachtet. Die Jahresproduktion an Stickstoff (alle Verfahren) betrug 1989 in den USA ca. 27 Mio. t, in der BRD ca. 2,5 Mio. t und in Japan ca. 6,9 Mio. t. Im Durchschnitt werden 1,5 % des Stickstoffs in Stahlflaschen, 50,5 % in flüssiger Form und 48 % über Gasleitungen bereitgestellt (siehe #2). Nach den Angaben in (Produktion 1992) wurden in Deutschland 1991 3,9 Mio. t und 1992 3,2 Mio. t Stickstoff hergestellt. Die Kennziffern in GEMIS stehen für die Produktion in Westeuropa in den 90er Jahren. Allokation: Bei dem Prozeß der Luftzerlegung fallen Stickstoff und Sauerstoff als Produkte an. Für die Herstellung von einer Tonne an Produkten (765 kg Stickstoff und 235 kg Sauerstoff) wird ein Input von 1014 kg atmosphärischer Luft benötigt. Der Prozeß liefert außerdem 13 kg Argon (dieses wird wegen seines geringen Massenanteils bei GEMIS nicht als Produkt gewertet) und ungefähr 0,5 kg CO2. Die den Prozeß der Luftzerlegung beschreibenden Gesamtdaten werden entsprechend dem Massenanteil der beiden Produkte N2 und O2 zu 3,264:1 aufgeteilt. Genese der Kennziffern Massenbilanz: Die Massenbilanz bei der Stickstoffherstellung wurde unter der Annahme eines Wirkungsgrades von 100 % bei der Luftzerlegung berechnet. Entsprechend der Zusammensetzung der Luft (in Massenanteilen) wird für die Herstellung von 1 t N2 eine Menge von 1324 kg Luft benötigt. Dabei fällt als weiteres Produkt 306 kg Sauerstoff (außerdem 17 kg Argon) an (siehe #1). Als nicht verwerteter Bestandteil der atmosphärischen Luft verbleiben 0,61 kg Kohlendioxid. Für GEMIS ergibt sich nach der Allokationsregel ein Wirkungsgrad von 98,66 % (Bedarf an Luft: 1014kg/t N2). Argon und Kohlendioxid werden nicht bilanziert. Energiebedarf: Nach #2 wird für die Luftzerlegung (Anlagenkapazität 10000 m3/h) eine Energiemenge von 0,15 kWh/m3 gasförmigen N2 benötigt. Bei einer kleineren Anlagenkapazität (1500 m3/h) ergibt sich ein Wert von 0,30 kWh/m3. Für die Verflüssigung des gewonnenen Stickstoffs wird zusätzliche Energie benötigt. Es wird ein Wert von 0,5 bis 0,6 kWh/m3 N2 angegeben. Rechnet man diese Werte über die Molmasse von N2 (28,014 g/mol) und das Molvolumen (22,4 l/mol) um, ergeben sich Werte von 0,4 GJ/t (Luftzerlegung, Anlagenkapazität 10000 m3/h) und 1,6 GJ/t N2 (Verflüssigung, Mittelwert aus den beiden Werten: 0,55 kWh/m3 N2). Diese Werte zeigen eine gute Übereinstimmung mit den Daten aus #3, 2 MJ/kg N2, und #1, 1,75 MJ/kg N2 (Werte für Luftzerlegung und Verflüssigung). Bei (DOE 1985) wird nur die Luftzerlegung ohne Verflüssigung bilanziert. Es ergibt sich ein Bedarf an 687,2 btu elektrischer Energie für die Zerlegung von 4,322 lb atmosphärischer Luft. Umgerechnet auf die Herstellung von einer Tonne Stickstoff ergibt sich nach der Allokation (siehe oben) ein Wert von 0,37 GJ/t N2. Die Quellen #1 und #2 geben keine Energiegesamtwerte für die Zerlegung des gesamten Luftinputs, sondern bereits anteilige auf Stickstoff [bzw. #1 bilanziert für 1 kg O2] bezogene Werte an. Da die Angaben aus #2 am besten nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen bei der Luftzerlegung sind nicht bekannt. Da das beim Prozeß anfallende CO2 aus der eingesetzten Luft stammt, wird es nicht als Emission gewertet. Wasser: Der Wasserbedarf bei der Sauerstoffherstellung beschränkt sich auf die Verwendung von Kühlwasser. Quantitative Angaben hierüber liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1000000t/h Nutzungsgrad: 98,7% Produkt: Grundstoffe-Chemie
Gewinnung von flüssigem Sauerstoff durch Luftzerlegung nach dem Lindeverfahren und anschließender Verflüssigung. In dieser Prozeßeinheit wird die Sauerstoffherstellung durch Luftzerlegung nach dem Niederdruckverfahren (Lindeverfahren) bilanziert. Bei diesem Verfahren werden aus der atmosphärischen Luft gleichzeitig deren drei wesentlichen Komponenten gewonnen: Stickstoff (75,5 Massen-%), Sauerstoff (23,1 Massen-%) und Argon (1,3 Massen-%). Nach der Abtrennung von Staubpartikeln wird die Luft auf ungefähr 6 bis 7 bar verdichtet und gleichzeitig abgekühlt. Dadurch werden Wasser, Kohlendioxid und hochsiedende Kohlenwasserstoffe abgetrennt. Danach wird die abgekühlte Luft in eine Doppelrektifikationssäule geführt, wo eine Zerlegung in Stickstoff und mittelreinen Sauerstoff erfolgt. In der zweiten Säule geschieht dann die Feintrennung in Stickstoff und Sauerstoff. Die Flüchtigkeit des Argons liegt etwa zwischen derjenigen von Stickstoff und Sauerstoff. Es reichert sich deshalb in der Zwischenzone an, wo es entnommen und in einer speziellen Rektifikationskolonne gereinigt wird. Der Trennung der Komponenten schließen sich Verflüssigungs- und Verdichtungsschritte an. Derzeit werden ungefähr 90 % der gesamten Sauerstoffproduktion über das hier bilanzierte Niederdruckverfahren hergestellt (Sauerstoff 1996). Andere Verfahren wie PSA (pressure-swing adsorption) oder das Membranverfahren werden hier nicht betrachtet. Die Kennziffern in GEMIS stehen für die Produktion in Westeuropa in den 90er Jahren. In Deutschland wurden 1991 ca. 7,3 Mio. und 1992 ca. 6,7 Mio. Tonnen Sauerstoff produziert [berechnet aus den Volumenangaben in (Produktion 1992)]. Der weltweite Jahresverbrauch an Sauerstoff im Zeitraum 1990/91 belief sich auf ca. 21,2 Mio. t in Westeuropa, ca. 22,0 Mio. t in den USA und ca. 12,9 Mio. t in Japan (Sauerstoff 1996). Allokation: Bei dem Prozeß der Luftzerlegung fallen Stickstoff und Sauerstoff als Produkte an. Für die Herstellung von einer Tonne an Produkten (765 kg Stickstoff und 235 kg Sauerstoff) wird ein Input von 1014 kg atmosphärischer Luft benötigt. Der Prozeß liefert außerdem 13 kg Argon (dieses wird wegen seines geringen Massenanteils bei GEMIS nicht als Produkt gewertet) und ungefähr 0,5 kg CO2. Die den Prozeß der Luftzerlegung beschreibenden Gesamtdaten werden entsprechend dem Massenanteil der beiden Produkte N2 und O2 zu 3,264:1 aufgeteilt. Genese der Kennziffern Massenbilanz: Die Massenbilanz bei der Sauerstoffherstellung wurde unter der Annahme eines Wirkungsgrades von 100 % bei der Luftzerlegung berechnet. Entsprechend der Zusammensetzung der Luft (in Massenanteilen) wird für die Herstellung von 1 t O2 eine Menge von 4322 kg Luft benötigt. Dabei fällt als weiteres Produkt 3264 kg Stickstoff (außerdem 55 kg Argon) an (siehe #1). Als nicht verwerteter Bestandteil der atmosphärischen Luft verbleiben 2,0 kg Kohlendioxid. Für GEMIS ergibt sich nach der Allokationsregel ein Wirkungsgrad von 98,66 % (Bedarf an Luft: 1014kg/t O2). Argon und Kohlendioxid werden nicht bilanziert. Energiebedarf: Nach #2 wird für die Luftzerlegung (Anlagenkapazität 10000 m3/h) eine Strommenge von 0,15 kWh/m3 gasförmigen N2 benötigt. Bei einer kleineren Anlagenkapazität (1500 m3/h) ergibt sich ein Wert von 0,30 kWh/m3. Für die Verflüssigung des gewonnenen Stickstoffs wird zusätzliche Energie benötigt. Es wird ein Wert von 0,5 bis 0,6 kWh/m3 N2 angegeben. Da für die Bilanzierung von Stickstoff und Sauerstoff eine Luftzerlegungsanlage betrachtet wird bei der gleichzeitig beide genannten Gase entstehen, werden die obigen Energiedaten für die Sauerstoffherstellung übernommen. Man erhält für die Luftzerlegung einen Wert von 0,4 GJ/t O2 und für die Verflüssigung 1,6 GJ/t O2 (vgl. Prozeßeinheit zur Stickstoffherstellung). Diese Werte zeigen eine gute Übereinstimmung mit den Daten aus #3, 2 MJ/kg O2, und #1, 1,75 MJ/kg O2 (Werte für Luftzerlegung und Verflüssigung). Bei (DOE 1985) wird nur die Luftzerlegung ohne Verflüssigung bilanziert. Es ergibt sich ein Bedarf an 687,2 btu elektrischer Energie für die Zerlegung von 4,322 lb atmosphärischer Luft. Umgerechnet auf die Herstellung von einer Tonne Sauerstoff ergibt sich nach der Allokation in Kapitel 0.1.3 ein Wert von 0,37 GJ/t O2. Die Quellen #2 und #1 (DSD 1995) geben im Unterschied zu (DOE 1985) keine Energiegesamtwerte für die Zerlegung des gesamten Luftinput, sondern bereits anteilige auf Stickstoff [bzw. #1 bilanziert für 1 kg O2] bezogene Werte an. Da die Angaben aus #2 am besten nachvollziehbar sind, werden diese für GEMIS verwendet. Prozeßbedingte Luftemissionen: Prozeßbedingte Luftemissionen bei der Luftzerlegung sind nicht bekannt. Da das beim Prozeß anfallende CO2 aus der eingesetzten Luft stammt, wird es nicht als Emission gewertet. Wasser: Der Wasserbedarf bei der Sauerstoffherstellung beschränkt sich auf die Verwendung von Kühlwasser. Quantitative Angaben hierüber liegen nicht vor. Auslastung: 5000h/a Brenn-/Einsatzstoff: Ressourcen gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1000000t/h Nutzungsgrad: 98,7% Produkt: Grundstoffe-Chemie
Das Projekt "Me-KoMeT: Metall-Kunststoff-Komposit-Membranen zur Trocknung von Elektrolyse-Wasserstoff^Me-KoMeT: Metall-Kunststoff-Komposit-Membranen zur Trocknung von Elektrolyse-Wasserstoff, Me-KoMeT: Metall-Kunststoff-Komposit-Membranen zur Trocknung von Elektrolyse-Wasserstoff" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Zentrum für BrennstoffzellenTechnik GmbH.Wasserstoff kann über den Weg der Wasserelektrolyse als Speichermedium für überschüssige, regenerativ erzeugte elektrische Energie dienen. Der dabei entstehende Wasserstoff muss getrocknet werden und kann dann gespeichert und bei Bedarf wiederum zur Stromerzeugung aber auch als Kraftstoff für z.B. PKW oder Busse verwendet werden. Technisch realisierte Trocknungsverfahren, wie z.B. die Druckwechseladsorption (PSA - Pressure Swing Adsorption) oder die Temperaturwechseladsorption (TSA - Temperature Swing Adsorption) erfordern für einen kontinuierlichen Betrieb mehrere Reaktionsbehälter, die im Wechsel das Gas trocknen und die dann regeneriert werden. Basierend auf Vorarbeiten werden hinsichtlich Struktur und Materialeigenschaften angepasste Kunststoffträger bei BASF SE entwickelt, von der Arbeitsgruppe Dünnschichttechnologie der Universität Duisburg-Essen metallisch beschichtet und am Zentrum für Brennstoffzellentechnik experimentell untersucht und bewertet.