Messstelle betrieben von STANDORT KOBLENZ.
(1) Die Grenzen des Nationalparks ergeben sich aus dem beigefügten Kartenwerk, das Bestandteil dieses Gesetzes ist: 1. Digitale Topografische Karte (DTK) im Maßstab 1 : 100 000 (Anlage 2), 2. verkleinerte Amtliche Karte 1 : 5 000 (AK5) im Maßstab 1 : 10 000 (Anlage 3). Die geografischen Koordinaten der Anlagen 2 und 3 sind im geodätischen Referenzsystem WGS 84 sowie als projizierte Koordinaten im Europäischen Terrestrischen Referenzsystem 1989 (ETRS 89) mit der Universalen Transversalen Mercator-Abbildung bezogen auf die Zone 32 N (UTM 32N) dargestellt (Anlage 4); Gleiches gilt für die geografischen Koordinaten in den Anlagen 1 und 6. 3Die vom Nationalparkgebiet umschlossenen Flächen, die keiner der in § 5 Abs. 1 genannten Zonen zugeordnet sind, sind nicht Bestandteil des Nationalparks. (2) Für die Abgrenzung des Nationalparks ist seewärts und in den Mündungstrichtern von Ems, Weser und Elbe sowie in der Jade die Verbindungslinie zwischen den in der Anlage 2 eingetragenen, durch geografische Koordinaten bestimmten Punkten maßgeblich, soweit nicht in den Mündungstrichtern von Elbe und Weser zwischen zwei Koordinatenpunkten die niedersächsische Landesgrenze oder ein Leitwerk verläuft; in diesem Fall wird die Grenze durch die Landesgrenze oder den stromabgewandten Fuß des Leitwerks gebildet. (3) Die landwärtigen Grenzen des Nationalparks sind in den Anlagen 2 und 3 durch Punktlinien dargestellt. 2Auf den in den Anlagen 2 und 3 durch eine unterbrochene Punktlinie gekennzeichneten Grenzabschnitten ist die mittlere Hochwasserlinie maßgeblich. 3Auf den in den Anlagen 2 und 3 durch eine rote Punktlinie gekennzeichneten Abschnitten ist die seeseitige Grenze des Deiches (§ 4 Abs. 3 des Niedersächsischen Deichgesetzes) maßgeblich. 4Für den Verlauf der in den Anlagen 2 und 3 durch eine schwarze nicht unterbrochene Punktlinie gekennzeichneten Grenzen ist die Karte maßgeblich. 5Soweit gemäß Satz 3 die seeseitige Grenze des Deiches die Grenze des Nationalparks bildet, verändert sich diese Grenze mit den zugelassenen Veränderungen des vorhandenen Deiches. 6In diesem Fall macht das für den Naturschutz zuständige Ministerium soweit erforderlich die Anlagen 2 und 3 neu bekannt. Der Datensatz liefert die Grenzen als Vektoren. Die GIS-Daten können unter der Rubrik "Verweise" herunter geladen werden.
Der Datensatz „besondere Vegetationsstrukturen 2020 Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050“ besteht aus einem Punktshape, welches die Pilotstrecken (P) und Referenzstrecken (R) Masterplan Ems 2050 beinhaltet. Die punktuelle Kartierung liegt für folgende Ufer und Vorlandbereiche vor: Nendorp (linkes Ufer, Unterems-km 30,1-31,6), Nüttermoor (rechtes Ufer, UE-km 18,100 - 19,150 u. 22,000 - 22,500) sowie Brahe (linkes Ufer DEK 218,050 - 219,125 und 220,900 - 221, 400), Aschendorf (linkes Ufer, DEK 214,000 - 215,050 und 215,10 - 215,60). Das Shape umfasst Informationen (Attribute) zu den kartierten RL Arten Niedersachsen inkl. Mengenangaben nach dem Meldebogen für Arten der Roten Liste Gefäßpflanzen Niedersachsen sowie auffällige Gelände- und Vegetationsstrukturen wie z.B. Schnittgutablage, Fahrspuren, größere Bärenklaubestände, Wirtschaftsweg, Senke, Totholzstrauch... Des Weiteren ist in der Attributtabelle der Name des kartierten Gebietes festgehalten. Dieser Datensatz basiert auf Kartierungen von Ende April (28.04.2020) sowie Ende September, Anfang Oktober (22.09.2020 Pilot- und Referenzstrecke „Brahe“, 23.09.2020 Pilot- und Referenzstrecke „Nüttermoor“, 30.09.2020 Pilot- und Referenzstrecke „Aschendorf“, 01.10.2020 Vervollständigung der Erfassungen in den Referenzstrecken „Nendorp“ sowie „Nüttermoor“). Der Download enthält den Datensatz 2020Strukturen_V1.shp. Herausgeber: BfG Auftragnehmer: IBL Umweltplanung GmbH Zitiervorschlag: BfG (2022): Besondere Vegetationsstrukturen 2020 der Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050 im Auftrag des WSA Ems-Nordsee. DOI: 10.5675/Strukturen2020_MPEms_Ufer Weitere Informationen zu Dominanzbeständen oder Biotoptypen siehe Metadatensatz unter „Biotoptypenkarten 2020 Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050“ Weitere Informationen zum Projekt siehe unter https://www.masterplan-ems.info/massnahmen/uferentwicklung The dataset "special vegetation structures 2020 pilot stretches and reference stretches banks Masterplan Ems 2050" consists of a point shape, which includes the pilot stretches (P) and reference stretches (R) Masterplan Ems 2050. The point mapping is available for the following banks and foreland areas: Nendorp (left bank, Unterems-km 30.1-31.6), Nüttermoor (right bank, UE-km 18.100 - 19.150 and 22.000 - 22.500) as well as Brahe (left bank DEK 218.050 - 219.125 and 220.900 - 221, 400), Aschendorf (left bank, DEK 214.000 - 215.050 and 215.10 - 215.60). The shape includes information (attributes) on the mapped RL species of Lower Saxony incl. quantity data according to the reporting form for species of the Red List Vascular Plants Lower Saxony as well as conspicuous terrain and vegetation structures such as cuttings deposits, driving tracks, larger stands of Hogweed, farm track, depression, deadwood shrub…. Furthermore, the name of the mapped area is recorded in the attribute table. This data set is based on mapping from the end of April (28.04.2020) and the end of September, beginning of October (22.09.2020 pilot and reference route "Brahe", 23.09.2020 pilot and reference route "Nüttermoor", 30.09.2020 pilot and reference route "Aschendorf", 01.10.2020 completion of the mapping in the reference routes "Nendorp" and "Nüttermoor"). For further information on dominant stands or biotope types, see metadata record under "Biotope type maps 2020 pilot and reference stretches banks Masterplan Ems 2050". For more information on the project, see https://www.masterplan-ems.info/massnahmen/uferentwicklung
Die Bundesanstalt für Gewässerkunde (BfG) erstellt Abflussprojektionen für Pegel in den Einzugsgebieten von Donau, Elbe, Ems, Rhein und Weser und stellt diese als Beitrag und Grundlage zur Deutschen Anpassungsstrategie an den Klimawandel (DAS) über den DAS-Basisdienst "Klima und Wasser" bereit. Die Projektionen fußen auf den Szenarien und Daten, die auch den Berichten des Weltklimarates zugrunde liegen. Diese globalen Klimadaten werden durch Europäische Wetterdienste und Klimaforschungsinstitute für Europa regionalisiert. Für Deutschland und die internationalen Einzugsgebietsanteile werden diese Daten durch den Deutschen Wetterdienst (DWD) ebenfalls im Rahmen des DAS-Basisdienstes aufbereitet. Die BfG setzt die hydrometeorologischen Größen (Lufttemperatur, Niederschlag, Globalstrahlung, Wind, relative Luftfeuchte) und deren für die Zukunft projizierten Änderungen mittels eines Wasserhaushaltsmodells in Tageswerte hydrologischer Größen (u.a. Abfluss) um. Die hier bereitgestellten Daten basieren auf einem Klimadatenfundus, der im Kontext des 5. IPCC-Sachstandsberichts (IPCC, 2013) durch das globale Coupled Model Intercomparison Project Nr. 5 (CMIP5, Meehl und Bony, 2011) und den europäischen Teil des Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX, Jacob et al., 2014) sowie nationale Modellaktivitäten (ReKliEs-De, Hübner et al., 2017) generiert wurden. Die rohen Klimamodelldaten wurden durch die BfG einer grundlegenden Prüfung unterzogen (Nilson, 2021; Nilson et al., 2014) um unplausible Projektionen auszuschließen. Auf Basis dieser Prüfung ergeben sich somit Ensembles von 16 Abflussprojektionen für das Hochemissionsszenario RCP8.5, 11 Projektionen für das mittlere Szenario RCP4.5 und 10 Simulationen für das bzgl. klimaschutzfortgeschritten optimistische RCP2.6-Szenario. Die verbliebenen Klimaprojektionen wurden durch den DWD aufbereitet. Zu den Aufbereitungsschritten gehört eine multivariate Biasadjustierung (Cannon, 2018) auf Basis des hydrometeorologischen Referenzdatensatzes HYRAS (Tageswerte; z.B. Rauthe et al., 2013) sowie eine räumliche Disaggregierung auf das ebenfalls von HYRAS vorgegebene Raster von 5 km x 5 km. Auf dieser Grundlage wurden durch die BfG Simulationen mit dem Wasserhaushaltsmodell LARSIM-ME (Version 2019; Fleischer et al., in Vorber.) durchgeführt und in die bereitgestellten 37 Abflussprojektionen generiert. Die Projektionen sind u.a. in Teile der Klimawirkungs- und Risikoanalyse des Bundes für Deutschland eingeflossen (KWRA 2021). Die Veröffentlichung der nächsten Risikoanalyse ist für 2028 geplant (KRA 2028). Die Pflege und Weiterentwicklung der Modelle und Daten erfolgt kontinuierlich u.a. im Rahmen der Ressortforschung der Bundesministerien für Verkehr und Umwelt.
Das Sächsische Staatsministerium für Infrastruktur und Landesentwicklung (SMIL) unterstützt Städte und Gemeinden bei der sozialen Entwicklung ausgewählter Stadtgebiete mit Landesmitteln und Mitteln aus dem Europäischen Sozialfonds (ESF). Der Datensatz enthält die Fördergebiete der teilnehmenden Gemeinden für den Zeitraum 2021-2027.
Die Biotoptypenkarten 2020 für die Pilotstrecken (P) und Referenzstrecken (R) Masterplan Ems 2050 basieren auf hochauflösenden RGBI-Luftbildern (räumliche Auflösung 2 cm) für die Uferbereiche Nendorp (linkes Ufer, Unterems-km 30,1-31,6), Nüttermoor (rechtes Ufer, UE-km 18,100 - 19,150 u. 22,000 - 22,500) sowie Brahe (linkes Ufer DEK 218,050 - 219,125 und 220,900 - 221, 400), Aschendorf (linkes Ufer, DEK 214,000 - 215,050 und 215,10 - 215,60). Auf Basis der Spektralkanälen der Luftbilder sowie auf den Berechnungen von Vegetationsindex, Oberflächenrauhigkeit und Oberflächenhöhe wurde zunächst eine überwachte Klassifikation durchgeführt. Die hierdurch vordefinierten Vegetationsklassen dienten im Feld, um nach dem Niedersächsischen Kartierschlüssel Drachenfels 2020 die Biotoptypen inkl. Untereinheiten zu kartieren. Die Biotoptypenklassen sind in den BfG-Kartierschlüssel übersetzt worden. Ebenso enthält die Attributtabelle die zwei dominantesten Pflanzenarten pro Biotopfläche. Herausgeber: BfG Auftragnehmer: IBL Umweltplanung GmbH Zitiervorschlag: BfG (2022): Biotoptypenkarten 2020 der Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050 im Auftrag des WSA Ems-Nordsee. DOI: 10.5675/Btty2020_MPEms_Ufer Weitere Informationen zu Dominanzbeständen oder Biotoptypen siehe Metadatensatz unter „Biotoptypenkarten 2020 Pilotstrecken und Referenzstrecken Ufer Masterplan Ems 2050“ Weitere Informationen zum Projekt siehe unter https://www. masterplan-ems.info/massnahmen/uferentwicklung Folgende Dateien sind im Download enthalten: - 2020_Btty_Asd_P_V4m.shp -2020_Btty_Asd_R_V4m.shp -2020_Btty_Bra_P_V4m.shp -2020_Btty_Bra_R_V4m.shp -2020_Btty_Nen_P_V4m.shp -2020_Btty_Nen_R_V4m.shp -2020_Btty_Nue_P_V4m.shp -2020_Btty_Nue_R_V4m.shp -2020_BTTY_Drachenfels_gesamt.lyr -2020_BTTY_Bericht_V2.pdf The biotope type maps 2020 for the pilot stretches (P) and reference stretches (R) are based on high-resolution RGBI aerial photographs (spatial resolution 2 cm) for the riparian areas Nendorp (left bank, Unterems-km 30.1-31.6), Nüttermoor (right bank, UE-km 18.100 - 19.150 u. 22.000 - 22.500) as well as Brahe (left bank DEK 218.050 - 219.125 and 220.900 - 221.400), Aschendorf (left bank, DEK 214.000 - 215.050 and 215.10 - 215.60). Based on the spectral channels of the aerial photographs and on the calculations of vegetation index, surface roughness and surface height, a supervised classification was first carried out. The vegetation classes predefined by this were used in the field to map the biotope types according to the Lower Saxony mapping key Drachenfels 2020. The biotope type classes have been translated into the BfG mapping key. Likewise, the attribute table contains the two most dominant plant species per biotope area. For further information on dominant stands or biotope types, see metadata record under "Biotope type maps 2020 pilot and reference stretches banks Masterplan Ems 2050". For more information on the project, see https://www.masterplanems. info/massnahmen/uferentwicklung
In der Karte werden die Verbrauchswerte für Strom, Wärme und Wasser an den Dresdner Schulen bzw. Schulkomplexen angezeigt. Der Wärmeverbrauch ist nicht witterungsbereinigt. Das Ziel der Bereitstellung der Daten ist es, den Verbrauch öffentlicher Einrichtungen am Beispiel von Schulen mit ihrem Bedarf an Energie und Wasser zu verdeutlichen. Dies kann für den Unterricht in der Auseinandersetzung zum Thema Nachhaltigkeit von Interesse sein. Die Nutzer der Gebäude sollen damit besser in die Lage versetzt sein, sich über die Veröffentlichung von vorliegenden realen Werten mit dem ökologischen Fußabdruck einer Schule auseinanderzusetzen. Die Werte einzelner Schulen sind nur bedingt untereinander vergleichbar, da der Energieverbrauch von der Größe und Art des Gebäudes sowie der Anzahl der Schüler abhängt. Die Werte geben einen beschränkten Einblick in den Verbrauch, da sie nur je Schulareal vorliegen. Befindet sich auf einem Grundstück lediglich eine Schule, besitzen die Werte einen hohen Aussagewert zur Schule. Liegen jedoch beispielsweise zwei Schulen auf einem Grundstück oder hat eine Schule verteilte Standorten kann nur begrenzt Rückschluss auf die einzelnen Schulgebäude gezogen werden. Die Daten werden aus dem Energiemanagementsystem im Amt für Hochbau und Immobilienverwaltung der Landeshauptstadt Dresden abgerufen und stammen im Wesentlichen aus Vertragsabrechnungen mit dem Versorger sowie eigenen Zählerstand-Ablesungen. Es handelt sich bei den Verbrauchswerten für Wärme um Nutzenergie in MWh. Diese werden unabhängig vom Energieträger angegeben und somit sind z.B. Wandlungsverluste nicht abgebildet. Daten aus Vertragsabrechnungen liegen auf Grund des rollierenden Abrechnungssystems des Versorgers in der Regel 1-2 Jahre nach dem Abrechnungsjahr vor. Eigene Zählerstand-Ablesungen werden in der Regel quartalsweise in das Energiemanagementsystem eingepflegt. Eine detaillierte Aufschlüsselung der Verbräuche auf die einzelnen Gebäude kann bei Bedarf beim Sachgebiet Energie- und Wasserwirtschaft angefragt werden. Über das Open-Data-Portal der Landeshauptstadt Dresden können zudem die Rohdaten eingesehen werden. Die Datenbereitstellung wurde im Rahmen des Europäischen Projektes MAtchUP (www.dresden.de/matchup) ermöglicht.
In der Karte werden die Verbrauchswerte für Strom, Wärme und Wasser an den Dresdner Schulen bzw. Schulkomplexen angezeigt. Der Wärmeverbrauch ist nicht witterungsbereinigt. Das Ziel der Bereitstellung der Daten ist es, den Verbrauch öffentlicher Einrichtungen am Beispiel von Schulen mit ihrem Bedarf an Energie und Wasser zu verdeutlichen. Dies kann für den Unterricht in der Auseinandersetzung zum Thema Nachhaltigkeit von Interesse sein. Die Nutzer der Gebäude sollen damit besser in die Lage versetzt sein, sich über die Veröffentlichung von vorliegenden realen Werten mit dem ökologischen Fußabdruck einer Schule auseinanderzusetzen. Die Werte einzelner Schulen sind nur bedingt untereinander vergleichbar, da der Energieverbrauch von der Größe und Art des Gebäudes sowie der Anzahl der Schüler abhängt. Die Werte geben einen beschränkten Einblick in den Verbrauch, da sie nur je Schulareal vorliegen. Befindet sich auf einem Grundstück lediglich eine Schule, besitzen die Werte einen hohen Aussagewert zur Schule. Liegen jedoch beispielsweise zwei Schulen auf einem Grundstück oder hat eine Schule verteilte Standorten kann nur begrenzt Rückschluss auf die einzelnen Schulgebäude gezogen werden. Die Daten werden aus dem Energiemanagementsystem im Amt für Hochbau und Immobilienverwaltung der Landeshauptstadt Dresden abgerufen und stammen im Wesentlichen aus Vertragsabrechnungen mit dem Versorger sowie eigenen Zählerstand-Ablesungen. Es handelt sich bei den Verbrauchswerten für Wärme um Nutzenergie in MWh. Diese werden unabhängig vom Energieträger angegeben und somit sind z.B. Wandlungsverluste nicht abgebildet. Daten aus Vertragsabrechnungen liegen auf Grund des rollierenden Abrechnungssystems des Versorgers in der Regel 1-2 Jahre nach dem Abrechnungsjahr vor. Eigene Zählerstand-Ablesungen werden in der Regel quartalsweise in das Energiemanagementsystem eingepflegt. Eine detaillierte Aufschlüsselung der Verbräuche auf die einzelnen Gebäude kann bei Bedarf beim Sachgebiet Energie- und Wasserwirtschaft angefragt werden. Über das Open-Data-Portal der Landeshauptstadt Dresden können zudem die Rohdaten eingesehen werden. Die Datenbereitstellung wurde im Rahmen des Europäischen Projektes MAtchUP (www.dresden.de/matchup) ermöglicht.
Besonders im städtischen Kontext stellen hydraulische Netze zur Wärme- und Kälteversorgung eine erprobte Technologie dar, da sie mit zentralen energetischen Wandlungseinheiten ausgestattet sind. Die Einbindung von regenerativen Quellen in diese zentralen Systeme ist erstrebenswert, jedoch technisch schwierig. Zwar gibt es eine ganze Reihe von Feldtests, die z.B. solarthermische Erzeugungseinheiten einzubinden versuchen, jedoch treten hier neue limitierende Elemente auf, welche den gemeinsamen Betrieb beeinflussen. Auch bei PV-Systemen existieren Hemmnisse, obwohl im urbanen Raum Dach- und theoretisch auch Fassadenflächen zur Verfügung stehen. PV-Systeme im urbanen Raum werden für eine ganzheitliche Betrachtung derzeit kaum mit Fernwärmesystemen in Bezug gesetzt, was zu einer starken Belastung des örtlichen Niederspannungsnetzes führt. Ziel muss es daher sein, Anlagentechnik sowie digitale Lösungen zu entwickeln, welche es ermöglichen, ein lokales Energiemanagementsystem zu realisieren und somit zur energetischen Versorgung der Liegenschaft mehr regenerative Energie in einem multienergetischen System zu integrieren. Ein digitalisierter Ein- und Ausspeisepunkt löst dieses Problem und ermöglicht prädiktiv den Wärme- und Kältebedarf in der Liegenschaft vorauszubestimmen. Zielorientiert muss der Ein- und Ausspeisepunkt so gestaltet sein, dass er möglichst eine Verknüpfung der Energiemanagementsysteme des Gebäudes und des übergeordneten regionalen hydraulischen Netzbetreibers aufweist. Weiterhin muss es möglich sein, verschiedene dezentrale Systeme anzubinden. Im Rahmen des Forschungsvorhabens wird die TU Dresden an der Systemanalyse arbeiten, welche sich besonders auf die Sekundärtechnologie, d.h. die Technologie im Gebäude bezieht. Des Weiteren werden messtechnische Untersuchungen des zu entwickelnden Prototyps im Combined Energy Lab 3.0 durchgeführt.'
| Origin | Count |
|---|---|
| Bund | 2220 |
| Kommune | 7 |
| Land | 914 |
| Schutzgebiete | 1 |
| Wirtschaft | 37 |
| Wissenschaft | 20 |
| Zivilgesellschaft | 168 |
| Type | Count |
|---|---|
| Chemische Verbindung | 19 |
| Daten und Messstellen | 423 |
| Ereignis | 7 |
| Förderprogramm | 1202 |
| Hochwertiger Datensatz | 7 |
| Infrastruktur | 186 |
| Taxon | 1 |
| Text | 811 |
| Umweltprüfung | 115 |
| WRRL-Maßnahme | 302 |
| unbekannt | 310 |
| License | Count |
|---|---|
| geschlossen | 776 |
| offen | 2127 |
| unbekannt | 78 |
| Language | Count |
|---|---|
| Deutsch | 2913 |
| Englisch | 712 |
| Resource type | Count |
|---|---|
| Archiv | 302 |
| Bild | 102 |
| Datei | 302 |
| Dokument | 628 |
| Keine | 1086 |
| Unbekannt | 1 |
| Webdienst | 138 |
| Webseite | 1503 |
| Topic | Count |
|---|---|
| Boden | 1330 |
| Lebewesen und Lebensräume | 2432 |
| Luft | 1087 |
| Mensch und Umwelt | 2765 |
| Wasser | 1531 |
| Weitere | 2898 |