Die Europäische Kommission wird voraussichtlich eine Folgenabschätzung sowie einen Gesetzesentwurf zur indirekten Landnutzungsänderung (ILUC) in Zusammenhang mit der Biokraftstoffproduktion veröffentlichen. Die Einführung einer EU-Richtlinie zur indirekten Landnutzungsänderung in der Richtlinie für Erneuerbare Energien (RED) und der Richtlinie zur Kraftstoffqualität (FQD), hat möglicherweise Einfluss auf derzeitige Investitionen und Arbeitsplätze in der europäischen Biokraftstoffindustrie. Im Auftrag der Umweltorganisation Transport & Environment hat Ecofys untersucht, inwieweit der Biokraftstoffsektor unter dem Gesichtspunkt der Bestandswahrung gegen die Einführung einer ILUC-Richtlinie auf EU-Ebene geschützt werden kann. Dies wird mit dem Begriff 'Grandfathering' beschrieben. Der Bericht beginnt mit einem Überblick über den EU Biokraftstoffmarkt und -sektor. Er analysiert die verschiedenen Auswirkungen möglicher ILUC Maßnahmen in Hinblick auf den Sektor und geht der Frage nach, inwieweit gegenwärtige Investitionen und Arbeitsplätze geschützt werden müssen. In einem zweiten Schritt untersucht der Bericht die Grandfathering Klausel, die aktuell in der RED und FQD Richtlinie enthalten ist, sowie weitere mögliche Grandfathering Optionen. Die Studie kommt zu dem Schluss, dass die Einführung einer ILUC Politikmaßnahme bei gleichzeitigem Erhalt der Arbeitsplätze und der Investitionen in Biokrafstoffproduktion möglich ist, wenn das Biokraftstoffverbrauchsniveau von 2010-2012 bis zum Jahr 2020 von der ILUC Richtlinie ausgenommen wird. Dies würde bedeuten, dass eine mögliche ILUC Richtlinie sich lediglich auf die zukünftige Biokraftsoffproduktion ab 2020 bezieht. Die ILUC-Maßnahme würde den gesamten Biokraftstoffverbrauch in der EU nicht deutlich verringern, da die Ziele der RED und FQD für 2020 unverändert bleiben. Dennoch könnten auf den EU Biodieselsektor Herausforderungen zukommen, wenn z. B. neue ILUC-Faktoren eingeführt oder der Mindestschwellenwert für Treibhausgasausstoß angehoben würde. Ein Grandfathering des derzeitigen Biokraftstoffverbrauchs würde dem entgegenwirken und heutige Investitionen und Arbeitsplätze sichern. Die Ergebnisse der Studie wurden am 22. März 2012 dem Europäischen Parlament vorgestellt.
Durum wheat is mainly grown as a summer crop. An introduction of a winter form failed until now due to the difficulty to combine winter hardiness with required process quality. Winter hardiness is a complex trait, but in most regions the frost tolerance is decisive. Thereby a major QTL, which was found in T. monococcum, T.aestivum, H. vulgare and S.cereale on chromosome 5, seems especially important. With genotyping by sequencing it is now possible to make association mapping based on very high dense marker maps, which delivers new possibilities to detect main and epistatic effects. Furthermore, new sequencing techniques allow candidate gene based association mapping. The main aim of the project is to unravel the genetic architecture of frost tolerance and quality traits in durum. Thereby, the objectives are to (1) determine the genetic variance, heritability and correlations among frost tolerance and quality traits, (2) examine linkage disequilibrium and population structure, (3) investigate sequence polymorphism at candidate genes for frost tolerance, and (4) perform candidate gene based and genome wide association mapping.
The project aims to theorize the scalar organization of natural resource governance in the European Union. This research agenda is inspired by critical geographers' work on the politics of scale. The research will examine an analytical framework derived from theories of institutional change and multi-level govern-ance to fill this theoretical gap. Furthermore, it will review conceptualizations of the state in institutional economics, evaluate their adequacy to capture the role of the state in the dynamics identified, and develop them further. The described processes may imply shifts in administrative levels, shifts in relations between different levels and changes in spatial delimitations of competent jurisdictions that result, for example, from decentralization or the introduction of river basin oriented administrative structures. The research investigates the implications of two European Directives: the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). They both have potentially great significance for the organization of marine and water governance at the level of Member States and below, and adhere to similar regulatory ideas for achieving good ecological status of waters. A multiple case study on changes in the scalar reorganization of marine and water governance that result from the implementation of the Directives will be carried out. It will rely on qualitative and quantitative data gathering based on semi-structured interviews and review of secondary and tertiary sources looking at Portugal, Spain, and Germany. It specifically addresses the role of social ecological transactions, the structure of decision making processes and the role of changes in contextual factors (such as ideologies, interdependent institutions and technology).
Climate warming allows invasive pests to establish in areas where they have not been recognized before. Since its introduction in the 1950s in South France, Grapevine Fla-vescence dorée (GFD), a major disease of grapevines, has spread significantly in Europe and has now reached the southeast of Styria, which currently marks the northeastern border of its extension. The present project aims to model the current and future potential distribution of the disease and its vector, the leafhopper Scaphoideus titanus, in Europe under the influence of climate change. Vine growing areas of high risk in Austria will be defined. An epidemiological model will simulate the temporal and spatial dynamics of the spread of the disease and its vector. The epidemiological model will then be used to assess the potential economic impact of GFD to Austrian viticulture. The results of the project will be communicated to stakeholders, risk managers, policy makers and the public.
Objective: This proposal has been prepared in the framework of a research and development roadmap defined by the European rotorcraft community that aims to develop a civil tilt-rotor aircraft. A key target of the road map is a flying demonstrator in the 2010 decade. NICETRIP specifically addresses the acquisition of new knowledge and technology validation concerning tilt-rotor. The main project objectives are: - To validate the European civil tilt-rotor concept based on the ERICA architecture; - To validate critical technologies and systems through the development, integration and testing of components of a tilt-rotor aircraft on full-scale dedicated rigs; - To acquire new knowledge on tilt-rotor through the development and testing of several wind tunnel models, including a large-scale full-span powered model; - To investigate and evaluate the introduction of tilt-rotors in the European Air Traffic Management System; - To assess the sustainability of the tilt-rotor product with respect to social and environmental issue s and to define the path towards a future tilt-rotor flying demonstrator. Project NICETRIP is fully relevant to the strategic objective 1.3.2.1: - Integration of technologies towards the future tilt-rotor aircraft, of the work programme of call 3 of the Thematic Priority Aeronautics and Space. The organisation and resources proposed to achieve the project objectives include a 54-month work plan made of 7 work packages and a consortium of 31 participants, fully representing the span of needed capabilities.
Objective: This project aims to develop, assess and train on various production chains for motor vehicle fuels ligno-cellulosic biomass sources will be used as feedstock to produce synthesis gas from which various vehicle fuels can be derived: CH4, methanol/DME, ethanol (thermo-chemical and enzymatic pathway) and a novel biomass-to-liquid (BTL) fuel. The project will develop and evaluate the respective processing technologies with a view to producing cost effective premium fuels for current and future combustion engines from a wide bandwidth of feedstock. Within 4 vertical subprojects, alternative thermo-chemical gasification, enzymatic fuel production and fuel synthesis processes will be considered, while 2 horizontal subprojects are directed towards technology assessment and training. Two pilot-produced fuels (DME and BTL) will be submitted to extensive motor-tests by 4 leading European car manufacturers within this project. Other fuels will be made available for tests in various other European R&D projects. It is envisaged that this project will lead to the introduction of favourably priced biomass-derived fuels for motor vehicles, from 2010 onwards. Apart from achieving scientific and technological results, RENEW has the vision to develop commonly agreed strategic recommendations, based on an understanding among relevant players in industry, agriculture and research concerning the technological and market potential of different bio-fuels and their production technologies. RENEW is novel and hugely important to Europe. It offers major Kyoto Protocol benefits, enhances the sustainability and security of vehicle fuel supply, and has positive Regional socio-economic impacts. RENEW involves 31 partners, including 7 SME, from 9 EU MS and AS countries. The consortium has the necessary 'critical mass' to achieve its goals and develop the technology to commercial stage beyond the end of the project.
Worldwide an important part of agricultural added value is produced under irrigation. By irrigation unproductive areas can be cultivated, additional harvests can be obtained or different crops can be planted. Since its introduction into Northern Thailand lychee has developed as one of the dominating cash crops. Lychee is produced in the hillside areas and has to be irrigated during the dry season, which is the main yield-forming period. Water therefore is mainly taken from sources or streams in the mountain forests. As nowadays all the available resources are being used do to increased production, a further increase in production can only be achieved by increasing the water use efficiency. In recent years, partial root-zone drying has become a well-established irrigation technique in wine growing areas. In a ten to fifteen days rhythm one part of the root system is irrigated while the other dries out and produces abscisic acid (ABA) a drought stress hormone. While the vegetative growth and thus labor for pruning is reduced, the generative growth remains widely unaffected. Thereby water-use efficiency can be increased by more than 40Prozent. In this sub-project the PRD-technique as well as other deficit irrigation strategies shall be applied in lychee and mango orchards and its effects on plant growth and yield shall be analyzed. Especially effects of this water-saving technology on the nutrient balance shall be considered, in order to develop an optimized fertigation strategy with respect to yield and fruit quality. As shown in preliminary studies, the nutrient supply is low in soils and fruit trees in Northern Thailand (e.g. phosphate) and even deficient for both micronutrients boron (B) and zinc (Zn). Additionally, non-adapted supply of nitrogen (mineralization, fertilization) can induce uneven flowering and fruit set. Therefore, improvement is necessary. For a better understanding of possible influence of low B and Zn supply on flowering and fruit set, mobility and retranslocation of both micronutrients shall be investigated for mango and lychee. Finally, the intended system of partial root-zone fertigation (PRF) shall guarantee an even flowering and a better yield formation under improved use of the limited resource water. As this modern technique, which requires a higher level of irrigation-technology, cannot be immediately spread among the farmers in the region, in a parallel approach potential users shall be integrated in a participative process for adaptation and development. Water transport and irrigation shall be considered, as both factors offer a tremendous potential for water saving. Local knowledge shall be integrated in the participatory process (supported by subproject A1.2, Participatory Research) in order to finally offer adapted technologies for application within PRF systems for the different conditions of farmers in the hillsides of Northern Thailand.
Forest structure is altered by humans for long times (Bramanti et al. 2009). The long lasting modification of forests pursuant to human demands modified the living conditions for birds as well as for many other animals. This included changes in resource availability (e.g., food, foraging, nesting sites) and changes of interspecific interactions, e.g., parasitism and predation (Knoke et al. 2009; Ellis et al. 2012). Also species compositions and the survivability of populations and even species are affected. The loss of foraging sites and suitable places for reproduction, the limitation of mobility due to fragmented habitats and the disturbances by humans itself may lead to more stressed individuals and less optimal living conditions. In certain cases species are not able to deal with the modified requirements and their populations will shrink and even vanish. Depending on the intensity of management and the remaining forest structure, biodiversity is more or less endangered. Especially in systems of two or more strongly connected taxa changing conditions that affect at least one part may subsequently affect the other, too. One system of interspecific communities that recently attracted the attention of biologists includes birds, blood parasites (haemosporidians) and their transmitting vectors. For instance, avian malaria (Plasmodium relictum) represents the reason for extreme declines in the avifauna of Hawaii since the introduction of respective vectors (e.g. Culicidae) during the 20th century (van Riper et al. 1986, Woodworth et al. 2005). With the current knowledge of this topic we are not able to predict if such incidences could also occur in Germany. All in all, different management strategies and intensity of forest management may influence the network of birds, vectors and blood parasites and change biodiversity. To elucidate this ecological complex, and to understand the interactions of the triad of songbirds as vertebrate hosts, dipteran vectors and haemosporidians within changing local conditions, I intend to collect data on the three taxa in differently managed forest areas, the given forest structure and the climatic conditions. I will try to explain the role of abiotic factors on infection dynamics, in detail the role of forest management intensity. Data acquisition takes place at three spatially divided locations: inside the Biodiversity Exploratory Schwäbische Alb, at the Mooswald in Freiburg, and inside the Schwarzwald.
Im Rahmen einer integrativ abgestimmten Maßnahmenplanung im Tibetischen Bezirk Panam soll neben Aktivitäten der Gesundheits- und Bildungsverbesserung sowie der Verwirklichung einer modernen Bewässerungslandwirtschaft auch das Prinzip der nachhaltig-multifunktionalen Waldwirtschaft eingeführt werden. Bei extremem Mangel an Wald gilt es Waldgrenzen und potenzielle Waldformen zu definieren sowie die Anforderungen an die möglichen Wälder den natürlichen Leistungspotenzialen gegenüberzustellen. Darauf abgestimmt ist es das Hauptziel der forstlichen Komponente, zur Abdeckung der gesellschaftlichen Bedürfnisse entsprechend standortsangepasste Aufforstungsmodelle abzuleiten und umzusetzen.
| Origin | Count |
|---|---|
| Bund | 32 |
| Type | Count |
|---|---|
| Förderprogramm | 32 |
| License | Count |
|---|---|
| offen | 32 |
| Language | Count |
|---|---|
| Deutsch | 6 |
| Englisch | 31 |
| Resource type | Count |
|---|---|
| Keine | 21 |
| Webseite | 11 |
| Topic | Count |
|---|---|
| Boden | 27 |
| Lebewesen und Lebensräume | 30 |
| Luft | 24 |
| Mensch und Umwelt | 32 |
| Wasser | 21 |
| Weitere | 32 |