API src

Found 730 results.

Similar terms

s/dy/dye/gi

Bestimmung kanzerogener aromatischer Amine aus verbotenen Azofarbstoffen der Textilindustrie

Spaltung und Extraktion von aromatischen Aminen aus Azofarbstoffen auf Textilien; Bestimmung bestimmter kanzerogener Verbindungen

Untersuchungen an Abwasser von Stoffdruckereien

Stoffdruckereien fabrizieren ein fuerchterliches Abwasser, das z.B. in den USA den im Ablaufgebiet liegenden Farmen schwere Schaeden zufuegt.

Environmental Determinants of Microbial Biopolymer Degraders in Agricultural Soil

The structural polysaccharides cellulose and chitin of plants, fungi, and arthropods are major components of organic matter in agricultural soils. These biopolymers are carbon sources of soil microbial communities linked to soil redox processes. Soil aggregates of waterunsaturated soil form natural boundaries of oxic conditions outside and oxygen-limited conditions inside. These biogeochemical interfaces lead to a highly heterogeneous oxygen distribution on a millimetre scale. The effects and mechanisms of the toxicity of herbicides on biopolymer degrading communities in such highly compartmentalized soils have not been resolved. The proposed study is a continuation of a project funded within Priority Program 1315 'Biogeochemical Interfaces in Soil'. The preceding project resolved phylogenetic identities of known and novel prokaryotes linked to cellulose degradation under both oxic and anoxic conditions, and demonstrated that the acidic herbicides Bentazon and MCPA impair microbial processes involved in cellulose degradation. The proposed project will (I) identify chitin-degrading prokaryotes, fungi, and protists that are active in oxic and anoxic microzones, (II) determine the tolerance of various cellulolytic and chitinolytic taxa to Bentazon and MCPA, (III) characterize key chitin-degraders, and (IV) will quantitatively assess oxygen distribution in during biopolymer degradation in an agricultural soil. Central methods will include stable isotope probing, analyses of 16S rRNA, 18S rRNA, and chitinase genes, HPLC, GC, and oxygen sensing via analysis of fluorescence dyes.

Gewinnung von Phytinsäure aus regional verfügbaren Rohstoffen - ein weiterer Schritt in Richtung 'grüner' Wandfarben, TP2: BioPhy-Reinextrakt

Wiederverwertungskreislauf von Stahldruckfarben, Verduennern und Reinigern sowie ihrer Verpackung

Zusammenstellung von Gummiadditiven und messanalytische Bestimmung prioritärer Stoffe in Verbraucherprodukten

Plasmabasierte Farbstoffextraktion aus Mikroalgen

Was ist Laserstrahlung?

Was ist Laserstrahlung? Laser ist die Abkürzung für "Light Amplification by Stimulated Emission of Radiation" - Lichtverstärkung durch stimulierte Strahlungsemission. Dies bezieht sich auf die Art der Strahlenerzeugung. Laserstrahlung kann in einem relativ großen Bereich des optischen Spektrums erzeugt werden. Laserstrahlung hat mehrere beachtliche Eigenschaften: Sehr hohe Einfarbigkeit Kohärenz Starke Strahlenbündelung Hohe Strahlungsdichte Das Wort " Laser " ist die Abkürzung für " L ight A mplification by S timulated E mission of R adiation " (Lichtverstärkung durch stimulierte Strahlungsemission) und bezieht sich auf die Art der Strahlenerzeugung. Der Laser ist eine relativ junge Erfindung. Er wurde erstmals im Jahr 1960 mit einem Rubinkristall realisiert. Erzeugung von Laserstrahlung Der erste Schritt zur Erzeugung von Laserstrahlung besteht in der Anregung eines Laser mediums durch Energiezufuhr (als "Pumpen" bezeichnet). Als Lasermedium können sehr unterschiedliche Stoffe dienen. Verwendet werden Festkörper (wie zum Beispiel ein Rubinkristall), Halbleiter, Flüssigkeiten (wie zum Beispiel gelöste Farbstoffe) oder Gase (wie zum Beispiel ein Gemisch aus Helium und Neon). Die Zufuhr der Anregungsenergie kann durch Blitzlampen, elektrische Gasentladungen, chemische Reaktionen oder einen anderen Laser erfolgen. Einige der angeregten Atome oder Moleküle des Lasermediums geben Photonen (Lichtquanten) ab und gehen dabei wieder in den nichtangeregten Zustand über. Treffen diese Photonen auf andere Atome oder Moleküle im angeregten Zustand, so geben diese ebenfalls Photonen ab, die mit den aufgetroffenen Photonen in Wellenlänge , Phase und Abstrahlrichtung exakt übereinstimmen. Diesen Vorgang nennt man "stimulierte Emission ". Um eine Verstärkung der Strahlung zu erreichen, lässt man den Vorgang in einem Resonator ablaufen, das heißt die Strahlung wird in einem Rohr an beiden Enden durch Spiegel reflektiert und durchläuft so das Lasermedium mehrmals. Bei jedem Durchgang werden weitere angeregte Atome oder Moleküle zur Abgabe von Photonen stimuliert. Voraussetzung dafür ist, dass die Länge des Resonators einem ganzzahligen Vielfachen der halben Wellenlänge entspricht. Einer der beiden Spiegel ist halbdurchlässig, so dass ein Teil der Strahlung das Laser medium verlassen kann. Eigenschaften der Laserstrahlung Die austretende Laserstrahlung hat mehrere beachtliche Eigenschaften: Sehr hohe Einfarbigkeit (Monochromasie) - sie weist genau eine Wellenlänge auf; Kohärenz - die Wellen sind sowohl zeitlich als auch räumlich "in Phase ", das heißt sie schwingen - bildlich gesprochen - parallel im gleichen Takt; Starke Strahlenbündelung - der Durchmesser des Strahls ist auch bei großer Entfernung von der Quelle sehr gering; Hohe Strahlungsdichte - aufgrund der starken Bündelung und der großen Verstärkung der Strahlung trifft auf eine kleine Fläche Strahlung mit hoher Intensität auf. Die Strahlungsdichte der Sonne kann damit um ein Vielfaches übertroffen werden. Laser strahlung kann in einem relativ großen Bereich des optischen Spektrums erzeugt werden. Er reicht vom Infrarotbereich über das sichtbare Licht bis zum UV . Der Wellenlängenbereich erstreckt sich von etwa 200 nm bis etwa 10 000 nm . Pulslaser Man kann Laser auch danach unterteilen, ob sie kontinuierlich Strahlung aussenden oder gepulst arbeiten. Pulslaser können zum Beispiel viele Pulse in definierten zeitlichen Abständen aussenden oder aber Einzelpulse. Für spezielle Anwendungen werden extrem kurze Einzelpulse mit außerordentlich hohen Spitzenleistungen erzeugt. So werden zu medizinischen oder kosmetischen Zwecken (beispielsweise zur Entfernung von Tätowierungen) Laser verwendet, deren Pulse im Nanosekunden- oder sogar Pikosekundenbereich liegen. (Eine Pikosekunde ist der Billionste Teil einer Sekunde). Stand: 07.10.2025

Errichtung einer Ozonungsanlage zur Entfärbung von stark farbigen Abwässern aus der Reaktivfärbung und Recycling des entfärbten Abwassers

Die Hecking Deotexis GmbH ist ein 150 Jahre altes, mittelständisch geprägtes Textilunternehmen am Standort Neuenkirchen. Das Unternehmen stellt Oberbekleidungsstoffe für Damen und Herren her. Es verfügt über eine Weberei, Färberei und Ausrüstung. So werden u. a. Baumwolle und Elastomerfäden mit Reaktivfarbstoffen und Pigmenten gefärbt. Eine Besonderheit ist die Indigo-Kettfärbeanlage für Jeans. Die Firma plant die Errichtung einer neuen Anlage, wo die konzentrierten Abwässer aus der Färberei von Baumwollwebware mit Hilfe eines Ozonungsverfahren entfärbt und praktisch vollständig wieder verwendet werden sollen. Dazu sollen die konzentrierten Farbabwässer aus den verschiedenen Behandlungsstufen zusammengeführt und in einem Reaktor mit Ozon entfärbt werden. Die Ozonungsanlage wird in eine neue betriebliche Anlage integriert. Die Wiederverwendung des entfärbten Abwassers kann allerdings wegen der Aufkonzentrierung der Salze nicht im kompletten Kreislauf stattfinden. Die eine Hälfte soll als Waschwasser wieder in die Farbnachwäsche gehen, d.h. im eigentlichen Färbeprozess wieder eingesetzt werden, die andere Hälfte soll für innerbetriebliche Prozesse wie das Reinigen von Gefäßen und Ansatzbehältern genutzt werden. Dieses hat eindeutige Vorteile gegenüber den herkömmlichen Verfahren. So ist kein Einsatz zusätzlicher Chemikalien notwendig, es erfolgt eine Verringerung der anfallenden Klärschlammmenge und eine Einsparung von über 5000 Kubikmeter Frischwasser pro Jahr. Auch die kommunale Kläranlage, in die die Färbeabwässer bislang ungeklärt eingeleitet wurden, wird deutlich entlastet. Allerdings liegt der Energiebedarf bei der Ozonung höher, soll aber durch eine Optimierung des Verfahrens gesenkt werden.

Nachhaltige Pulverlacke für industrielle Anwendungen

Zielsetzung: Aufgrund aktueller umwelt- und gesundheitspolitischer Erfordernisse ist die Reduzierung von Energie und die völlige Vermeidung von Mikroplastik bei gleichzeitiger, nachhaltiger Verbesserung wirtschaftlich-technologischer sowie umweltschonender Aspekte, ein zentrales Anliegen von Lackrohstoffanbietern, Lackherstellern und industriellen Lackanwendern. Eine in Frage kommende Technologie zur Beschichtung von industrienahen Produkten ist die Pulverlackapplikation. Aus diesen Gründen haben sich die Projektpartner iLF Magdeburg GmbH, Ganzlin Beschichtungspulver GmbH und die Otto-von-Guericke Universität Magdeburg das ehrgeizige Ziel gesteckt, eine biologisch abbaubare Beschichtung als Pulverlack zu entwickeln und den Eintrag von nicht abbaubaren Partikeln aus Kunststoffen während und nach der Nutzung der beschichteten Bauteile zu verhindern. Es werden verschiedene Arten der Biokunststoffe unterschieden. Dabei existieren neben den biologisch abbaubaren Kunststoffen aus nachwachsenden und fossilen Rohstoffen auch biologisch nicht abbaubare Biokunststoffe. Im Rahmen des hier beschriebenen Vorhabens wird der Fokus auf die biologisch abbaubaren Kunststoffe gelegt. Dabei sollen im Wesentlichen zwei Pfade verfolgt werden: die PLA-Route und die Polyester-Route. In beiden Fällen sollen den Matrixmaterialien (PLA und Polyester) natürliche, regional verfügbare Füll- und Farbstoffe zugesetzt werden. Als Füllstoffmaterialien kommen dabei Cellulose, Maismehl oder Lignin in Frage. Die Farbgebung soll zunächst in 3 Farbtönen durch Verwendung natürlicher Farbstoffe wie Karotin, Rote Beete oder Ruß erfolgen. Zusätzlich verfolgen die Projektpartner das Ziel, möglichst niedrige Verarbeitungstemperaturen zu erreichen, um in Zeiten massiv steigender Energiekosten wirtschaftlich und umweltschonend produzieren zu können. Weiterhin sollen möglichst alle Rohstoffe aus Europa stammen, um den gesamten Produktlebenszyklus nachhaltig zu gestalten. Das Projektkonsortium stellt sicher, dass eine Charakterisierung der Ausgangsmaterialien und der erhaltenen Beschichtungen mit modernsten Methoden der Bildgebung und Analytik kombiniert werden mit Know-How und Methoden im Bereich der Oberflächenprüftechnik und der industriellen Entwicklung und Herstellung von Pulverlacken. Die Projektpartner haben in Ihrer langjährigen erfolgreichen Kooperation bereits mehrfach Produktinnovationen hervorgebracht und verfügen über die dafür notwendige Expertise.

1 2 3 4 571 72 73