API src

Found 2277 results.

Similar terms

s/eog/EWG/gi

Sentinel-5P TROPOMI – Cloud-Top Height (CTH), Level 3 – Global

Global Cloud-Top Height (CTH) as derived from the Sentinel-5P/TROPOMI instrument. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud-top height is retrieved from the O2-A band using the ROCINN algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Tree Species - Sentinel-1/2 - Germany, 2022

The Tree Species Germany product provides a map of dominant tree species across Germany for the year 2022 at a spatial resolution of 10 meters. The map depicts the distribution of ten tree species groups derived from multi-temporal optical Sentinel-2 data, radar data from Sentinel-1, and a digital elevation model. The input features explicitly incorporate phenological information to capture seasonal vegetation dynamics relevant for species discrimination. A total of over 80,000 training and test samples were compiled from publicly accessible sources, including urban tree inventories, Google Earth Pro, Google Street View, and field observations. The final classification was generated using an XGBoost machine learning algorithm. The Tree Species Germany product achieves an overall F1-score of 0.89. For the dominant species pine, spruce, beech, and oak, class-wise F1-scores range from 0.76 to 0.98, while F1-scores for other widespread species such as birch, alder, larch, Douglas fir, and fir range from 0.88 to 0.96. The product provides a consistent, high-resolution, and up-to-date representation of tree species distribution across Germany. Its transferable, cost-efficient, and repeatable methodology enables reliable large-scale forest monitoring and offers a valuable basis for assessing spatial patterns and temporal changes in forest composition in the context of ongoing climatic and environmental dynamics.

Forest Canopy Cover Loss (FCCL) - Germany - Monthly, Administrative Level

This vector dataset is based on a 10 m resolution raster dataset that shows forest canopy cover loss (FCCL) in Germany at a monthly resolution from September 2017 to September 2024. Results at pixel level were aggregated at municipality, district, and federal state level. For the results at administrative level we differentiate between deciduous and coniferous forests. We use the stocked area map 2018 (Langner et al. 2022, https://doi.org/10.3220/DATA20221205151218 ) as a reference forest mask. We differentiate between deciduous and coniferous forests by intersecting the stocked area map with a tree species map (Blickensdoerfer et al. 2024). Pixels of the classes birch, beech, oak, alder, deciduous trees with long lifespan and deciduous trees with short lifespan were classified as deciduous forest and pixels of the classes Douglas fir, spruce, pine, larch and fir as coniferous forest. The coverage of the two datasets is not identical, which is why a few areas of the forest reference map remained unclassified. These were filled with the dominant leaf type map of the Copernicus Land Monitoring Service (CLMS 2025). Therefore, the vector data at administrative level contains information about unclassified forest areas and the total forest area as the sum of deciduous, coniferous, and unclassified forests. The FCCL confidence at pixel level is lowest at the end of the time series because the number of repeated threshold exceedance is used as a criterion to record forest canopy cover losses. Therefore, we excluded July 2024 through September 2024 from the annual and overall statistics and summarized the respective FCCL as additional attribute. The dataset is a fully reprocessed continuation of the assessment in Thonfeld et al. (2022).

Raumordnungsgesetz (ROG)

Nichtamtliches Inhaltsverzeichnis Inhaltsübersicht Abschnitt 1 Allgemeine Vorschriften §  1 Aufgabe und Leitvorstellung der Raumordnung §  2 Grundsätze der Raumordnung §  3 Begriffsbestimmungen §  4 Bindungswirkung der Erfordernisse der Raumordnung §  5 Beschränkung der Bindungswirkung nach § 4 §  6 Ausnahmen und Zielabweichung §  7 Allgemeine Vorschriften über Raumordnungspläne §  8 Umweltprüfung bei der Aufstellung von Raumordnungsplänen §  9 Beteiligung bei der Aufstellung von Raumordnungsplänen § 10 Bekanntmachung von Raumordnungsplänen; Bereithaltung von Raumordnungsplänen und von Unterlagen § 11 Planerhaltung § 12 Untersagung raumbedeutsamer Planungen und Maßnahmen Abschnitt 2 Raumordnung in den Ländern § 13 Landesweite Raumordnungspläne, Regionalpläne und regionale Flächennutzungspläne § 14 Raumordnerische Zusammenarbeit § 15 Raumverträglichkeitsprüfung § 16 Beschleunigte Raumverträglichkeitsprüfung; Absehen von Raumverträglichkeitsprüfungen Abschnitt 3 Raumordnung im Bund § 17 Raumordnungspläne für die deutsche ausschließliche Wirtschaftszone und für den Gesamtraum § 18 Beteiligung bei der Aufstellung von Raumordnungsplänen des Bundes; Bekanntmachung von Raumordnungsplänen des Bundes § 19 Zielabweichung bei Raumordnungsplänen des Bundes § 20 Untersagung raumbedeutsamer Planungen und Maßnahmen bei Raumordnungsplänen des Bundes § 21 Ermächtigung zum Erlass von Rechtsverordnungen § 22 Zuständigkeiten des Bundesamtes für Bauwesen und Raumordnung § 23 Beirat für Raumentwicklung Abschnitt 4 Ergänzende Vorschriften und Schlussvorschriften § 24 Zusammenarbeit von Bund und Ländern § 25 Beteiligung bei der Aufstellung von Raumordnungsplänen der Nachbarstaaten § 26 (weggefallen) § 27 Anwendungsvorschrift für die Raumordnung in den Ländern § 28 Sonderregelung für die Windenergie an Land Anlage 1 (zu § 8 Absatz 1) Anlage 2 (zu § 8 Absatz 2) Anlage 3 (zu § 28 Absatz 4 Satz 3)

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p>&nbsp;</p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Tab. „Braunkohlen-Kraftwerke in Deutschland gemäß Kohleausstiegsgesetz“ im letzten Abschnitt). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 20 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf 188,8 GW. (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“)</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 50 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren verdoppelt. Mit einem Zubau von über 16,7 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zulegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,4 GW neue Windenergie-Leistung zugebaut (2023: 3,3 GW; 2021: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2023 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,8 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig.</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen geben. Dabei handelt es sich um einen Ausbau von Speichern (etwa Wasserkraft, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs.</p>

Solaranlagen 2024

Erneuerbare Energien, also vorrangig Solarenergie, Geothermie, Biomasse und Windkraft, sind als unerschöpfliche Quellen elementar wichtig für die heutige und zukünftige Energieversorgung Berlins. Der Ausbau der Solarenergienutzung wird dabei als besonders wichtiger Baustein in der Klimaschutzstrategie Berlins hervorgehoben. Der Senat von Berlin strebt eine klimaneutrale Energieversorgung der Stadt bis 2045 an. Daher wurde der Ausbau der erneuerbaren Energien, insbesondere die Nutzung der Solarpotenziale, im Berliner Energie- und Klimaschutzprogramm 2030 (BEK 2030) durch den Berliner Senat beschlossen. Eine wichtige Grundlage, die zum Abbau der bestehenden Hemmnisse der Solarenergie beitragen soll, ist der „Masterplan Solarcity“ . Am 06. Mai 2025 wurde der Masterplan in seiner zweiten Umsetzungsphase 2025-2030 durch die federführende Senatsverwaltung für Wirtschaft, Energie und Betriebe nach einem breiten Beteiligungsprozess veröffentlicht. Der Maßnahmenkatalog ist damit weiterhin die Basis für den weiteren Ausbau der Solarenergie in Berlin. Berlin nähert sich dem Ziel, bis 2035 einen Solarstromanteil von 25% an der Berliner Stromerzeugung zu erreichen ( Masterplan Solarcity ). Seit 2020 werden jährlich Monitoringberichte zum Masterplan Solarcity veröffentlicht (SenWEB 2025). Im Berliner Klimaschutz- und Energiewendegesetz vom 19. August 2021 (EWG Bln 2021) § 19 ist die vermehrte Erzeugung und Nutzung von erneuerbaren Energien auf öffentlichen Gebäuden als Ziel festgesetzt. Die Senatsverwaltung für Wirtschaft, Energie und Betriebe unterstützt insbesondere die Bezirke mit dem Förderprogramm SolarReadiness, unter anderem Statik und Anschlüsse an die Anforderungen von Solaranlagen anzupassen. Durch den so beschleunigten Ausbau von Solaranlagen erfüllt das Land Berlin die Vorbildrolle der öffentlichen Hand. Auf privaten Gebäuden greift außerdem seit dem 01. Januar 2023 bei wesentlichen Dachumbauten sowie bei Neubauten die Solarpflicht nach dem Solargesetz Berlin vom 05. Juli 2021. Bei einer Nutzungsfläche von mehr als 50 Quadratmetern sind Eigentümer:innen zur Installation und zum Betrieb einer Photovoltaikanlage verpflichtet. Weitere Informationen und einen Praxisleitfaden zum Solargesetz finden Sie hier . Zur Unterstützung bei der Erfüllung der Solarpflicht, sowie um die Wirtschaftlichkeit von Photovoltaikanlagen zu verbessern, fördert Berlin mit dem Förderprogramm SolarPLUS als Teil des Masterplan Solarcity den Photovoltaikausbau. So wurden seit Start des Programms im September 2022 bis Mai 2025 24.153 Zuwendungen aus SolarPLUS bewilligt. Im Mai 2019 wurde das Solarzentrum Berlin eröffnet, das als unabhängige Beratungsstelle rund um das Thema Solarenergie arbeitet ( Solarzentrum Berlin ). Das Zentrum wird von der Deutschen Gesellschaft für Sonnenenergie (DGS), Landesverband Berlin Brandenburg, betrieben und von der Senatsverwaltung für Wirtschaft, Energie und Betriebe als Maßnahme des Masterplans Solarcity finanziert. Auf Bundesebene wurden durch das Jahressteuergesetz 2022 die Umsatzsteuer für Lieferungen sowie die Installation von Solarmodulen, einschließlich der für den Betrieb notwendigen Komponenten und der Speicher, auf 0 Prozent gesenkt (JStG 2022, UStG § 12 Abs. 3). Diese Regelung betrifft Anlagen auf Wohngebäuden, öffentlichen Gebäuden und Gebäuden, die für dem Gemeinwohl dienende Tätigkeiten genutzt werden. Die Voraussetzungen für die Befreiung gelten als erfüllt, wenn die Anlagenleistung 30kWp nicht überschreitet. Der Nullsteuersatz gilt seit dem 1. Januar 2023. Am 15. Mai 2024 ist das Solarpaket I in Kraft getreten und hat Maßnahmen eingeführt, die den Ausbau der Photovoltaik (PV) in Deutschland erleichtern und beschleunigen soll. Ein Fokus liegt dabei auf sogenannten Balkonkraftwerken, also steckerfertigen Solaranlagen für den Eigengebrauch. Zusätzlich wurde ermöglicht, dass Solarstrom vom eigenen Dach vergünstigt an Mieterinnen und Mieter weitergegeben werden kann. Überschussstrom, der nicht selbst genutzt wird, kann kostenfrei und ohne Vergütung an Netzbetreiber abgegeben werden, wodurch Betreiber kleinerer Anlagen entlastet werden. Anlagenzertifikate sind bei größeren Leistungen (ab 270 kW Einspeisung oder 500 kW Erzeugung) erforderlich. Zum Stand Ende 2024 liegt der Solarstromanteil in Berlin bei 4,7 Prozent (SenWEB2025). Da die räumliche Darstellung und Nutzung von energierelevanten Daten, wie z. B. Solardaten, in Berlin zuvor uneinheitlich und durch verschiedene Angebote realisiert wurde, steht mit dem Energieatlas Berlin seit Juli 2018 ein Fachportal zur Unterstützung der Energiewende bereit, das die wichtigsten Daten benutzerfreundlich und anschaulich präsentiert sowie regelmäßig aktualisiert. Die im Umweltatlas an dieser Stelle dargestellten Inhalte für Photovoltaik (PV), d.h. der direkten Umwandlung von Sonnenenergie in elektrische Energie, und Solarthermie (ST), d.h. der Wärmegewinnung aus der solaren Einstrahlung, beziehen sich auf die im Energieatlas veröffentlichten Daten und deren Erfassungsstände: 07.10.2024 für die Standortdaten der Photovoltaik-Anlagen und 31.12.2015 bzw. 29.03.2023 (aggregierte BAFA-Daten) für diejenigen der Solarthermie. Im Rahmen der Fortführung des Energieatlas Berlin werden die Aktualität und Güte der Daten im Bereich der Solaranlagen, vor allem derjenigen mit Photovoltaik, kontinuierlich verbessert. Im Vergleich zur Solarthermie gibt es in Berlin deutlich mehr erfasste Photovoltaikanlagen. So wurden bis zum 31.12.2024 41.723 Anlagen installiert, die zusammen eine installierte Leistung von rund 380,6 MWp aufweisen. Der darüber jährlich zu produzierende Stromertrag kann nur geschätzt werden und wird bei ca. 343 GWh/a liegen (abzüglich 5 % bei der Generatorleistung und durchschnittlichem Stromertrag von 900 kWh/a pro kW). Theoretisch können mit dieser Leistung rund 131.000 Haushalte mit einem angenommenen mittleren Stromverbrauch von je 2.500 kWh/a versorgt werden. Seit der Erstellung des Energieatlas wurde die bisherige Erfassung im Solaranlagenkataster nicht weitergeführt, sondern umgestellt auf eine Kombination mehrerer Quellen (vgl. Datengrundlage) und Auswertungen. Abbildung 1 verdeutlicht die unterschiedlichen Ausbauzahlen je nach Bezirk (Abb. 1a), vor allem Stadtgebiete mit großräumiger Einzel- und Zweifamilienhausbebauung zeigen die größten Anteile. Dazu passend überwiegt mit rund 37.438 von 38.798 Anlagen die geringste Leistungsklasse mit bis zu 30 kWp (Abb. 1b), die auf kleinen Dächern und Balkonkraftanlagen bevorzugt eingesetzt werden. Im Jahr 2019 stieg der jährliche Zuwachs für Anlagen nach dem EEG erstmals wieder auf über 100.000 neuen Anlagen. Zum 01. Juli 2022 wurde die EEG-Umlage auf Null gesetzt und mit der EEG-Novelle 2023 komplett abgeschafft. Im Jahr 2024 wurden nach Daten der Bundesnetzagentur mit 15.556 neuen Anlagen der bis dahin größte Anstieg verzeichnet. Die aktuellsten Informationen über Photovoltaikanlagen in Berlin, wie beispielsweise ihre Standorte oder statistische Auswertungen zum Ausbau in den Bezirken, sind im Energieatlas Berlin in Form von Karten und Diagrammen abrufbar: https://energieatlas.berlin.de/ . Abb. 1a: Entwicklung nach Bezirken (Datenstand 06.03.2025), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Abb. 1b: Entwicklung nach Leistungsklassen (Datenstand 06.03.2025), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Der öffentlichen Hand kommt beim PV-Ausbau eine besondere Vorbildfunktion zu. Mit der Novellierung des Berliner Klimaschutz- und Energiewendegesetzes (EWG Bln) im Jahr 2021 ist bei öffentlichen Neubauten die Errichtung von Solaranlagen auf der gesamten technisch nutzbaren Dachfläche Pflicht. Bei öffentlichen Bestandsgebäuden ist grundsätzlich bis zum 31.12.2024 eine Solaranlage nachzurüsten. Ausnahmen gelten u. a. für Dachflächen, die aufgrund ihrer Lage und Ausrichtung ungeeignet sind oder wenn öffentlich-rechtliche Vorschriften der Errichtung von Solar-Anlagen entgegenstehen. Laut Masterplanstudie zum Masterplan Solarcity Berlin ist das Land Berlin Eigentümerin von 5,4 % der Berliner Gebäude, auf deren Dachfläche 8,3 % des Solarpotenzials entfällt (SenWEB 2019). Eine Übersicht über den aktuellen Stand des Solaranlagenausbaus auf öffentlichen Gebäuden in Berlin ist über den folgenden Link im Energieatlas einsehbar: https://energieatlas.berlin.de/?permalink=PGieokF . Auf den öffentlichen Gebäuden Berlins befinden sich 1029 PV-Anlagen mit einer gesamten installierten Leistung von 64,6 MWp (Stand 31.12.2024, Solarcity Monitoringbericht). Es entfielen im Jahr 2024 ca. 17 % der installierten Leistung auf PV-Anlagen auf öffentlichen Gebäuden des Landes Berlin (Erfassungsstand 21.12.2024). Die meisten der 42.723 PV-Anlagen in Berlin befinden sich auf Gebäuden, die natürlichen Personen gehören (92 %). Dabei ist zu beachten, dass zwar die Gebäude Eigentum von natürlichen Personen sind, die PV-Anlagen jedoch nicht zwangsläufig ihnen gehören müssen, weil Gebäudeeigentümer ihre Dachfläche zur Nutzung an Dritte verpachten können. Auf den Gebäuden von Unternehmen und Genossenschaften sind 5 % der PV-Anlagen installiert. Die PV-Anlagen in Eigentum von natürlichen Personen machen einen Anteil von etwa 55 % der gesamten installierten Leistung aus, weitere 31,3 % entfallen auf PV-Anlagen auf Gebäuden von Unternehmen und Genossenschaften. Diese beiden Akteursgruppen zusammen sind demnach für den Großteil der installierten PV-Leistung verantwortlich. Abb. 2: Eigentümerstruktur als Anteil an der Anzahl der Anlagen sowie an der installierten Leistung (Datenstand 31.12.2024, Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Mit der Erstellung des Energieatlas wurde die bisherige Erfassung im Solaranlagenkataster nicht weitergeführt, sondern umgestellt auf eine Kombination mehrerer Quellen (vgl. Datengrundlage) und Darstellungen. Im Land Berlin gab es zum Stand 31.12.2024 rd. 8.900 solarthermische Anlagen. Derzeit wird deren Zubau nicht für Berlin erfasst. Weitere Lücken ergaben sich durch die Übergabe der Förderung von Solarthermieanlagen von der BAFA an die KfW. Die Entwicklung in Abbildung 3 verdeutlicht, dass sich der Zuwachs an Neuinstallationen ab etwa 2013 im Vergleich zu den Vorjahren stark verringert hat. Insgesamt zeigt sich somit seitdem ein abnehmender Trend. Hauptsächlich werden solarthermische Anlagen in Berlin für die Warmwasserbereitung sowie zur Heizungsunterstützung genutzt. Darüber hinaus gibt es einige größere Solaranlagen für die Trinkwasser- und Schwimmbadwassererwärmung sowie für solare Luftsysteme und Klimatisierung. Vergleichbar der Verteilung bei den PV-Anlagen ist ein eindeutiger Schwerpunkt in den Außenbereichen der Stadt in den dort noch überwiegend vorhandenen landschaftlich geprägten Siedlungstypen sichtbar (vgl. Darstellung auf Postleitzahlebene im Geoportal Berlin , Karte Solaranlagen – Solarthermie, Ebene „Summe der solarthermischen Anlagen pro Postleitzahl“). Abb. 3: Entwicklung solarthermischer Anlagen im Land Berlin nach Anlagenanzahl pro Bezirk (Erfassungsstand 20.02.2024), Datenquelle: Energieatlas Berlin , basierend auf Daten des Marktstammdatenregisters der Bundesnetzagentur. Aufgrund der lückenhaften Erfassung von Anlagen für Warmwasserbereitung kann von einer höheren Gesamtanzahl solarthermischer Anlagen in Berlin ausgegangen werden. Für die Mehrheit der Anlagen wurden Flachkollektoren gewählt. Die meisten solarthermischen Anlagen sind in Berlin auf Einfamilienhäusern installiert worden. Die meisten solarthermischen Anlagen sind in Berlin auf Einfamilienhäusern installiert worden. Für die Jahre nach 2015 liegen für Berlin keine Einzelangaben, nur noch höher aggregierte Daten des Bundesamtes für Wirtschaft und Ausfuhrkontrolle (BAFA) vor, die keine Rückschlüsse nach Kollektorarten, Gebäudetypen oder Kollektorflächen mehr zulassen. Der Zubau neuer solarthermischer Anlagen ist in Berlin seit 2013 gegenüber den Vorjahren deutlich gesunken. Die Anzahl der Solarthermieanlagen im Jahr 2024 beläuft sich auf ca. 8.900 Anlagen mit einer Gesamtkollektorfläche von ca. 94.300 m² (SenWEB/Monitoringbericht 2024 zum Masterplan Solarcity). Dieser Wert bildet jedoch nicht vollständig die tatsächliche Anzahl der in den vergangenen Jahren neu errichteten Solarthermieanlagen in Berlin ab, sodass von einem höheren Anlagenbestand auszugehen ist. Deutschlandweit hat sich der Zubau der Thermie-Kollektorfläche seit 2015 verlangsamt und bis zum Jahresende 2024 auf einen Zuwachs von Rd. 0,22 Mio. qm reduziert. Insgesamt flacht die Kurve an Zuwachsfläche und Anlagen seit einigen Jahren deutlich ab (Bundesverband Solarwirtschaft 2024). Die flächendeckende Analyse der solaren Einstrahlung liefert die Grundlage zur Berechnung der nutzbaren Strahlung und wird als Jahressumme dargestellt. (IP SYSCON 2022). Für den Berliner Raum wird vom Deutschen Wetterdienst (DWD) für den aktuellen langjährigen Betrachtungszeitraum 1991-2020 eine mittlere Jahressumme der Globalstrahlung, also der Summe wechselnder Anteile aus direkter und diffuser Sonneneinstrahlung, auf eine horizontale Fläche in Höhe von 1081-1100 kWh/m² angegeben. Der Berliner Raum liegt damit ziemlich exakt im Mittel der in Deutschland vorkommenden Bandbreite an Einstrahlungswerten (vgl. Abb. 4). Im Vergleich der beiden letzten Referenzzeiträume 1981-2010 zu 1991-2020 nahm die solare Einstrahlung im Zuge des Klimawandels in Berlin und Brandenburg um 40 bis 50 kWh/m² pro Jahr, also rund 5 %, zu. Die Einstrahlung auf eine horizontale Fläche wird je nach örtlicher Lage von verschiedenen Faktoren beeinflusst (vgl. Methode). Abb. 4: Mittlere Jahressummen der Globalstrahlung in Deutschland für den langjährigen Zeitraum 1991-2020 (unveränderte Wiedergabe; Quelle: Deutscher Wetterdienst (DWD) 2022)

Sentinel-5P TROPOMI Surface Nitrogendioxide (NO2), Level 4 – Regional (Germany and neighboring countries)

The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product displays the Nitrogen Dioxide (NO2) near surface concentration for Germany and neighboring countries as derived from the POLYPHEMUS/DLR air quality model. Surface NO2 is mainly generated by anthropogenic sources, e.g. transport and industry. POLYPHEMUS/DLR is a state-of-the-art air quality model taking into consideration - meteorological conditions, - photochemistry, - anthropogenic and natural (biogenic) emissions, - TROPOMI NO2 observations for data assimilation. This Level 4 air quality product (surface NO2 at 15:00 UTC) is based on innovative algorithms, processors, data assimilation schemes and operational processing and dissemination chain developed in the framework of the INPULS project. The DLR project INPULS develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

SWIM Water Extent - Sentinel-1/2 - Daily

SWIM Water Extent is a global surface water product at 10 m pixel spacing based on Sentinel-1/2 data. The collection contains binary layers indicating open surface water for each Sentinel-1/2 scene. Clouds and cloud shadows are removed using ukis-csmask (see: https://github.com/dlr-eoc/ukis-csmask ) and are represented as NoData. The water extent extraction is based on convolutional neural networks (CNN). For further information, please see the following publications: https://doi.org/10.1016/j.rse.2019.05.022 and https://doi.org/10.3390/rs11192330

Sentinel-5P TROPOMI – Cloud Optical Thickness (COT), Level 3 – Global

This product displays the Cloud Optical Thickness (COT) around the globe. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud optical thickness is retrieved from the O2-A band using the ROCINN algorithm. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI - Aerosol Single-Scattering Albedo (ASSA), Level 3 - Global

Aerosol single-scattering albedo (ASSA) as derived from TROPOMI observations. ASSA is a measure of how much light is scattered by aerosols compared to how much is absorbed. It is important for understanding the impact of aerosols on climate and radiative forcing. ASSA is unitless; a value of unity implies that extinction is completely due to scattering; conversely, a single-scattering albedo of zero implies that extinction is completely due to absorption. Daily ASSA observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

1 2 3 4 5226 227 228