The increasing proportion of carbon fibre reinforced plastics (CFRP) in different branches of industry will result in an increasingly larger quantity of CFRP wastes in future. With regard to improved management of natural resources, it is necessary to add these fibres that require energy-intensive production to effective recycling management. But high-quality material recycling is only ecoefficient if the recycled fibres can be used to produce new high-quality and marketable products. Tests carried out up to now indicate that very good results can be expected for large-scale recycling of carbon fibres by means of pyrolysis. The waste pyrolysis plant (WPP) operated in Burgau is the only large-scale pyrolysis plant for municipal wastes in Germany. Use of this plant to treat CFRP wastes represents a unique opportunity for the whole Southern German economy and in particular the Augsburg economic region. In a study funded by the Bavarian State Ministry of the Environment and Health ('Bayerisches Staatsministerium für Umwelt und Gesundheit'), the specific implementation options for the recovery of carbon fibres from composites by means of large-scale pyrolysis have been under investigation since November 2010. To this end, in the first step a development study was carried out, which in particular examined the options for modifying the Burgau WPP for the recycling of CFRP. The knowledge acquired from the pyrolysis tests, the fibre tests and the economic feasibility study confirmed the positive assessment of the overall concept of CFRP recycling in Burgau. As an overall result, unlimited profitability was found for all scenarios with regard to investments in CFRP recycling in Burgau WPP. The work on the development study was carried out by bifa Umweltinstitut GmbH together with the Augsburg-based 'function integrated lightweight construction project group ('Funktionsintegrierter Leichtbau' - FIL) of the Fraunhofer Institute for Chemical Technology (ICT). Methods: analysis and moderation of social processes, economy and management consulting, process engineering
Farm structures are often characterized by regional heterogeneity, agglomeration effects, sub-optimal farm sizes and income disparities. The main objective of this study is to analyze whether this is a result of path dependent structural change, what the determinants of path dependence are, and how it may be overcome. The focus is on the German dairy sector which has been highly regulated and subsidized in the past and faces severe structural deficits. The future of this sector in the process of an ongoing liberalization will be analyzed by applying theoretical concepts of path dependence and path breaking. In these regards, key issues are the actual situation, technological and market trends as well as agricultural policies. The methodology will be based on a participative use of the agent-based model AgriPoliS and participatory laboratory experiments. On the one hand, AgriPoliS will be tested as a tool for stakeholder oriented analysis of mechanisms, trends and policy effects. This part aims to analyze whether and how path dependence of structural change can be overcome on a sector level. In a second part, AgriPoliS will be extended such that human players (farmers, students) can take over the role of agents in the model. This part aims to compare human agents with computer agents in order to overcome single farm path dependence.
Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.
Atmospheric CO2 concentrations present a repetitive pattern of gradual decline and rapid increase during the last climate cycles, closely related to temperature and sea level change. During the Last Glacial Maximum (LGM; 23-19 kyr BP), when sea level was ca. 120 m below present, the ocean must have stored additionally about 750 Gt carbon. There is consensus that the Southern Ocean represents a key area governing past and present CO2 change. The latter is not only of high scientific but also of socio-economic and political concern since the Southern Ocean provides the potential for an efficient sink of anthropogenic carbon. However, the sensitivity of this carbon sink to climate-change induced reorganizations in wind patterns, ocean circulation, stratification, sea ice extent and biological production remains under debate. Models were not yet able to reproduce the necessary mechanisms involved, potentially due to a lack of the dynamic representation/resolution of atmospheric and oceanic circulation as well as missing carbon cycling. Data on past Southern Ocean hydrography and productivity are mainly from the Atlantic sector, thus do not adequately document conditions in the Pacific sector. This sector is not only the largest part of the Southern Ocean, but it also represents the main drainage area of the marine-based West Antarctic Ice Sheet (WAIS). In the proposed study we aim to generate paleo-data sets with a newly established proxy method from sediment core transects across the Pacific Southern Ocean. This will enhance the baselines for the understanding and modeling of the Southern Ocean's role in carbon cyling, i.e. ocean/atmosphere CO2 exchange and carbon sequestration. It will also allow insight into the response of the WAIS to past warmer than present conditions. Paired isotope measurements (oxygen, silicon) will be made on purified diatoms and radiolarians to describe glacial/interglacial contrasts in physical and nutrient properties at surface and subsurface water depth. This will be used to test (i) the impact of yet unconsidered dust-borne micronutrient deposition on the glacial South Pacific on shifts of primary productivity, Si-uptake rates and carbon export, (ii) the 'silicic-acid leakage' hypothesis (SALH) and (iii) the formation and extent of surface water stratification. Diatom and radiolarian oxygen isotopes will provide information on the timing of surface ocean salinity anomalies resulting from WAIS melt water. Climate model simulations using a complex coupled atmosphere ocean general circulation model (AOGCM) in combination with a sophisticated ocean biogeochemical model including Si-isotopes will be used for comparison with the paleo records. The analysis will cover spatial as well as temporal variability patterns of Southern Ocean hydrography, nutrient cycling and air-sea CO2-exchange. With the help of the climate model we aim to better separate and statistically analyse the individual impacts of ocean circulation and bio
The vegetation of East and South African savannahs has been shaped by the complex interaction of geo-biophysical processes and human impact. For both regions a controversial discussion is pertinent, as to whether massive degradation threatens the sustainability of livelihoods in these regions. Rangeland vegetation is mainly affected by environmental conditions (soil and climate) and by livestock management. Extent and interaction of these drivers are not well understood but have profound impacts on the resilience and vulnerability of these systems to be shifted toward unfavourable degraded or bush encroached states. The project aims to analyse and model rangeland vegetation in response to range management including livestock, soil quality and climatic conditions and to assess the impacts of changes in these conditions on the resilience and vulnerability of rangeland systems. Field measurements, remote sensing of vegetation patterns and dynamics and simulation modelling will be used to understand the dynamics of rangeland vegetation. We will use the 'fast' or 'state' variables potential of pastures to produce palatable biomass, the variability of this production, and the system's potential to recover from disturbance impact as indicators of resilience. 'slow' variables that control (or drive) the 'fast' variables such as management, climate and soil variables are recorded in cooperation with other subprojects as with A1 for soil variables. Results of the project will show which management activities are most favourable for individual regions to sustain plant production in the long term.
We are currently facing the urgent need to improve our understanding of carbon cycling in subsoils, because the organic carbon pool below 30 cm depth is considerably larger than that in the topsoil and a substantial part of the subsoil C pool appears to be much less recalcitrant than expected over the last decades. Therefore, small changes in environmental conditions could change not only carbon cycling in topsoils, but also in subsoils. While organic matter stabilization mechanisms and factors controlling its turnover are well understood in topsoils, the underlying mechanisms are not valid in subsoils due to depth dependent differences regarding (1) amounts and composition of C-pools and C-inputs, (2) aeration, moisture and temperature regimes, (3) relevance of specific soil organic carbon (SOC) stabilisation mechanisms and (4) spatial heterogeneity of physico-chemical and biological parameters. Due to very low C concentrations and high spatio-temporal variability of properties and processes, the investigation of subsoil phenomena and processes poses major methodological, instrumental and analytical challenges. This project will face these challenges with a transdisciplinary team of soil scientists applying innovative approaches and considering the magnitude, chemical and isotopic composition and 14C-content of all relevant C-flux components and C-fractions. Taking also the spatial and temporal variability into account, will allow us to understand the four-dimensional changes of C-cycling in this environment. The nine closely interlinked subprojects coordinated by the central project will combine field C-flux measurements with detailed analyses of subsoil properties and in-situ experiments at a central field site on a sandy soil near Hannover. The field measurements are supplemented by laboratory studies for the determination of factors controlling C stabilization and C turnover. Ultimately, the results generated by the subprojects and the data synthesized in the coordinating project will greatly enhance our knowledge and conceptual understanding of the processes and controlling factors of subsoil carbon turnover as a prerequisite for numerical modelling of C-dynamics in subsoils.
Achtung: Dieser Datensatz wird gelöscht. Möglicherweise stehen nicht mehr alle Funktionen vollumfänglich zur Verfügung. Entdecken Sie die schönsten Plätze in der Natur. 99 Lieblingsplätze im grünen und 99 Lieblingsplätze am Wasser warten darauf erkundet zu werden. Urheber sind die Mitgliedskreise und -landkreise der Metropolregion Hamburg, die die schönsten Orte in ihrem Kreis empfehlen. Genaue Informationen hierzu erhalten Sie über die Internetseiten der Metropolregion Hamburg: https://metropolregion.hamburg.de/lieblingsplatz/ Darüber hinaus werden die schönsten Naturerlebnisse für die Familie dargestellt. Die Natur vor der Haustür: Vom Weltnaturerbe Wattenmeer über Elbe, Ostsee, Heide, Moor, Seen und Wälder, Bäume und Blumen bis hin zum Biotop im Stadtpark laden unzählige Naturschönheiten der Metropolregion Hamburg zu einem Besuch und einer Expedition ins Unbekannte ein. http://metropolregion.hamburg.de/natur/nofl/4131270/naturerlebnisfuehrer/
Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.
Changes in agroecosystem management (e.g. landscape diversity, management intensity) affect the natural control of pests. The effects of agricultural change on this ecosystem service, however, are not universal and the mechanisms affecting it remain to be understood. As biological control is effectively the product of networks of interactions between pests and their natural enemies, food web analysis provides a versatile tool to address this gap of knowledge. The proposed project will utilize a molecular food web approach and examine, for the first time, how changes in plant fertilisation and landscape complexity affect quantitative aphid-parasitoid-hyperparasitoid food webs on a species-specific level to unravel how changes in food web interactions affect parasitoid aphid control. Based on the fieldderived data, cage experiments will be conducted to assess how parasitoid diversity and identity affect parasitoid interactions and pest control, complementing the field results. The work proposed here will take research on parasitoid aphid control one step further, as it will provide a clearer understanding of how plant fertilization affects whole aphid-parasitoid food webs in both simple and complex landscapes, allowing for further improvements in natural pest control.
The goal of this project is to capture and analyse fluctuations of the fresh water in the western Nordic Seas and to understand the related processes. The East Greenland Current in the Nordic Seas constitutes an important conduit for fresh water exiting the Arctic Ocean towards the North Atlantic. The Arctic Ocean receives huge amounts of fresh water by continental runoff and by import from the Pacific Ocean. Within the Arctic Ocean fresh water is concentrated at the surface through sea ice formation. The East Greenland Current carries this fresh water in variable fractions as sea ice and in liquid form; part of it enters the central Nordic Seas, via branching of the current and through eddies. It controls the intensity of deep water formation and dilutes the water masses which result from convection. The last decades showed significant changes of the fresh water yield and distribution in the Nordic Seas and such anomalies were found to circulate through the North Atlantic. In this project the fresh water inventory, its spatial distribution and its pathways between the East Greenland Current and the interior Greenland and Icelandic seas shall be captured by autonomous glider missions. The new measurements and existing data will, in combination with the modeling work of the research group, serve as basis for understanding the causes of the fresh water variability and their consequences for the North Atlantic circulation and deep water formation.