API src

Found 576 results.

Related terms

Ecological valuation of crop pollination in traditional Indonesian homegardens

Traditional Indonesian homegardens harbour often high crop diversity, which appears to be an important basis for a sustainable food-first strategy. Crop pollination by insects is a key ecosystem service but threatened by agricultural intensification and land conversion. Gaps in knowledge of actual benefits from pollination services limit effective management planning. Using an integrative and agronomic framework for the assessment of functional pollination services, we will conduct ecological experiments and surveys in Central Sulawesi, Indonesia. We propose to study pollination services and net revenues of the locally important crop species cucumber, carrot, and eggplant in traditional homegardens in a forest distance gradient, which is hypothesized to affect bee community structure and diversity. We will assess pollination services and interactions with environmental variables limiting fruit maturation, based on pollination experiments in a split-plot design of the following factors: drought, nutrient deficiency, weed pressure, and herbivory. The overall goal of this project is the development of 'biodiversity-friendly' land-use management, balancing human and ecological needs for local smallholders.

Coordination and administration of the priority programme SPP 1315 Biogeochemical Interfaces in Soil, Biotic and abiotic factors that dive the function of microbial communities at biogeochemical interfaces in different soils (BAMISO)

Biogeochemical interfaces shape microbial community function in soil. On the other hand microbial communities influence the properties of biogeochemical interfaces. Despite the importance of this interplay, basic understanding of the role of biogeochemical interfaces for microbial performance is still missing. We postulate that biogeochemical interfaces in soil are important for the formation of functional consortia of microorganisms, which are able to shape their own microenvironment and therefore influence the properties of interfaces in soil. Furthermore biogeochemical interfaces act as genetic memory of soils, as they can store DNA from dead microbes and protect it from degradation. We propose that for the formation of functional biogeochemical interfaces microbial dispersal (e.g. along fungal networks) in response to quality and quantity of bioavailable carbon and/or water availability plays a major role, as the development of functional guilds of microbes requires energy and depends on the redox state of the habitat.To address these questions, hexadecane degradation will be studied in differently developed artificial and natural soils. To answer the question on the role of carbon quantity and quality, experiments will be performed with and without litter material at different water contents of the soil. Experiments will be performed with intact soil columns as well as soil samples where the developed interface structure has been artificially destroyed. Molecular analysis of hexadecane degrading microbial communties will be done in vitro as well as in situ. The corresponding toolbox has been successfully developed in the first phase of the priority program including methods for genome, transcriptome and proteome analysis.

Emmy Noether-Nachwuchsgruppen, Mechanisms regulating the boron nutritional status in rapeseed and Arabidopsis and their implications for the development of boron-efficient genotypes

Boron (B) is an essential microelement for plants. Despite the use of modern fertilization methods, B deficiency still causes losses in agricultural plant production. Even though many positive effects of B on plant growth and physiology have been reported, a large majority of B functions and the regulatory mechanisms controlling the B nutritional status remain unknown. The main objective of this project is to elucidate how the greatly B deficiency-sensitive Brassica crop plants process and regulate their B status during vegetative and reproductive growth. In this context, the project aims at identifying the mode of action of B in mechanisms regulating the B status itself and uncovering those mechanisms contributing to B efficiency in different genotypes. Plant species subjected to investigation will be the agronomically important oilseed and vegetable plant Brassica napus (rapeseed) and its close relative the genetic and molecular model plant Arabidopsis thaliana. Questions addressed within the scope of this project should lead to a detailed understanding of mechanisms controlling B uptake and allocation from the level of the whole plant down to the cellular level. B transport routes and rates will be determined in sink- and source tissues and in developmental periods with a particularly high B demand. A special focus will be on the identification of B transport bottlenecks and the analysis of B deficiency-sensitive transport processes to and within the highly B-demanding reproductive organs. Recent studies in Arabidopsis suggest that Nodulin26-like Intrinsic Proteins (NIPs), which belong to the aquaporin channel protein family, are essential for plant B uptake and distribution. The systematic focus on the molecular and physiological characterization of B. napus NIPs will clarify their role in B transport and will identify novel NIP-associated mechanisms playing key roles in the B response network.To further resolve the mostly unknown impact of the B nutritional status on gene regulation and metabolism, a transcript and metabolite profile of B-sufficient and B-deficient rapeseed plants will be generated. Additionally, an Arabidopsis transcription factor knockout collection (greater 300 lines) will be screened for abnormalities in responses to the B nutritional status. This will identify yet unknown B-responsive genes (transcription factors and their targets) and gene products (enzymes or metabolite variations) playing key roles in signalling pathways and mechanisms regulating the B homeostasis. Boron (in form of boric acid) and arsenite (As) share in all likelihood the same NIP-mediated transport pathways. To assess the consequences of this dual transport pathway the so far unstudied impact of the plants B nutritional status on the accumulation and distribution of As will be investigated in B. napus. Moreover, the current dimension of the As contamination of Brassica-based food products, to which consumers are exposed to, will be analyzed. usw.

Pilzinfektionen auf Phytoplankton unbekannter Störfaktor für das Wachstum von Phytoplankton, sowie für Recycling- und Sedimentationsprozesse

Pilze sind eine der am diversesten, jedoch am wenigsten untersuchten mikrobiellen Gruppen in marinen Gewässern. Eine Untergruppe der Pilze, kurz als Chytridien bekannt, umfasst häufig auftretende Parasiten auf Phytoplankton, welche eine starke Belastung für das Phytoplanktonwachstum, die Entwicklung von Algenblüten und deren Populationsdynamiken darstellen. Parasitäre Chytridien befallen alle Hauptgruppen von Phytoplankton und treten bevorzugt in Küstenregionen mit hoher Phytoplanktonbiomasse und Produktivität auf. Die Auswirkungen von parasitären Pilzen auf Stoffkreisläufe und die Funktion von Ökosystemen sind jedoch kaum bekannt bzw. quantifiziert. Die Emmy Noether-Nachwuchsgruppe wird die funktionelle und quantitative Rolle parasitärer Pilze für die Phytoplanktonproduktivität und den Stoffkreislauf in Brack- und Meerwasser untersuchen. Unsere Ziele sind (1) Betrachtung der Wechselwirkungen zwischen Phytoplankton und Chytridien auf Einzelzell-Ebene, (2) Untersuchungen der integrativen Rolle von Chytridien in aquatischen Nahrungsnetzen und (3) Aufklärung der Auswirkungen von parasitären Pilzen auf Remineralisierungs- und Sedimentationsprozesse. Unser umfassender Ansatz beinhaltet experimentelle Studien mit Phytoplanktonâ€ÌPilz Co-Kulturen sowie mit natürlichen Planktongemeinschaften, mittels Analysen auf Zell- und Mikoskalen-Ebene bis hin zu mesoskaligen Stoffflüssen entlang der Wassersäule. Im Wesentlichen werden wir den Transfer von Kohlenstoff und Stickstoff vom Phytoplankton durch das pelagische Nahrungsnetz innerhalb der photischen Zone bis hin zum Absinken als Detritus in die Tiefe verfolgen. Das Projektergebnis soll ein ganzheitliches Verständnis der Rolle von Chytridien an der Basis aquatischer Nahrungsnetze und Produktivität fördern, einschließlich der zugrunde liegenden Mechanismen und Größenordnungen. Angesichts der potenziellen Signifikanz parasitärer Pilze für die Abschwächung von Produktivität, Sinkstoffflüssen aber auch von toxischen Algenblüten in Küstengebieten, sollen die gewonnenen Daten mit lokalen und globalen Stoffkreisläufen verknüpft und in zukünftige Entscheidungen zum Küstenmanagement implementiert werden.

The parent material as major factor for the properties of the biogeochemical interface: Integrative analysis

The formation of biogeochemical interfaces in soils is controlled, among other factors, by the type of particle surfaces present and the assemblage of organic matter and mineral particles. Therefore, the formation and maturation of interfaces is studied with artificial soils which are produced in long-term biogeochemical laboratory incubation experiments (3, 6, 12, 18 months. Clay minerals, iron oxides and charcoal are used as major model components controlling the formation of interfaces because they exhibit high surface area and microporosity. Soil interface characteristics have been analyzed by several groups involved in the priority program for formation of organo-mineral interfaces, sorptive and thermal interface properties, microbial community structure and function. Already after 6 months of incubation, the artificial soils exhibited different properties in relation to their composition. A unique dataset evolves on the development and the dynamics of interfaces in soil in the different projects contributing to this experiment. An integrated analysis based on a conceptual model and multivariate statistics will help to understand overall processes leading to the biogeochemical properties of interfaces in soil, that are the basis for their functions in ecosystems. Therefore, we propose to establish an integrative project for the evaluation of data obtained and for publication of synergistic work, which will bring the results to a higher level of understanding.

Entwicklung des zukünftigen Wasserbedarfs in verschiedenen Sektoren - Bestimmungsmethoden, Projektionen und Szenarien

Der Klimawandel wirkt sich in Deutschland auf die verfügbaren Wasserressourcen und ihre regionale und saisonale Verteilung aus. Zukünftig wird es nicht nur erforderlich sein, die Prognosefähigkeit des Wasserhaushaltes hinsichtlich der verfügbaren Wassermenge regional und saisonal differenziert zu verbessern, sondern auch verbesserte Einschätzungen zur Entwicklung der Wasserbedarfe verfügbar zu haben. Die Wasserbedarfe werden neben politischen Entscheidungen, von technologischen Neuerungen, dem demografischen Wandel und vom Klimawandel beeinflusst. Aufbauend auf den Arbeiten verschiedener Refo-Plan Vorhaben (z.B. WADKlim, EE & Wasser) sowie Arbeiten anderer Institutionen wird die zukünftige Entwicklung von Wasserbedarfen in den Sektoren Haushalte, Landwirtschaft, Energie, Industrie und ggf. weiterer (z.B. Tourismus) zusammengetragen und gemeinsam analysiert. Dabei soll nach Zeithorizont und Region sowie verwendeter Datengrundlage und Methodik kategorisiert werden. Auf der Grundlage dieser zusammenfassenden Darstellung wird zunächst ein strukturierter Überblick über die zur Verfügung stehenden Methoden zur Bestimmung der Wasserbedarfe erarbeitet. Dieser Überblick zeigt die Einsatzbereiche der jeweiligen Methode, verdeutlicht aber auch methodische Grenzen und den geeigneten Zeithorizont. Weiterhin werden auf der Basis der vorangegangenen Arbeitsschritte Szenarien für zukünftige Wasserbedarfe entwickelt. Der zukünftige Wasserbedarf soll abgeschätzt und eventuelle Lücken in der Darstellung der Wasserbedarfe mit Simulationsrechnungen geschlossen werden. Die 'Wasserbedarfs-Szenarien' sollen -vergleichbar zu den Klimaszenarien- mögliche Entwicklungskorridore aufzeigen, verstärkende Effekte des Klimawandels berücksichtigen, Aussagen auf unterschiedlichen Skalen (z.B. national, aber auch regional – evtl. Ebene der Wasserversorgungskonzepte) ermöglichen, die Wirkung von Steuerungsmaßnahmen abbilden sowie die erforderlichen Daten nennen.

Forest vegetation development in the Bavarian Forest National Park following the 1983 windfall event

In the Bavarian Forest National Park a brief, but intense storm event on 1 August 1983 created large windfall areas. The windfall ecosystems within the protection zone of the park were left develop without interference; outside this zone windfall areas were cleared of dead wood but not afforested. A set of permanent plots (transect design with 10 to 10 m plots) was established in 1988 in spruce forests of wet and cool valley bottoms in order to document vegetation development. Resampling shall take place every five years; up to now it was done in 1993 and 1998. On cleared areas an initial raspberry (Rubus idaeus) shrub community was followed by pioneer birch (Betula pubescens, B. pendula) woodland, a sequence well known from managed forest stands. In contrast to this, these two stages were restricted to root plates of fallen trees in uncleared windfalls; here shade-tolerant tree species of the terminal forest stages established rather quickly from saplings that had already been present in the preceeding forest stand. Soil surface disturbances are identified to be causal to the management pathway of forest development, wereas the untouched pathway is caused by relatively low disturbance levels. The simulation model FORSKA-M is used to analyse different options of further stand development with a simulation time period of one hundred years.

Barley dwarfs acting big in agronomy. Identification of genes and characterization of proteins involved in dwarfism, lodging resistance and crop yield

Barley (Hordeum vulgare) is an important cereal grain which serves as major animal fodder crop as well as basis for malt beverages or staple food. Currently barley is ranked fourth in terms of quantity of cereal crops produced worldwide. In times of a constantly growing world population in conjunction with an unforeseeable climate change and groundwater depletion, the accumulation of knowledge concerning cereal growth and rate of yield gain is important. The Nordic Genetic Resource Center holds a major collection of barley mutants produced by irradiation or chemical treatment. One phenotypic group of barley varieties are dwarf mutants (erectoides, brachytic, semidwarf, uzu). They are characterized by a compact spike and high rate of yield while the straw is short and stiff, enhancing the lodging resistance of the plant. Obviously they are of applied interest, but they are also of scientific interest as virtually nothing is known about the genes behind the development of plant dwarfism. The aim of this project is to identify and isolate the genes carrying the mutations by using state of the art techniques for gene cloning at the Carlsberg Laboratory. The identified genes will be connected with the mutant phenotype to reveal the gene function in general. One or two genes will be overexpressed and the resulting recombinant proteins will be biochemically and structurally characterized. The insights how the mutation effects the protein will display the protein function in particular. Identified genes and their mutant alleles will be tested in the barley breeding program of the Carlsberg brewery.

Forschergruppe (FOR) 861: Cross-scale Monitoring: Biodiversity and Ecosystem Functions, Quantification of functional hydro-biogeochemical indicators in Ecuadorian ecosystems and their reaction on global change

Water is an intrinsic component of ecosystems acting as a key agent of lateral transport for particulate and dissolved nutrients, forcing energy transfers, triggering erosion, and driving biodiversity patterns. Given the drastic impact of land use and climate change on any of these components and the vulnerability of Ecuadorian ecosystems with regard to this global change, indicators are required that not merely describe the structural condition of ecosystems, but rather capture the functional relations and processes. This project aims at investigating a set of such functional indicators from the fields of hydrology and biogeochemistry. In particular we will investigate (1) flow regime and timing, (2) nutrient cycling and flux rates, and (3) sediment fluxes as likely indicators. For assessing flow regime and timing we will concentrate on studying stable water isotopes to estimate mean transit time distributions that are likely to be impacted by changes in rainfall patterns and land use. Hysteresis loops of nitrate concentrations and calculated flux rates will be used as functional indicators for nutrient fluxes, most likely to be altered by changes in temperature as well as by land use and management. Finally, sediment fluxes will be measured to indicate surface runoff contribution to total discharge, mainly influenced by intensity of rainfall as well as land use. Monitoring of (1) will be based on intensive sampling campaigns of stable water isotopes in stream water and precipitation, while for (2) and (3) we plan to install automatic, high temporal-resolution field analytical instruments. Based on the data obtained by this intensive, bust cost effective monitoring, we will develop the functional indicators. This also provides a solid database for process-based model development. Models that are able to simulate these indicators are needed to enable projections into the future and to investigate the resilience of Ecuadorian landscape to global change. For the intended model set up we will couple the Catchment Modeling Framework, the biogeochemical LandscapeDNDC model and semi-empirical models for aquatic diversity. Global change scenarios will then be analyzed to capture the likely reaction of functional indicators. Finally, we will contribute to the written guidelines for developing a comprehensive monitoring program for biodiversity and ecosystem functions. Right from the beginning we will cooperate with four SENESCYT companion projects and three local non-university partners to ensure that the developed monitoring program will be appreciated by locals and stakeholders. Monitoring and modelling will focus on all three research areas in the Páramo (Cajas National Park), the dry forest (Reserva Laipuna) and the tropical montane cloud forest (Reserva Biologica San Francisco).

Forschergruppe (FOR) 986: Structural Change in Agriculture, How should Model Linkages be designed to analyze the Effects of Global Agricultural Trade Liberalization at the Farm Level?

In the last decades agricultural policy has gained increasingly in complexity. Nowadays it influences the food and agricultural sector from the global market down to the farm level. Widespread research questions, like the impact of the WTO negotiations on the farm structure, most often require comprehensive modeling frameworks. Thus, different types of models are utilized according to their comparative advantages and combined in a strategically useful way to more accurately represent micro and macro aspects of the food and agricultural sector. Consequently, in recent years we have seen an increase in the development and application of model linkages. Given this background, the overall objective of this subproject is a systematic sensitivity analysis of model linkages that gradually involves more and more characteristics of the linkage and the corresponding transfer of results between models. In addition, the project aims to answer the following specific question: How does structural change at the farm level influence aggregate supply and technical progress? Under which conditions is it possible to derive macro-relationships from micro-relationships? How does the aggregation level influence the model results and how can possible problems be overcome? This procedure is used to quantify the effects and to derive conditions for optimal interaction of the connected models. The analysis is based on the general equilibrium model GTAP (Global Trade Analysis Project) and the farm group model FARMIS (Farm Modelling Information System) which are employed in conjunction to analyze the effects of WTO negotiations on the farm level.

1 2 3 4 556 57 58