API src

Found 16 results.

Similar terms

s/e950/EC50/gi

Model Output Statistics for Krün (P950)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Stadtplan der Stadt Bremerhaven 1950

Stadtplan Wesermünde und Bremerhaven, Maßstab 1:15000. Darstellung in schwarz-weiß. Die Darstellung kann aufgrund der ungleichmäßigen Verzerrungen in den Originalbildern Lagefehler aufweisen.

BfS-Broschüre: „Strahlenthemen | Höhenstrahlung und Fliegen“ (PDF, nicht barrierefrei)

STRAHLENTHEMEN Effektive Dosis pro Stunde [Mikrosievert pro Stunde]Höhe bis 1515 km bis 11 10 km bis 7 Mount Everest (8850 m) 2 0,5 0,3 0,2 0,1 Mont Blanc (4807 m) 5 km Lhasa, Tibet (3650 m) Mexico City (2240 m) Zugspitze (2962 m) München (530 m) 0,07 Hamburg (0 m) 0,05 0 km 0,03 Höhenstrahlung und Fliegen Viele Menschen reisen – privat oder geschäftlich – zu entfernten Zielen mit dem Flugzeug. Flugzeuge fliegen oft in Höhen und geografischen Breiten, in denen deut- lich mehr so genannte Höhenstrahlung (auch kosmische Strahlung genannt) auf den Menschen einwirkt als am Boden. Die Energien dieser Strahlen sind so hoch, dass man sie praktisch nicht abschirmen kann. Wie entsteht eigentlich diese Strahlung? Die Erde ist ständig einem Strom von hochenergetischen Teilchen ausgesetzt, die aus den Tiefen des Kosmos so- wie von der Sonne kommen und in die Erdatmosphäre eindringen. Dabei reagieren sie mit den Bestandteilen Titelbild: Kosmische Strahlung in unterschiedlichen Höhen der Lufthülle und bilden neue Teilchen. Die Gesamtheit dieser Teilchen bildet die so genannte Höhenstrahlung. Auf ihrem Weg zur Erdoberfläche wird die Höhenstrah- lung mit zunehmender Dichte der Atmosphäre schwä- cher (s. Titelbild). Die kosmische Strahlung dringt jedoch nicht überall gleich stark in die Erdatmosphäre ein, da das Magnet- feld der Erde die elektrisch geladenen Teilchen teilweise von der Erde ablenkt. Die Abschirmung durch das Erd- magnetfeld wirkt am stärksten am Äquator. Über den geomagnetischen Polen, die sich etwa 1.600 km abseits der geografischen Pole befinden, ist die Schutzwirkung dagegen am schwächsten. Infolgedessen ist die Höhen- strahlung in den nördlichen und südlichen Regionen der Erde deutlich stärker als am Äquator (s. Abbildung unten). Ein zusätzlicher Schutz kommt von der Aktivität der Son- ne. Der so genannte „Sonnenwind“ ist ein von der Sonne ausgehender Strom aus geladenen Teilchen, von denen ein kleiner Teil auch in die Erdatmosphäre eindringt. Vor allem aber lenkt der Sonnenwind einen Teil der kos- mischen Strahlung von unserem Sonnensystem ab. Die- se Sonnenaktivität ändert sich nahezu regelmäßig in einem Zyklus von elf Jahren. In Zeiten hoher Sonnenak- tivität kann man vermehrt Sonnenflecken beobachten. Diese werden aufgezeichnet und gehen in den so ge- nannten Relativen Sonnenflecken-Index (RSI) ein. Je grö- ßer die Sonnenaktivität und damit der Wert des RSI ist, desto geringer ist die Höhenstrahlung und umgekehrt. Das letzte Minimum der Sonnenaktivität war im Jahr 2009, das nächste Maximum wird im Jahr 2013/2014 er- wartet (s. Abbildung nächste Seite oben). Strahlenbelastung beim Fliegen nach New York (9 Stunden Flugdauer, davon 8 Stunden in Reiseflughöhe) zu einer effektiven Dosis von ca. 64 µSv (8 Stunden x 8 µSv/h). Dieser Wert galt gegen Ende des Jahres 2012. Infolge der zurzeit zunehmenden Sonnen- aktivität wird die Höhenstrahlung in den nächsten Jah- ren um ca. 25 Prozent zurückgehen. In der folgenden Ta- belle sind effektive Dosen, die durch Höhenstrahlung auf häufig geflogenen Strecken typischerweise entstehen, zusammengestellt. Abflug Ankunft Dosisbereich* [µSv] Frankfurt Gran Canaria10 - 18 Frankfurt Johannesburg18 - 30 Frankfurt New York32 - 75 Frankfurt Rio de Janeiro17 - 28 Frankfurt Santo Domingo (DomRep)30 - 65 Frankfurt Rom Frankfurt San Francisco 3-6 45 - 110 Frankfurt Singapur28 - 50 Frankfurt Tokyo45 - 110 * Die Schwankungsbreite geht hauptsächlich auf die Ein- flüsse von Sonnenzyklus und Flughöhe zurück. Effektive Dosis durch Höhenstrahlung auf ausgewählten Flugrouten Das Ausmaß der Strahlenbelastung beim Fliegen hängt somit vor allem von der Flughöhe, der Flugdauer, der geografischen Lage der Flugroute und der Sonnenak- tivität ab. Ein Maß für die Strahlenbelastung des Men- schen ist die effektive Dosis. In einer Höhe von 11 km und nördlich des 60-sten Breitengrades (Helsinki – Oslo – Südspitze Grönland) entsteht durch die Höhenstrahlung eine Dosisleistung von 8 bis 9 Mikrosievert pro Stun- de (µSv/h). Im Bereich des Äquators beträgt sie nur ein Drittel davon. Demzufolge führt die Strahlenexposition durch die Höhenstrahlung bei einem Flug von Frankfurt Wie wird die Strahlendosis ermittelt? Technisch besteht die Möglichkeit, die Strahlendosis während eines Fluges im Flugzeug zu messen. Da die physikalischen Bedingungen, die zu einer Dosis durch Höhenstrahlung führen, recht gut bekannt sind, kann man diese Strahlendosen auch hinreichend genau be- rechnen. Hierfür existieren Computerprogramme, die auf der Basis von physikalischen Messungen und anhand Zonen mit unterschiedlicher Höhenstrahlung [11 km Höhe, Ende 2013, Mikrosievert pro Stunde] Schwankung des Relativen Sonnenflecken-Index (RSI) und der effektiven Dosis durch Höhenstrahlung bei einem Hin- und Rückflug Frankfurt – New York (ab 2012 geschätzt) der flugbestimmenden Daten (z. B. Start- und Zielflugha- fen, Flugdauer und -höhe, Datum) die gesamte effektive Dosis ermitteln, die bei einem Flug entsteht. Strahlenbelastung durch natürliche Quellen am Boden Die Höhenstrahlung macht einen Teil der natürlichen Strahlung aus, der die Menschheit schon immer ausge- setzt ist. In Meereshöhe beträgt ihr Wert ca. 300 µSv pro Jahr. Den größten Beitrag zur natürlichen Strahlenbelas- tung in Deutschland liefert mit durchschnittlich 1.100 µSv pro Jahr das Radon, ein radioaktives Edelgas, das z. B. von granithaltigem Gestein abgegeben wird, und das über die Atemluft aufgenommen wird. Zusätzlich wirkt von außen die terrestrische Strahlung – das ist die Strahlung der na- türlichen radioaktiven Stoffe im Bodengestein der Erd- kruste – auf uns ein. Sie beträgt im Mittel jährlich 400 µSv. Auch der menschliche Körper enthält natürliche radioak- tive Stoffe. Hier ist es vor allem das Kalium-40 in den Mus- kelzellen, das mit ca. 300 µSv zur jährlichen Strahlenexpo- sition aus natürlichen Quellen beiträgt. vergleichsweise niedrigen Dosis zwar sehr gering, das Ri- siko steigt aber mit der Höhe der erhaltenen Strahlendo- sis an. Für Menschen, die wenig fliegen, ist die zusätzliche Exposition durch kosmische Strahlung von untergeordne- ter Bedeutung. Jedoch ist jede zusätzliche Belastung mit einem zusätzlichen Risiko verbunden. Dies ist besonders bei Schwangeren und Kleinkindern zu berücksichtigen (s. a. BfS-Faltblatt „Strahlenthemen: Schwangerschaft und Strahlenschutz“). Wenn ein Flug zu privaten oder auch geschäftlichen Zwecken geplant wird, dann liegt es meist im persönlichen Ermessen des Einzelnen abzuwägen, ob der Flug für gerechtfertigt gehalten wird und wie die Ri- siken eines solchen Fluges und die Risiken beim Benutzen alternativer Verkehrsmittel zu Wasser oder zu Lande ge- geneinander abgewogen werden. Das fliegende Personal der Verkehrsfluggesellschaften hat diese Entscheidungs- freiheit nicht. Für diese Personen werden daher Vorkeh- rungen des Arbeitsschutzes getroffen. Piloten, flugbegleitendes Personal oder berufliche „Viel- flieger“ können – insbesondere, wenn sie häufig Lang- strecken, vor allem auf den nördlichen Polrouten flie- gen – Strahlendosen erhalten, die durchaus vergleichbar sind mit Dosiswerten in Berufsgruppen, die ionisierende Strahlung einsetzen oder die mit radioaktiven Quellen umgehen. In einzelnen Studien gibt es Hinweise darauf, dass fliegendes Personal einem leicht erhöhten Gesund- heitsrisiko ausgesetzt ist. Von einem wissenschaftlich ge- sicherten, ursächlichen Zusammenhang zwischen der Höhenstrahlung und z. B. der Häufigkeit von Krebser- krankungen kann man nach gegenwärtigem Kenntnis- stand aber nicht sprechen. Gleichwohl ist es sinnvoll, die Höhe eines möglichen gesundheitlichen Risikos durch Höhenstrahlung abzuschätzen und ggf. zu begrenzen. Strahlenschutz des fliegenden Personals Früher erstreckte sich der Strahlenschutz für Arbeitskräf- te nur auf Tätigkeiten, bei denen man die Strahlungs- eigenschaften radioaktiver Stoffe absichtlich anwendet In Deutschland beträgt die mittlere effektive Dosis aus natürlichen Strahlenquellen demnach etwa 2.100 µSv pro Jahr. Je nach Aufenthaltsort schwankt der tatsächli- che Wert zwischen 1.000 und 6.000 µSv pro Jahr. Im Vergleich dazu bewirkt eine Flugreise von Frankfurt nach New York und zurück eine zusätzliche Strahlenex- position von ca. 120 µSv. Die durchschnittliche natürli- che Strahlenexposition eines Jahres erhöht sich also al- lein durch eine Flugreise um ca. fünf Prozent. Höhenstrahlung und Gesundheit Grundsätzlich kann die Höhenstrahlung als ionisie- rende Strahlung die Körperzellen schädigen und z. B. Krebserkrankungen auslösen. Die Wahrscheinlichkeit für einen gesundheitlichen Schaden ist aufgrund der Die Strahlenbelastung des fliegenden Personals wird in Deutschland seit August 2003 überwacht

Model Output Statistics for Dransfeld-Ossenfeld (E970)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for Herzberg-Lonau (E950)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for Weischlitz-Heinersgrün (O950)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Model Output Statistics for Lauterberg,Bad-Bartolfelde (E955)

DWD’s fully automatic MOSMIX product optimizes and interprets the forecast calculations of the NWP models ICON (DWD) and IFS (ECMWF), combines these and calculates statistically optimized weather forecasts in terms of point forecasts (PFCs). Thus, statistically corrected, updated forecasts for the next ten days are calculated for about 5400 locations around the world. Most forecasting locations are spread over Germany and Europe. MOSMIX forecasts (PFCs) include nearly all common meteorological parameters measured by weather stations. For further information please refer to: [in German: https://www.dwd.de/DE/leistungen/met_verfahren_mosmix/met_verfahren_mosmix.html ] [in English: https://www.dwd.de/EN/ourservices/met_application_mosmix/met_application_mosmix.html ]

Radioaktivität in der Umwelt Natürliche Strahlenexposition Bergbaubedingte Radioaktivität Strahlenexposition durch künstliche radioaktive Stoffe (Zivilisatorische Strahlenexposition)

Die natürliche Strahlenexposition des Menschen resultiert aus der Summe der Wirkungen der kosmischen Strahlung, der Strahlung der natürlichen Radionuklide in der Umwelt des Menschen und sowie der Strahlung der natürlichen Radionuklide, die sich im Körper jedes Menschen befinden. Im Jahr 2004 betrug in Deutschland die effektive Dosis, die durch die kosmische Strahlung hervorgerufen wird, im Mittel 0,3 mSv/a (Millisievert/Jahr). Die Dosis durch kosmische Strahlung ist abhängig von der geographischen Breite sowie der Höhe über dem Meeresspiegel. Die mittlere effektive Dosis der Bevölkerung durch den terrestrischen Anteil an der natürlichen Strahlenexposition beträgt etwa 0,4 mSv/a. Die Intensität der Strahlung kann auf Grund von geologisch-mineralogischen Verhältnissen von Ort zu Ort verschieden sein. Das natürlich vorkommende radioaktive Edelgas Radon, das aus dem Untergrund in die Häuser eindringen kann, ist für eine Dosis von 1,1 mSv/a verantwortlich. Der menschliche Organismus nimmt während des gesamten Lebens natürliche radioaktive Stoffe durch die Nahrung, die Atmung und über die Haut auf. Das Aktivitätsinventar für einen Menschen wird mit ca. 7.500 Bq angegeben. Daraus ergibt sich einen Strahlendosis von etwa 0,3 mSv/a. In der Summe beträgt die mittlere effektive Jahresdosis eines Menschen durch natürliche Strahlung ca. 2,1 mSv. Insgesamt ergibt sich durch die natürliche und zivilisatorische Strahlenexposition eine mittlere effektive Jahresdosis für die Bevölkerung von ca. 4,0 mSv. Dieser Wert ist gegenüber den Vorjahren unverändert. Mit dem Anteil der zusätzlichen zivilisatorischen Strahlenexposition zur ohnehin natürlich vorhandenen in dieser Größenordnung geht keine gesundheitliche Gefährdung einher. Nähere Angaben hierzu finden sich in den jährlich veröffentlichten Berichten der Bundesregierung über Umweltradioaktivität und Strahlenschutz, herausgegeben vom Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz . Untersuchungen zu bergbaubedingter Umweltradioaktivität gab es in Sachsen-Anhalt in den Regionen Mansfelder Land und Sangerhäuser Mulde. Bund und Land untersuchten Flächen au- ßerhalb des ehemaligen Mansfeld-Kombinates, die durch Kupfer- gewinnung bergbaulich beeinflusst waren. Rund drei Millionen Euro stellte der Bund dafür zur Verfügung. Die Resultate der Untersuchungen befinden sich in der Daten- bank ALASKA, deren Abschlussversion seit 2001 vorliegt. Die Datenbank enthält Eintragungen über 2970 bergbauliche Objekte aus den genannten Gebieten. Die Ergebnisse zeigen, dass der Kupferbergbau in Sachsen-An- halt zu keiner großflächigen radioaktiven Belastung der Umwelt geführt hat. Über 90 Prozent der untersuchten bergbaulichen Objekte weisen Radioaktivitätswerte im natürlichen Bereich auf. Sofortmaßnahmen waren aber nur in einem Fall, der Aschehalde am Maschinendenkmal in Hettstedt, erforderlich. Diese Halde wurde 1994 auf Veranlassung des Umweltministeriums einge- zäunt. In Mansfeld erfolgte die Sanierung einer Kupferschlacke- halde. Die Arbeiten wurden im Frühjahr 2005 abgeschlossen. Von den verbliebenen radioaktiv kontaminierten Flächen konnte eine Vielzahl aufgrund geringer Exposition durch bereits vorhan- dene Abdeckungen oder geringe Größe als Quelle von Gefährdun- gen für die Bevölkerung zunächst ausgeschlossen werden. Auf den Betriebsflächen des ehemaligen Mansfeld Kombinats, die in einem gesonderten Programm untersucht wurden, führten Sanierungen zu einer erheblichen Reduzierung der radioaktiven Kontaminationen. Betriebsflächen mit erhöhter Radioaktivität sind nicht frei zugänglich. Radioaktive Nuklide können als umschlossene bzw. in offener Form eingesetzt werden. Bei den umschlossenen Strahlenquellen handelt es sich um Nuklide, die in eine dichte, meist metallische Kapselung eingeschlossen werden. Anwendung finden umschlossene Strahlenquellen u. a. in der Werkstoffprüfung, bei Großbestrahlungsanlagen und in der Medizin. Bei offenen radioaktiven Stoffen liegt das Nuklid meist in Form einer chemischen Verbindung (z. B. Salz, Oxid, organische Verbindung) vor und kommt in fester, flüssiger und gasförmiger Form unmittelbar zur Anwendung. Offene radioaktive Stoffe werden u. a. in der Nuklearmedizin, als Radiopharmaka und in der Forschung (z. B. Biochemie) verwendet. Für Anwender von radioaktiven Stoffen bzw. Betreiber von Anlagen, die radioaktive Stoffe enthalten, besteht die Verpflichtung der geordneten Entsorgung des radioaktiven Materials und der kontaminierten Gegenstände. Unvermeidbare Ableitungen radioaktiver Stoffe in die Umwelt, z. B. bei der nuklearmedizinischen Anwendung von Radioisotopen oder bei kerntechnischen Anlagen, unterliegen den in der Strahlenschutzverordnung festgeschriebenen Bestimmungen und Grenzwerten. Kontrollen erfolgen durch die zuständigen staatlichen Aufsichtsbehörden. Aus Gründen des Strahlenschutzes verwenden die nuklearmedizinischen Einrichtungen heute fast ausschließlich kurzlebige Isotope, wie Iod-131 und Technetium-99m. 2004 betrug die mittlere zivilisatorische Strahlenexposition der Bevölkerung der Bundesrepublik 1,9 mSv/a, in der Hauptsache durch medizinische An­wendung von Radionukliden und die Anwendung von Röntgenstrahlen bedingt. Andere Faktoren, wie der Fallout von Kernwaffenversuchen, die Folgen des Reaktorunfalls von Tschernobyl, die Emis­sionen kerntechnischer Anlagen, Technik und Forschung so­wie beruflich bedingte Strahlenexpositionen tragen nur un­wesentlich zur Strahlenbelastung des Menschen bei.

Röntgendiagnostik: Häufigkeit und Strahlenexposition für die deutsche Bevölkerung

Röntgendiagnostik: Häufigkeit und Strahlenexposition für die deutsche Bevölkerung Es wird regelmäßig abgeschätzt, wie viele Röntgenuntersuchungen durchgeführt werden und wie hoch die daraus resultierende Strahlenexposition für die deutsche Bevölkerung ist. Diese Daten werden für jedes Kalenderjahr erhoben und mindestens alle zwei Jahre ausgewertet und bewertet. Für das Jahr 2021 wurde für Deutschland eine Gesamtzahl von etwa 125 Millionen Röntgenanwendungen abgeschätzt, gut 40 Prozent davon allein im zahnmedizinischen Bereich. Jede Röntgenuntersuchung ist mit einem gewissen – wenn auch geringen – Strahlenrisiko verbunden. Daher wird regelmäßig abgeschätzt, wie viele Untersuchungen durchgeführt werden und wie hoch die daraus resultierende Strahlenexposition für die deutsche Bevölkerung ist. Diese Daten werden für jedes Kalenderjahr erhoben, ausgewertet und bewertet, um auch zeitliche Trends erkennen zu können. Die Auswertungen erfolgen mindestens alle zwei Jahre. Wie wird die Häufigkeit von Röntgenuntersuchungen abgeschätzt? Ärztliche Leistungen werden über spezielle Gebührenziffern abgerechnet, die die ärztlichen Maßnahmen und damit auch die hier interessierenden radiologischen Maßnahmen beschreiben. Da ca. 98 % der deutschen Bevölkerung gesetzlich oder privat krankenversichert sind, kann die Häufigkeit röntgendiagnostischer Untersuchungen gut mithilfe dieser Gebührenziffern abgeschätzt werden. Diese werden dem BfS für den ambulanten Bereich regelmäßig von der kassenärztlichen beziehungsweise kassenzahnärztlichen Bundesvereinigung sowie dem Verband der privaten Krankenversicherung zur Verfügung gestellt. Für den stationären Bereich stehen dem BfS ab dem Jahr 2007 zu zahlreichen Röntgenuntersuchungen verlässliche Daten des Statistischen Bundesamtes zur Verfügung. Darüber hinaus gehen hier die Ergebnisse eines Ressortforschungsvorhabens ein. Wie wird die Strahlenexposition durch Röntgendiagnostik abgeschätzt? Für die Abschätzung der kollektiven effektiven Dosis (Kollektivdosis) werden für die verschiedenen Untersuchungsarten jeweils die Produkte von Untersuchungshäufigkeit und einem repräsentativen Schätzwert für die mittlere effektive Dosis dieser Untersuchungsart ermittelt und über alle Untersuchungsarten aufsummiert. Mithilfe jährlicher Bevölkerungszahlen wird die mittlere effektive Dosis pro Einwohner und Jahr berechnet. Abbildung 1: Häufigkeit von Röntgenuntersuchungen in Deutschland Ergebnisse der aktuellen Auswertung Häufigkeit Für das Jahr 2021 wurde für Deutschland eine Gesamtzahl von etwa 125 Millionen Röntgenanwendungen abgeschätzt (ohne zahnmedizinischen Bereich etwa 75 Mio.). Die Häufigkeit von Röntgenuntersuchungen in Deutschland lag zwischen 2007 und 2021 im Mittel bei ca. 1,6 pro Einwohner und Jahr (siehe Abbildung 1). Etwa 80 % aller Röntgenmaßnahmen werden im ambulanten Bereich durchgeführt und hiervon ca. 90 % bei Kassenpatienten. Im kassenärztlichen ambulanten Bereich verlief die Gesamtzahl von Röntgenanwendungen zwischen 2007 und 2021 leicht abnehmend. Auffallend ist ein durch die COVID-19-Pandemie bedingter Rückgang der Häufigkeit in 2020 mit anschließendem Wiederanstieg in 2021. Zahnmedizinische Röntgenuntersuchungen Etwa 40 % aller Röntgenuntersuchungen im Jahr 2021 wurden in der Zahnmedizin (inklusive Kieferorthopädie) durchgeführt (siehe Abbildung 2). Die Häufigkeit von Röntgenuntersuchungen im zahnmedizinischen Bereich blieb über die Jahre weitgehend unverändert. Jedoch hat die Anzahl von Kieferaufnahmen, die inzwischen beinahe 25 % aller zahnmedizinischen Röntgenuntersuchungen bei gesetzlich Versicherten ausmachen, zugenommen. Sonstige konventionelle Röntgenaufnahmen Abbildung 2: Prozentualer Anteil der verschiedenen Untersuchungsarten an der Gesamthäufigkeit (links) und an der kollektiven effektiven Dosis (rechts) für das Jahr 2021 Neben den zahnmedizinischen Untersuchungen entfiel der größte Teil aller Röntgenuntersuchungen auf das Skelett (das heißt Schädel, Schultergürtel, Wirbelsäule, Beckengürtel, Extremitäten) und auf den Brustkorb (Thorax) (siehe Abbildung 2). Die Anzahl der meisten konventionellen Röntgenuntersuchungen, z.B. von Schädel, Thorax und Wirbelsäule, hat im betrachteten Zeitraum deutlich abgenommen. Die Häufigkeit von Mammographien nahm infolge der Einführung des Deutschen Mammographie-Screening-Programms zwischen 2007 und 2009 um 35 % zu und ist – nach anschließender geringfügiger Abnahme – ab 2011 weitgehend konstant (Ausnahme: Pandemie-bedingter Rückgang in 2020). Computertomographie ( CT ) Die Häufigkeit von CT -Untersuchungen hat zwischen 2007 und 2021 stark zugenommen (siehe Abbildung 1). Im ambulanten kassenärztlichen Bereich lag der Anstieg bei 40 % und im stationären Bereich hat zwischen 2007 und 2021 sogar eine Verdoppelung der CT-Häufigkeit stattgefunden. Während die überwiegende Mehrheit aller konventionellen Röntgenaufnahmen ambulant durchgeführt werden, finden etwa die Hälfte der CT -Untersuchungen im stationären Bereich statt. Eine noch deutlichere Zunahme der Untersuchungshäufigkeit ist übrigens auch bei der Magnetresonanztomographie ( MRT ) , also einem Schnittbildverfahren, das keine ionisierende Strahlung verwendet, zu verzeichnen. Dosis Abbildung 3: Mittlere effektive Dosis (in mSv) pro Einwohner und Jahr durch Röntgenuntersuchungen in Deutschland Die mittlere effektive Dosis infolge von Röntgenanwendungen in Deutschland pro Einwohner beläuft sich für das Jahr 2021 auf 1,4 Millisievert ( mSv ) (siehe Abbildung 3). Die mittlere effektive Dosis durch CT-Untersuchungen pro Einwohner und Jahr hat im betrachteten Zeitraum zugenommen, wobei dieser Anstieg wegen der über die Jahre abnehmenden Dosis pro CT-Untersuchung deutlich moderater ausfällt als die zugehörige Zunahme der CT-Häufigkeit. Bei den restlichen Untersuchungsverfahren nimmt die jährliche Pro-Kopf- Dosis über den Zeitraum 2007 bis 2021 dagegen ab (siehe Abbildung 3). Im kassenärztlichen ambulanten Bereich hat sich die Pro-Kopf-Dosis durch konventionelle Röntgenuntersuchungen zwischen 2007 und 2021 nahezu halbiert. Erwartungsgemäß ist der relative Anteil konventioneller Röntgenuntersuchungen an der kollektiven effektiven Dosis eher gering. Beispielsweise beträgt dieser für Untersuchungen des Skelettsystems nur etwa 6 % , obgleich der Anteil an der Häufigkeit bei ca. einem Viertel liegt. CT -Untersuchungen sowie die ebenfalls dosisintensiven Angiographien und interventionellen Maßnahmen der Blutgefäße tragen zwar lediglich 15 % zur Gesamthäufigkeit bei, ihr Anteil an der kollektiven effektiven Dosis betrug im Jahr 2021 jedoch etwa 85 % (siehe Abbildung 2). Stand: 18.10.2024

Nuklearmedizinische Diagnostik

Nuklearmedizinische Diagnostik In der nuklearmedizinischen Diagnostik werden den Patient*innen radioaktive Arzneimittel (Radiopharmaka) verabreicht, die sich je nach ihren pharmakologischen Eigenschaften in unterschiedlicher Konzentration in den Organen oder Geweben des Menschen anreichern. Sie sind auf Grund ihrer Radioaktivität mit geeigneten Messgeräten von außen in ihrer zeitlichen und räumlichen Verteilung im Körper nachweisbar und werden so sichtbar gemacht. In den Jahren 2019 bis 2021 wurden in Deutschland im Mittel ca. 2,1 Millionen nuklearmedizinische Untersuchungen pro Jahr durchgeführt. Gemittelt über alle durchgeführten Untersuchungen betrug die mittlere effektive Dosis pro Untersuchung 2,2 mSv . Szintigramm der Schilddrüse Quelle: Technische Universität München, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar In der nuklearmedizinischen Diagnostik werden den Patient*innen radioaktive Arzneimittel (Radiopharmaka) verabreicht, die sich je nach ihren pharmakologischen Eigenschaften in unterschiedlicher Konzentration in den Organen oder Geweben des Menschen anreichern. Sie sind auf Grund ihrer Radioaktivität mit geeigneten Messgeräten von außen in ihrer zeitlichen und räumlichen Verteilung im Körper nachweisbar und werden so sichtbar gemacht. Welche Technik wird verwendet? Es werden drei Techniken unterschieden: die konventionelle Szintigraphie zwei Tomographie (Schichtbild)-Verfahren: die Single- Photon -Emissions- Computertomographie ( SPECT ) die Positronen-Emissions-Tomographie ( PET ). Wann wird das Verfahren eingesetzt? PET-Bild: Malignes Melanom der Stirn; zwei Weichteilmetastasen rechte Schulter/linke Hüfte Quelle: Technische Universität München, Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar Die nuklearmedizinische Diagnostik ermöglicht die Untersuchung nahezu sämtlicher Organsysteme des Menschen. Sie liefert Aussagen zur Funktion interessierender Organsysteme sowohl hinsichtlich allgemeiner Funktionsstörungen (zum Beispiel Nierenfunktionsszintigraphie) als auch örtlich umschriebener Krankheitsherde in einzelnen Organen (zum Beispiel Nachweis von Entzündungsherden). Die nuklearmedizinische Diagnostik ist eine wichtige Ergänzung zur so genannten morphologischen Bildgebung, die die Form und Struktur der untersuchten Organe beziehungsweise Gewebe darstellt (zum Beispiel Röntgendiagnostik). Wie oft wird die nuklearmedizinische Diagnostik angewendet? Im Laufe der Jahre 2016 bis 2021 nahm die Häufigkeit nuklearmedizinischer Untersuchungen geringfügig ab. In den Jahren 2019 bis 2021 wurden in Deutschland im Mittel ca. 2,1 Millionen nuklearmedizinische Untersuchungen pro Jahr durchgeführt, was einer mittleren jährlichen Anwendungshäufigkeit von etwa 25 Untersuchungen pro 1.000 Einwohner*innen entspricht. Die mittlere jährliche effektive Dosis pro Einwohner und Jahr betrug etwa 0,05 Millisievert ( mSv ). Drei nuklearmedizinische Untersuchungen vorherrschend Sowohl zur Häufigkeit als auch zur kollektiven effektiven Dosis liefern hauptsächlich drei nuklearmedizinische Untersuchungen wesentliche Beiträge, nämlich Szintigraphien und SPECT -Untersuchungen Anteil nuklearmedizinischer Untersuchungen 2021 der Schilddrüse, des Skeletts und des Herzens (siehe Abbildung). Bei der Abbildung ist zu beachten, dass die Untersuchungen des Herzens in Ruhe und unter Belastung einzeln gezählt wurden, auch wenn diese meistens im Rahmen einer Untersuchung hintereinander (während eines Tages oder über zwei Tage hinweg) stattfinden. Untersuchungen der Schilddrüse und des Skeletts nahmen zwischen 2016 und 2021 um ca. 25 % ab, die des Herzens jedoch zu. Wegen der hohen diagnostischen Aussagekraft als nuklearmedizinisches Untersuchungsverfahren nimmt die Häufigkeit von PET -Untersuchungen ebenfalls kontinuierlich zu. Dabei wird die PET heute überwiegend zusammen mit einer CT als sogenanntes Hybridverfahren durchgeführt. Im stationären Bereich wurden in den Jahren 2016 bis 2021 bereits mehr als 85 % aller PET -Untersuchungen mittels eines PET/CT-Systems durchgeführt. Mittlere effektive Dosis pro Untersuchung Gemittelt über alle durchgeführten Untersuchungen betrug die mittlere effektive Dosis pro Untersuchung 2,2 mSv (ohne Berücksichtigung der CT bei PET/CT-Untersuchungen). Die am häufigsten angewendete Schilddrüsenszintigraphie weist eine recht niedrige effektive Dosis von durchschnittlich 0,7 mSv pro Untersuchung auf. Die bei Kindern relativ häufig durchgeführten Nierenuntersuchungen sind ebenfalls durch eine niedrige Strahlenexposition gekennzeichnet (durchschnittlich 0,4 mSv pro Untersuchung). Fasst man die Dosis durch Herzuntersuchungen in Ruhe und unter Belastung zusammen, so erhält man eine vergleichsweise hohe Dosis von etwa 5 bis 6 mSv pro Untersuchung (Protokoll über zwei Tage bzw. einen Tag). Anteil nuklearmedizinischer Untersuchungen an der kollektiven effektiven Dosis in Deutschland 2021 Einordnung der Strahlenexposition durch die nuklearmedizinische Diagnostik Da nuklearmedizinische Untersuchungen deutlich seltener durchgeführt werden als Röntgenuntersuchungen, ist trotz der höheren Dosis pro Untersuchung die durchschnittliche Strahlenexposition pro Einwohner*in durch die nuklearmedizinischen Diagnostik – verglichen mit der Strahlenexposition durch die Röntgendiagnostik – relativ gering. Stand: 27.05.2024

1 2