Emeralds from Colombia are among the most highly-prized and valuable gemstones. Their growth phenomena including information about the geology of the area were described in detail by Pig-natelli et al. (2015, 2022) and Schmetzer and Martayan (2023). Here, we present data obtained by scanning electron microscopy (SEM), electron microprobe analysis (EMPA), and infrared absorption spectroscopy (IR) for five emerald crystals. The surface of the crystals shows both, growth phe-nomena as well as dissolution phenomena, the latter as etch pits (EP). Such EP have been used previously for other beryl types, mainly from pegmatitic environments (Kurumathoor and Franz, 2018); the Colombian emeralds come from low-grade metamorphosed black shales and thus offer the possibility to extend the use of EP as a provenance indicator to other types of beryl deposits. Internal structures are manifested in chemical zoning, investigated by EMPA and micro-X-ray fluo-rescence (µXRF). The crystals are characterized chemically by EMPA, polarized IR spectroscopy of oriented crystals showed the presence of fluids in the channels of the beryl structure.
EMMA – End Member Modelling Analysis of grain-size data is a technique to unmix multimodal grain-size data sets, i.e., to decompose the data into the underlying grain-size distributions (loadings) and their contributions to each sample (scores). The R package EMMAgeo contains a series of functions to perform EMMA based on eigenspace decomposition. The data are rescaled and transformed to receive results in meaningful units, i.e., volume percentage. EMMA can be performed in a deterministic and two robust ways, the latter taking into account incomplete knowledge about model parameters. The model outputs can be interpreted in terms of sediment sources, transport pathways and transport regimes (loadings) as well as their relative importance throughout the sample space (scores).
The dataset contains a set of structural and non-structural attributes collected using the GFZ RRVS methodology in Kyrgyzstan and Tajikistan, within the framework of the projects EMCA (Earthquake Model Central Asia), funded by GEM, and "Assessing Seismic Risk in the Kyrgyz Republic", funded by the World Bank. The survey has been carried out between 2012 and 2016 using a Remote Rapid Visual Screening system developed by GFZ and employing omnidirectional images and footprints from OpenStreetMap. The attributes are encoded according to the GEM taxonomy v2.0 (see https://taxonomy.openquake.org). The following attributes are defined (not all are observable in the RRVS survey): code description lon longitude in fraction of degrees lat latitude in fraction of degrees object_id unique id of the building surveyed MAT_TYPE Material Type MAT_TECH Material Technology MAT_PROP Material Property LLRS Type of Lateral Load-Resisting System LLRS_DUCT System Ductility HEIGHT Height YR_BUILT Date of Construction or Retrofit OCCUPY Building Occupancy Class - General OCCUPY_DT Building Occupancy Class - Detail POSITION Building Position within a Block PLAN_SHAPE Shape of the Building Plan STR_IRREG Regular or Irregular STR_IRREG_DT Plan Irregularity or Vertical Irregularity STR_IRREG_TYPE Type of Irregularity NONSTRCEXW Exterior walls ROOF_SHAPE Roof Shape ROOFCOVMAT Roof Covering ROOFSYSMAT Roof System Material ROOFSYSTYP Roof System Type ROOF_CONN Roof Connections FLOOR_MAT Floor Material FLOOR_TYPE Floor System Type FLOOR_CONN Floor Connections. For each building an EMCA vulnerability class has been assigned following the fuzzy scoring methodology described in Pittore et al., 2018. The related class definition schema (as a .json document) is included in the data package.
Multi-resolution exposure model for seismic risk assessment in the Kyrgyz Republic. The model has been developed according to the methodology outlined in Pittore, Haas and Silva (2019) "Multi-resolution Probabilistic Modelling of Residential Exposure and Vulnerability for Seismic Risk Applications", Earthquake Spectra. The model is aggregated over a Central Voronoidal Tessellation (CVT) composed of 1'175 geo-cells covering the territory of the Kyrgyz Republic. The model integrates around 6'000 building observations (see related dataset Pittore et al. 2019). The following specific modelling parameters have been employed: Two exposure models are provided, with prior strength pw 10 and 100. Both models have epsilon=0.001 (see publication indicated in the metadata for details on the modelling process). For each geo-cell the model includes the expected number of buildings , total occupancy and replacement cost for each of the 15 building types defined in the EMCA taxonomy (see Pittore et al, 2019b), plus the buildings that are belonging to other, non specified typologies (described by building type OTH). Each geo-cell also includes the area of the geo-cell itself in squared km. The data package contains three components: 1) exposure models in .csv 2) exposure models in .xml - the file is encoded in NRML 0.5 format and is compatible with the GEM openquake processing engine 3) shapefile of the tessellation that aggregates the exposure model. The field "cell_id" is the linkage with the exposure models
Multi-resolution exposure model for seismic risk assessment in Turkmenistan. The model has been developed according to the methodology outlined in Pittore, Haas and Silva (2019) "Multi-resolution Probabilistic Modelling of Residential Exposure and Vulnerability for Seismic Risk Applications", Earthquake Spectra. The model is aggregated over a Central Voronoidal Tessellation (CVT) composed of geo-cells covering the territory of Turkmenistan (provided as a separate file). The model prior is based on user-elicited knowledge. The following specific modelling parameters have been employed: Two exposure models are provided, with prior strength pw 10 and 100. Both models have epsilon=0.001 (see publication indicated in the metadata for details on the modelling process) For each geo-cell the model includes the expected number of buildings , total occupancy and replacement cost for each of the 15 building types defined in the EMCA taxonomy (see Pittore et al, 2019b), plus the buildings that are belonging to other, non specified typologies (described by building type OTH). Each geo-cell also includes the area of the geo-cell itself in squared km. The data package contains three components: 1) exposure models in .csv 2) exposure models in .xml - the file is encoded in NRML 0.5 format and is compatible with the GEM openquake processing engine 3) shapefile of the tessellation that aggregates the exposure model. The field "cell_id" is the linkage with the exposure models
Multi-resolution exposure model for seismic risk assessment in Kazakhstan. The model has been developed according to the methodology outlined in Pittore, Haas and Silva (2019) "Multi-resolution Probabilistic Modelling of Residential Exposure and Vulnerability for Seismic Risk Applications", Earthquake Spectra. The model is aggregated over a Central Voronoidal Tessellation (CVT) composed of geo-cells covering the territory of Kazakhstan (provided as a separate file). The model prior is based on user-elicited knowledge. The following specific modelling parameters have been employed: Two exposure models are provided, with prior strength pw 10 and 100. Both models have epsilon=0.001 (see publication indicated in the metadata for details on the modelling process). For each geo-cell the model includes the expected number of buildings , total occupancy and replacement cost for each of the 15 building types defined in the EMCA taxonomy (see Pittore et al, 2019b), plus the buildings that are belonging to other, non specified typologies (described by building type OTH). Each geo-cell also includes the area of the geo-cell itself in squared km. The data package contains three components: 1) exposure models in .csv 2) exposure models in .xml - the file is encoded in NRML 0.5 format and is compatible with the GEM openquake processing engine 3) shapefile of the tessellation that aggregates the exposure model. The field "cell_id" is the linkage with the exposure models
Multi-resolution exposure model for seismic risk assessment in Tajikistan. The model has been developed according to the methodology outlined in Pittore, Haas and Silva (2020) "Multi-resolution Probabilistic Modelling of Residential Exposure and Vulnerability for Seismic Risk Applications", Earthquake Spectra (submitted). The model is aggregated over a Central Voronoidal Tessellation (CVT) composed of geo-cells covering the territory of Tajikistan (provided as a separate file). The model integrates around 1'000 building observations (see related dataset Pittore et al. 2019a). The following specific modelling parameters have been employed: Prior strength=10, 100 Epsilon=0.001 For each geo-cell the model includes the expected number of buildings , total occupancy and replacement cost for each of the 15 building types defined in the EMCA taxonomy (see Pittore et al, 2019b), plus the buildings that are belonging to other, non specified typologies (described by building type OTH). Each geo-cell also includes the area of the geo-cell itself in squared km. The data package contains three components: 1) exposure models in .csv 2) exposure models in .xml - the file is encoded in NRML 0.5 format and is compatible with the GEM openquake processing engine 3) shapefile of the tessellation that aggregates the exposure model. The field "cell_id" is the linkage with the exposure models
Multi-resolution exposure model for seismic risk assessment in Uzbekistan. The model has been developed according to the methodology outlined in Pittore, Haas and Silva (2019) "Multi-resolution Probabilistic Modelling of Residential Exposure and Vulnerability for Seismic Risk Applications", Earthquake Spectra. The model is aggregated over a Central Voronoidal Tessellation (CVT) composed of geo-cells covering the territory of Uzbekistan (provided as a separate file). The model prior is based on empirical observations in Kyrgyzstan and Tajikistan as well as user-elicited knowledge. The following specific modelling parameters have been employed: Two exposure models are provided, with prior strength pw 10 and 100. Both models have epsilon=0.001 (see publication indicated in the metadata for details on the modelling process). For each geo-cell the model includes the expected number of buildings , total occupancy and replacement cost for each of the 15 building types defined in the EMCA taxonomy (see Pittore et al, 2019b), plus the buildings that are belonging to other, non specified typologies (described by building type OTH). Each geo-cell also includes the area of the geo-cell itself in squared km. The data package contains three components: 1) exposure models in .csv 2) exposure models in .xml - the file is encoded in NRML 0.5 format and is compatible with the GEM openquake processing engine 3) shapefile of the tessellation that aggregates the exposure model. The field "cell_id" is the linkage with the exposure models
The dataset contains a set of structural and non-structural attributes collected using the GFZ RRVS methodology in Kyrgyzstan and Tajikistan, within the framework of the projects EMCA (Earthquake Model Central Asia), funded by GEM, and "Assessing Seismic Risk in the Kyrgyz Republic", funded by the World Bank. The survey has been carried out between 2012 and 2016 using a Remote Rapid Visual Screening system developed by GFZ and employing omnidirectional images and footprints from OpenStreetMap. The attributes are encoded according to the GEM taxonomy v2.0 (see https://taxonomy.openquake.org). The following attributes are defined (not all are observable in the RRVS survey): code, description: lon, longitude in fraction of degrees lat, latitude in fraction of degrees object_id, unique id of the building surveyed MAT_TYPE,Material Type MAT_TECH,Material Technology MAT_PROP,Material Property LLRS,Type of Lateral Load-Resisting System LLRS_DUCT,System Ductility HEIGHT,Height YR_BUILT,Date of Construction or Retrofit OCCUPY,Building Occupancy Class - General OCCUPY_DT,Building Occupancy Class - Detail POSITION,Building Position within a Block PLAN_SHAPE,Shape of the Building Plan STR_IRREG,Regular or Irregular STR_IRREG_DT,Plan Irregularity or Vertical Irregularity STR_IRREG_TYPE,Type of Irregularity NONSTRCEXW,Exterior walls ROOF_SHAPE,Roof Shape ROOFCOVMAT,Roof Covering ROOFSYSMAT,Roof System Material ROOFSYSTYP,Roof System Type ROOF_CONN,Roof Connections FLOOR_MAT,Floor Material FLOOR_TYPE,Floor System Type FLOOR_CONN,Floor Connections For each building an EMCA vulnerability class has been assigned following the fuzzy scoring methodology described in Pittore et al., 2018. The related class definition schema (as a .json document) is included in the data package.
Origin | Count |
---|---|
Bund | 42 |
Wissenschaft | 16 |
Type | Count |
---|---|
Förderprogramm | 8 |
unbekannt | 50 |
License | Count |
---|---|
offen | 58 |
Language | Count |
---|---|
Deutsch | 41 |
Englisch | 20 |
Resource type | Count |
---|---|
Archiv | 12 |
Datei | 18 |
Keine | 22 |
Webdienst | 32 |
Webseite | 2 |
Topic | Count |
---|---|
Boden | 44 |
Lebewesen und Lebensräume | 6 |
Luft | 39 |
Mensch und Umwelt | 58 |
Wasser | 14 |
Weitere | 58 |