Innerhalb des Geschäftsbereiches des Bundesministeriums für Verkehr und Digitale Infrastruktur (BMVI) werden Wasserstandsdaten insbesondere durch die Oberbehörden Bundesanstalt für Gewässerkunde (BfG) sowie Bundesamt für Seeschifffahrt und Hydrographie (BSH) für verschiedenste Anwendungen im Küstenbereich bzw. Seebereich der Nord- und Ostsee ausgewertet. Die Wasserspiegeldaten basieren primär auf Pegelbeobachtungen, die sich für marine bzw. ästuarine Fragestellungen überwiegend auf Standorte an der Küstenline beschränken. Für eine Vielzahl an Anwendungen bedeutet dies eine signifikante Einschränkung hinsichtlich der Verfügbarkeit und Qualität von Basisinformationen. Daher wird im Rahmen einer durch die BfG gesteuerten Vorstudie untersucht, welche Möglichkeiten sich aus der Satellitenaltimetrie ergeben, wenn die Satelliten als 'Pegel am Himmel' aufgefasst werden und somit linien-/ flächenhafte Quasi-Pegelbeobachtungen auf offener See liefern. Als wesentliche Voraussetzung für die erfolgreiche Integration der Satellitenaltimetrie in die derzeitigen Verfahrensabläufe ist die zu den Pegelmessungen konsistente Aufbereitung der Satellitenbeobachtungen und insbesondere eine Anpassung an die lokalen Gegebenheiten in der Nordsee zu sehen.
The data set provides GFZ VER13 orbits of altimetry satellites:ERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),TOPEX/Poseidon (September 23, 1992 - October 8, 2005),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)derived at the time spans given at the GFZ German Research Centre for Geosciences (Potsdam, Germany) within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software (Zhu et al., 2004) and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the ITRF2014 terrestrial reference frame for all satellites using common, most precise models and standards available and described below.The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1, and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations. For Envisat, altimeter crossover data were used additionally at 44 of 764 orbital arcs with gaps in SLR and DORIS data.The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c). Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM for month and DD for day of the beginning of the file. More details on these orbits are provided in Rudenko et al. (2018) to which these orbits are supplementary material.
Reliable prediction of the future evolution of the ozone layer and surface UV is urgently required as a basis for informed decisions by European policy makers. The state of the ozone layer over the next decades will depend on the interplay between climate change and the impact and evolution of ozone depleting substances such as CFCs. The Montreal Protocol has successfully in reduced emissions and atmospheric concentrations of CFCs, which should return to their pre-ozone hole concentrations by about 2050. However, the ozone layer will most likely not return to its pre-ozone hole state and so the central question of the Montreal process - how and when will ozone and UV radiation recover as CFC concentrations fall? - remains. Indeed, in order to provide essential advice to policy makers, the answer to that question is required within the next years. In this ambitious integrated project, the European predictive capability will be strengthened by focusing effort on 6 main interlinked areas of research: coupled chemistry/climate models; the tropical UTLS; extratropical ozone and water vapour; UV radiation; global modelling; and fundamental chemical and microphysical processes. Strong scientific management, built on Europe's excellent previous experience in stratospheric science, will bring together a critical mass of European experts in laboratory studies, atmospheric measurements and modelling. It will exploit new satellite data, such as from ENVISAT, and new modelling approaches (e.g. fully-coupled chemistry-climate models; and the growing interaction with the numerical weather forecasting community), and take advantage of new and existing research facilities being developed at the national level. Valuable information for the assessment of the atmospheric impact of aviation will be obtained. This integrated project will thus provide essential information to European government and industry and will maintain Europe's leading position. The Chancellor, Masters and Scholars of the University of Cambridge; Cambridge; United Kingdom.
The data set provides GFZ VER11 orbits of altimetry satellitesERS-1 (August 1, 1991 - July 5, 1996),ERS-2 (May 13, 1995 - February 27, 2006),Envisat (April 12, 2002 - April 8, 2012),Jason-1 (January 13, 2002 - July 5, 2013) andJason-2 (July 5, 2008 - April 5, 2015)TOPEX/Poseidon (September 23, 1992 - October 8, 2005),derived at the time spans given at Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences within the Sea Level phase 2 project of the European Space Agency (ESA) Climate Change Initiative using "Earth Parameter and Orbit System - Orbit Computation (EPOS-OC)" software and the Altimeter Database and processing System (ADS, http://adsc.gfz-potsdam.de/ads/) developed at GFZ. The orbits were computed in the same (ITRF2008) terrestrial reference frame for all satellites using common, most precise models and standards available and described below.The ERS-1 orbit is computed using satellite laser ranging (SLR) and altimeter crossover data, while the ERS-2 orbit is derived using additionally Precise Range And Range-rate Equipment (PRARE) measurements. The Envisat, TOPEX/Poseidon, Jason-1 and Jason-2 orbits are based on Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) and SLR observations.The orbit files are available in the Extended Standard Product 3 Orbit Format (SP3-c, ftp://igscb.jpl.nasa.gov/igscb/data/format/sp3c.txt) Files are gzip-compressed. File names are given as sate_YYYYMMDD_SP3C.gz, where "sate" is the abbreviation (ENVI, ERS1, ERS2, JAS1, JAS2, TOPX) of the satellite name, YYYY stands for 4-digit year, MM stands for month and DD stands for day of the beginning of the file.More details on these orbits are provided in Rudenko et al. (2017)
The "AVHRR compatible Normalized Difference Vegetation Index derived from MERIS data (MERIS_AVHRR_NDVI)" was developed in a co-operative effort of DLR (German Remote Sensing Data Centre, DFD) and Brockmann Consult GmbH (BC) in the frame of the MAPP project (MERIS Application and Regional Products Projects). For the generation of regional specific value added MERIS level-3 products, MERIS full-resolution (FR) data are processed on a regular (daily) basis using ESA standard level-1b and level-2 data as input. The regular reception of MERIS-FR data is realized at DFD ground station in Neustrelitz. The Medium Resolution Imaging MERIS on Board ESA's ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int The Advanced Very High Resolution Radiometer (AVHRR) compatible vegetation index (MERIS_AVHRR_NDVI) derived from data of the MEdium Resolution Imaging Spectrometer (MERIS) is regarded as a continuity index with 300 meter resolution for the well-known Normalized Difference Vegetation Index (NDVI) derived from AVHRR (given in 1km spatial resolution). The NDVI is an important factor describing the biological status of canopies. This product is thus used by scientists for deriving plant and canopy parameters. Consultants use time series of the NDVI for advising farmers with best practice. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides 10-days maps.
The "AVHRR compatible Normalized Difference Vegetation Index derived from MERIS data (MERIS_AVHRR_NDVI)" was developed in a co-operative effort of DLR (German Remote Sensing Data Centre, DFD) and Brockmann Consult GmbH (BC) in the frame of the MAPP project (MERIS Application and Regional Products Projects). For the generation of regional specific value added MERIS level-3 products, MERIS full-resolution (FR) data are processed on a regular (daily) basis using ESA standard level-1b and level-2 data as input. The regular reception of MERIS-FR data is realized at DFD ground station in Neustrelitz. The Medium Resolution Imaging MERIS on Board ESA's ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int The Advanced Very High Resolution Radiometer (AVHRR) compatible vegetation index (MERIS_AVHRR_NDVI) derived from data of the MEdium Resolution Imaging Spectrometer (MERIS) is regarded as a continuity index with 300 meter resolution for the well-known Normalized Difference Vegetation Index (NDVI) derived from AVHRR (given in 1km spatial resolution). The NDVI is an important factor describing the biological status of canopies. This product is thus used by scientists for deriving plant and canopy parameters. Consultants use time series of the NDVI for advising farmers with best practice. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides daily maps.
The Medium Resolution Imaging Spectrometer (MERIS) on Board ESA’s ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int/ Spectral high resolution measurements allow to assess different water constituents in optically complex case-2 waters (IOCCG, 2000). The main groups of constituents are Chlorophyll, corresponding to living phytoplankton, suspended minerals or sediments and dissolved organic matter. They are characterised by their specific inherent optical properties, in particular scattering and absorption spectra. The Baltic Sea Water Constituents product was developed in a co-operative effort of DLR (Remote Sensing Technology Institute IMF, German Remote Sensing Data Centre DFD), Brockmann Consult (BC) and Baltic Sea Research Institute (IOW) in the frame of the MAPP project (MERIS Application and Regional Products Projects). The data are processed on a regular (daily) basis using ESA standard Level-1 and -2 data as input and producing regional specific value added Level-3 products. The regular data reception is realised at DFD ground station in Neustrelitz. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides monthly maps.
The Medium Resolution Imaging Spectrometer (MERIS) on Board ESA’s ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int/ Spectral high resolution measurements allow to assess different water constituents in optically complex case-2 waters (IOCCG, 2000). The main groups of constituents are Chlorophyll, corresponding to living phytoplankton, suspended minerals or sediments and dissolved organic matter. They are characterised by their specific inherent optical properties, in particular scattering and absorption spectra. The Baltic Sea Water Constituents product was developed in a co-operative effort of DLR (Remote Sensing Technology Institute IMF, German Remote Sensing Data Centre DFD), Brockmann Consult (BC) and Baltic Sea Research Institute (IOW) in the frame of the MAPP project (MERIS Application and Regional Products Projects). The data are processed on a regular (daily) basis using ESA standard Level-1 and -2 data as input and producing regional specific value added Level-3 products. The regular data reception is realised at DFD ground station in Neustrelitz. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides daily maps.
The Medium Resolution Imaging Spectrometer (MERIS) on Board ESA’s ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int/ Spectral high resolution measurements allow to assess different water constituents in optically complex case-2 waters (IOCCG, 2000). The main groups of constituents are Chlorophyll, corresponding to living phytoplankton, suspended minerals or sediments and dissolved organic matter. They are characterised by their specific inherent optical properties, in particular scattering and absorption spectra. The Baltic Sea Water Constituents product was developed in a co-operative effort of DLR (Remote Sensing Technology Institute IMF, German Remote Sensing Data Centre DFD), Brockmann Consult (BC) and Baltic Sea Research Institute (IOW) in the frame of the MAPP project (MERIS Application and Regional Products Projects). The data are processed on a regular (daily) basis using ESA standard Level-1 and -2 data as input and producing regional specific value added Level-3 products. The regular data reception is realised at DFD ground station in Neustrelitz. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides 10-day maps.
The Medium Resolution Imaging Spectrometer (MERIS) on Board ESA’s ENVISAT provides spectral high resolution image data in the visible-near infrared spectral region (412-900 nm) at a spatial resolution of 300 m. For more details on ENVISAT and MERIS see http://envisat.esa.int/ Spectral high resolution measurements allow to assess different water constituents in optically complex case-2 waters (IOCCG, 2000). The main groups of constituents are Chlorophyll, corresponding to living phytoplankton, suspended minerals or sediments and dissolved organic matter. They are characterised by their specific inherent optical properties, in particular scattering and absorption spectra. The Baltic Sea Water Constituents product was developed in a co-operative effort of DLR (Remote Sensing Technology Institute IMF, German Remote Sensing Data Centre DFD), Brockmann Consult (BC) and Baltic Sea Research Institute (IOW) in the frame of the MAPP project (MERIS Application and Regional Products Projects). The data are processed on a regular (daily) basis using ESA standard Level-1 and -2 data as input and producing regional specific value added Level-3 products. The regular data reception is realised at DFD ground station in Neustrelitz. For more details the reader is referred to http://wdc.dlr.de/sensors/meris/ and http://wdc.dlr.de/sensors/meris/documents/Mapp_ATBD_final_i3r0dez2001.pdf This product provides seasonal maps.
| Origin | Count |
|---|---|
| Bund | 36 |
| Land | 14 |
| Wissenschaft | 16 |
| Type | Count |
|---|---|
| Förderprogramm | 22 |
| unbekannt | 16 |
| License | Count |
|---|---|
| offen | 37 |
| unbekannt | 1 |
| Language | Count |
|---|---|
| Deutsch | 19 |
| Englisch | 20 |
| Resource type | Count |
|---|---|
| Keine | 9 |
| Webseite | 29 |
| Topic | Count |
|---|---|
| Boden | 25 |
| Lebewesen und Lebensräume | 28 |
| Luft | 22 |
| Mensch und Umwelt | 38 |
| Wasser | 25 |
| Weitere | 38 |