The project aims to theorize the scalar organization of natural resource governance in the European Union. This research agenda is inspired by critical geographers' work on the politics of scale. The research will examine an analytical framework derived from theories of institutional change and multi-level govern-ance to fill this theoretical gap. Furthermore, it will review conceptualizations of the state in institutional economics, evaluate their adequacy to capture the role of the state in the dynamics identified, and develop them further. The described processes may imply shifts in administrative levels, shifts in relations between different levels and changes in spatial delimitations of competent jurisdictions that result, for example, from decentralization or the introduction of river basin oriented administrative structures. The research investigates the implications of two European Directives: the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). They both have potentially great significance for the organization of marine and water governance at the level of Member States and below, and adhere to similar regulatory ideas for achieving good ecological status of waters. A multiple case study on changes in the scalar reorganization of marine and water governance that result from the implementation of the Directives will be carried out. It will rely on qualitative and quantitative data gathering based on semi-structured interviews and review of secondary and tertiary sources looking at Portugal, Spain, and Germany. It specifically addresses the role of social ecological transactions, the structure of decision making processes and the role of changes in contextual factors (such as ideologies, interdependent institutions and technology).
Objective: This proposal has been prepared in the framework of a research and development roadmap defined by the European rotorcraft community that aims to develop a civil tilt-rotor aircraft. A key target of the road map is a flying demonstrator in the 2010 decade. NICETRIP specifically addresses the acquisition of new knowledge and technology validation concerning tilt-rotor. The main project objectives are: - To validate the European civil tilt-rotor concept based on the ERICA architecture; - To validate critical technologies and systems through the development, integration and testing of components of a tilt-rotor aircraft on full-scale dedicated rigs; - To acquire new knowledge on tilt-rotor through the development and testing of several wind tunnel models, including a large-scale full-span powered model; - To investigate and evaluate the introduction of tilt-rotors in the European Air Traffic Management System; - To assess the sustainability of the tilt-rotor product with respect to social and environmental issue s and to define the path towards a future tilt-rotor flying demonstrator. Project NICETRIP is fully relevant to the strategic objective 1.3.2.1: - Integration of technologies towards the future tilt-rotor aircraft, of the work programme of call 3 of the Thematic Priority Aeronautics and Space. The organisation and resources proposed to achieve the project objectives include a 54-month work plan made of 7 work packages and a consortium of 31 participants, fully representing the span of needed capabilities.
Forest structure is altered by humans for long times (Bramanti et al. 2009). The long lasting modification of forests pursuant to human demands modified the living conditions for birds as well as for many other animals. This included changes in resource availability (e.g., food, foraging, nesting sites) and changes of interspecific interactions, e.g., parasitism and predation (Knoke et al. 2009; Ellis et al. 2012). Also species compositions and the survivability of populations and even species are affected. The loss of foraging sites and suitable places for reproduction, the limitation of mobility due to fragmented habitats and the disturbances by humans itself may lead to more stressed individuals and less optimal living conditions. In certain cases species are not able to deal with the modified requirements and their populations will shrink and even vanish. Depending on the intensity of management and the remaining forest structure, biodiversity is more or less endangered. Especially in systems of two or more strongly connected taxa changing conditions that affect at least one part may subsequently affect the other, too. One system of interspecific communities that recently attracted the attention of biologists includes birds, blood parasites (haemosporidians) and their transmitting vectors. For instance, avian malaria (Plasmodium relictum) represents the reason for extreme declines in the avifauna of Hawaii since the introduction of respective vectors (e.g. Culicidae) during the 20th century (van Riper et al. 1986, Woodworth et al. 2005). With the current knowledge of this topic we are not able to predict if such incidences could also occur in Germany. All in all, different management strategies and intensity of forest management may influence the network of birds, vectors and blood parasites and change biodiversity. To elucidate this ecological complex, and to understand the interactions of the triad of songbirds as vertebrate hosts, dipteran vectors and haemosporidians within changing local conditions, I intend to collect data on the three taxa in differently managed forest areas, the given forest structure and the climatic conditions. I will try to explain the role of abiotic factors on infection dynamics, in detail the role of forest management intensity. Data acquisition takes place at three spatially divided locations: inside the Biodiversity Exploratory Schwäbische Alb, at the Mooswald in Freiburg, and inside the Schwarzwald.
We, the Institute of Farm Management (410c) are responsible for three work packages within SuMaRiO. Our work focuses on analysis and assessment of current and innovative agricultural production systems along the Tarim River at farm and regional levels with special regard to water consumption. To support a sustainable development in the region it is necessary to balance the allocation of water for human consumption and for the maintenance of natural ecosystems. The majority of the population in the Tarim River region still depends on agriculture as their main source of income. To maintain societal harmony and promote human wellbeing a steady increase of incomes of rural households is indispensable. Environmental protection is still not that prominent on the political agenda. To assess the impact of certain policy measures that aim at reducing agricultural water consumption on farm management (and farmers income), the application of farm optimization models is a powerful tool. In that respect the introduction (increase) of water prices on agricultural water usage and farm management practices are tested. Furthermore we are involved in the elaboration of frame-scenarios that build the general research reference for all subprojects of the overall project.
Background: Low Emission Zones (LEZs) are areas or roads where the most polluting vehicles are restricted from entering. The effectiveness of LEZs to lower ambient exposures is under debate. This study focused on LEZs that restricted cars of Euro 1 standard without appropriate retrofitting systems from entering and estimated LEZ effects on NO2, NO, and NOx (=NO2+NO) concentrations. Methods: Continuous half-hour and diffuse sampler 4-week average NO2, NO, and NOx concentrations measured inside and outside LEZs in 17 German cities of 6 federal states (2005-2009) were analysed as matched quadruplets (two pairs of simultaneously measured index values inside LEZ and reference values outside LEZ, one pair measured before and one after introducing LEZs with time differences that equal multiples of 364 days) by multiple linear and log-linear fixed-effects regression modelling (covariables: e.g., wind velocity, amount of precipitation, height of inversion base, school holidays, truck-free periods). Additionally, the continuous half-hour data was collapsed into 4-week averages and pooled with the diffuse sampler data to perform joint analysis. Results: More than 3,000,000 quadruplets of continuous measurements (half-hour averages) were identified at 38 index and 45 reference stations. Pooling with diffuse sampler data from 15 index and 10 reference stations lead to more than 4,000 quadruplets for joint analyses of 4-week averages. Mean LEZ effects on NO2, NO, and NOx concentrations (reductions) were estimated to be at most - 2 microgram/m3 (or - 4 percent). The 4-week averages of NO2 concentrations at index stations after LEZ introduction were 55 microgram/m3 (median and mean values) or 82 microgram/m3 (95th percentile). Conclusion: This is the first study investigating comprehensively the effectiveness of LEZs to reduce NO2, NO, and NOx concentrations controlling for most relevant potential confounders. Our analyses indicate that there is a significant, but rather small reduction of NO2, NO, and NOx concentrations associated with LEZs. Key words: air quality, low emission zone, NO2, NO and NOx, air pollution
Introduction: The United Nations Framework Convention on Climate Change classified SF6 as greenhouse gas, and the Annex I countries are obliged to publish the inventory of SF6 and to reduce emissions. However, survey data show an increasing concentration of SF6 (1), and recent evaluations demonstrate that only 30 Prozent of SF6 emissions are reported (2). Novel regulations and technical development must aim at decreasing SF6 emissions below the natural decomposition rate. For dielectric insulation applications, i.e. in situations where discharges are exceptional, it might be possible to replace SF6 by a different gas or gas mixture. No alternative gas is established, despite an extensive study of the dielectric strength of electron attaching gases in the past (3), (4). As many of the well investigated gases are covered by the Kyoto protocol, new options must be provided by fundamental research. In the present research project, the dielectric strength of alternative gases will be evaluated. There is general agreement, that mixtures of two or more gases are most suitable for replacing SF6 in dielectric insulation applications. Due to 'synergistic effects' the dielectric strength of a mixture can be higher than of pure gases (5), or at least the dielectric strength of a mixture can be higher than the linear combination of the strength of the constituents (6). Various types of synergistic effects have so far been described on the basis of the electron velocity distribution function or on the basis of ion-neutral collisions. Methods: The methods developed for investigating electron attaching gases may be classified to three groups: Phenomenological, macroscopic and microscopic methods. The research strategy of the project at hand is a combination of two established methods. In a Pulsed Townsend Discharge (PTD) experiment the macroscopic parameters of electron-ion swarms in attaching gases are measured. Synergistic effects in gas mixtures will be investigated microscopically by Monte Carlo (MC) simulations. The PTD is a traditional method and considerable experience has been gained at the HVL during the years 1980-1990 (7,8). The group of de Urquijo (Mexico) lately used a PTD for studying the alternative gas CF3I (9). In figure 1 the principle of the PTD setup is given. The swarm parameters are obtained from a fit of the analytical expression of the displacement current to the recorded current. Refer to (10) for more details on our swarm parameter experiment SParX. Recently satisfying agreement was achieved between MC simulations and data from PTD experiments (11, 12). The critical issue of these simulations is the availability of a consistent set of cross sections of electron-neutral and ion-neutral collisions. In the present study the output of SParX serves for calibrating the cross sections and the simulations. usw.
Climate warming allows invasive pests to establish in areas where they have not been recognized before. Since its introduction in the 1950s in South France, Grapevine Fla-vescence dorée (GFD), a major disease of grapevines, has spread significantly in Europe and has now reached the southeast of Styria, which currently marks the northeastern border of its extension. The present project aims to model the current and future potential distribution of the disease and its vector, the leafhopper Scaphoideus titanus, in Europe under the influence of climate change. Vine growing areas of high risk in Austria will be defined. An epidemiological model will simulate the temporal and spatial dynamics of the spread of the disease and its vector. The epidemiological model will then be used to assess the potential economic impact of GFD to Austrian viticulture. The results of the project will be communicated to stakeholders, risk managers, policy makers and the public.
The fire blight disease caused by the bacterium Erwinia amylovora, is currently the major constraint for apple production in several European countries including Germany and Switzerland. In recent years several infections occurred which have led to costs in the tens of millions Euros. The antibiotic Streptomycin (Plantomycin®), which is the only effective plant protective agent, can only be applied under particular restrictions. Planting of fire blight resistant cultivars seems to be the most promising solution, which is environmental and producer friendly. Unfortunately, the available fire blight resistant apple cultivars are non-competitive on the market, because of their inferior fruit quality. The improvement of established cultivars like 'Golden Delicious' or 'Gala' using classical breeding strategies is impossible because apple is self-incompatible and heterozygous. Each offspring of a sexual cross between such a cultivar and a resistant genotype will be genetically different to each of the parents. Linkage drag coming from the resistant led often to a decrease in fruit quality. Several crosses with cultivars of good quality are necessary to remove most of the unwanted traits and the result will be a completely new cultivar. Breeding of such a new apple cultivar is time consuming and in the end it is not clear, whether the new cultivar will be accepted by consumers and growers or not. Under these premises, the introduction of a specific gene into a particular cultivar which already has all qualities necessary, except the trait in question, is attractive. The recombinant DNA-technology offers the most promising strategy to solve the problem of fire blight by using Malus own genes without the need to change the popular cultivars. The development of cisgenic plants seems to be a realistic and successful strategy. Cisgenic plants contain only genes, which originates from crossable species and not from outside of the primary genepool. They are therefore comparable to classical bred plants and expected to be acceptable by consumers and growers. The methodology to produce such a durable resistant cisgenic apple cultivar has already been established, but an apple fire blight resistance gene (or linked gene set) is still needed. Recently a strong Fieblight resistance has been identified on chromosome 3 of the apple hybrid Malus x robusta 5. This project focuses on the isolation of the gene(s) inducing the resistance of M. x robusta 5 and its cloning into the susceptible cultivar Gala. Furthermore the interaction of this (or these) genes products with gene products of the pathogen will be studied so to understand the interaction mechanisms and therefore evaluate the durability of the resistance.
| Origin | Count |
|---|---|
| Bund | 29 |
| Type | Count |
|---|---|
| Förderprogramm | 29 |
| License | Count |
|---|---|
| offen | 29 |
| Language | Count |
|---|---|
| Deutsch | 5 |
| Englisch | 28 |
| Resource type | Count |
|---|---|
| Keine | 19 |
| Webseite | 10 |
| Topic | Count |
|---|---|
| Boden | 25 |
| Lebewesen und Lebensräume | 27 |
| Luft | 22 |
| Mensch und Umwelt | 29 |
| Wasser | 20 |
| Weitere | 29 |