API src

Found 218 results.

Similar terms

s/eros/EROI/gi

High resolution age model from sedimentary collected along the southwestern Svalbard margin

This dataset includes updated versions of high-resolution age models derived from six sedimentary cores collected from the southwestern Svalbard margin. The dataset presented here represents a refinement of a previous version (Caricchi et al., 2020; 2022), achieved through correlation of the stratigraphic trends of the ARM/k parameter with the GICC05modelext timescale and the NGRIP record (Rasmussen et al., 2014). Additional refinement was obtained from newly acquired and recalibrated radiometric data, as well as from improved lithological constraints. The dataset enables the calculation of sedimentation rates during glacial and interglacial periods and during short-lived, widespread meltwater pulses and Heinrich-like events, thereby allowing the reconstruction of ice-sheet instability and meltwater events along the Svalbard–Barents Sea margin over the last 60,000 years.

Ring-shear test data of wallnut shells used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing))

This dataset provides friction data from ring-shear tests walnut shells used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing). According to our analysis the tested materials behave as a Mohr-Coulomb material characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of corundum sand are µP = 0.90, µD = 0.63, and µR = 0.68, respectively (Table 4). Cohesion of the material ranges between 0-40 Pa. The tested bulk material consists of walnut shells with grain size of 180-380 µm (Table 1) and is sold under the name "Walnut Shells" with the product number YR-98547 by the company Yiran Mineral Products (1688.com). The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at HelTec, the Laboratory for experimental tectonics at the Helmholtz Center Potsdam – GFZ German Research Centre for Geosciences in Potsdam, Germany. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016).

Ring-shear test data of foamglass used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing)

This dataset provides friction data from ring-shear tests foamglass used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing). According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of corundum sand are µP = 0.55, µD = 0.52, and µR = 0.57, respectively (Table 4). Cohesion of the material ranges between 10-30 Pa. The tested bulk material consists of foamglass with grain size of 180-380 µm (Table 1) and is sold under the name "Floating Bead" with the product number PZ-002 by the company Tuyun Mineral Products (1688.com). The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at HelTec, the Laboratory for experimental tectonics at the Helmholtz Center Potsdam – GFZ German Research Centre for Geosciences in Potsdam, Germany. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016).

Ring-shear test data of mica used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing)

This dataset provides friction data from ring-shear tests black mica used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (Beijing). According to our analysis the materials show a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of corundum sand are µP = 0.59, µD = 0.56, and µR = 0.57, respectively (Table 4). Cohesion of the material ranges between 100-130 Pa. The tested bulk material consists of black mica (Biotite) with grain size of 380-830 µm and is sold under the name "Black Mica" with the product number YS-004 by the company Yunshi Building Materials Co., Ltd (1688.com). The data presented here are derived by ring shear testing using a SCHULZE RST-01.pc (Schulze, 1994, 2003, 2008) at HelTec, the Laboratory for experimental tectonics at the Helmholtz Center Potsdam – GFZ German Research Centre for Geosciences in Potsdam, Germany. The RST is specially designed to measure friction coefficients µ and cohesions C in loose granular material accurately at low confining pressures (<20 kPa) and shear velocities (<1 mm/sec) similar to sandbox experiments. In this tester, a granular bulk material layer is sheared internally at constant normal stress σN and shear velocity v while shear force and lid displacement (corresponding to density and volume change ΔV) are measured continuously. For more details see Klinkmüller et al. (2016).

Magnetochronostratigraphic data from marine sediments off Patagonia, SE Pacific – cores from expedition MR16-09 Leg 2, Japanese RV Mirai, 2017

Sediment cores PC02, PC03, and PC04 were recovered during the ship expedition MR16-09 Leg 2 of Japanese RV Mirai in 2017 (Murata et al., 2017) using piston corers. For paleo- and rock magnetic analyses clear plastic boxes with a volume of 7 cm3 were pressed into the split halves of the generally 1 m long sections of the sediment cores. X-ray fluoresence (XRF) scans were performed with an Itrax XRF Corescanner (Cox Analytical systems) at Kochi Core Center, Japan (Hagemann et al. 2024). The downcore resolution was set to 5 mm, and the scans were performed with a Mo X-ray tube at 30 kV and 55 mA for a measurement time of 15 s. The Itrax X-ray beam was set to 0.2 mm × 20 mm. Measurements of low-field magnetic susceptibility (klf same as: k-bulk) and its anisotropy (AMS) were performed with an AGICO MFK1-A susceptibility meter. The principal AMS axes Kmax, Kint, and Kmin, the three axes of the anisotropy ellipsoid, were used to calculate the degree of anisotropy, as well as the shape factor of anisotropy. The frequency dependency of magnetic susceptibility was determined with an automated MAGNON Variable Field Susceptibility Meter (VFSM) by measuring magnetic susceptibility at different frequencies with logarithmically equidistant steps at a field amplitude of 250 µT. Susceptibilities of core PC02 samples were measured at 7 frequencies F from 375 Hz to 4775 Hz. Samples from cores PC03 and PC04 were measured at 5 frequencies from 475 to 4775 Hz. The frequency dependency Dk/Dlog(F) then was determined by linear regression of susceptibility k versus the decadal logarithm of frequency F. Values are given as decay rate in percent over one frequency decade (% / decade (F)) relative to the measurement at the lowest frequency. Thus, values obtained are negative. Measurements of the natural remanent magnetization (NRM) and of the anhysteretic remanent magnetization (ARM) were performed with a 2G 755 SRM long-core cryogenic magnetometer. ARMs were produced with a 2G660 single-axis alternating field (AF) demagnetizer using 100 mT alternating field and 50 µT static field. NRMs and ARMs both were stepwise demagnetized with the in-line 3-axes AF demagnetizer of the cryogenic magnetometer. AF steps for NRM: 0, 5, 10, 15, 20, 30, 40, 50, 65, 80, 100 mT. AF steps for ARM: 0, 10, 20, 30, 40, 50, 65, 80 mT. Iso-thermal remanent magnetizations (IRM) were imparted with a 2G 660 pulse magnetizer using 1500 mT for producing a saturation magnetization (SIRM) and -200 mT for remagnetization of the low-coercive fraction. Measurements were performed with a Molyneux spinner magnetometer. Data records were turned into time series by applying the age model for PC03 (Hagemann et al., 2024), correlating PC02 to PC03, and correlating PC04 to PC03 (back to 140 ka) and further using the PISO1500 paleointensity stack (Channell et al., 2009), paleomagnetic data from the Black Sea (Liu et al., 2020, Nowaczyk et al., 2021), and paleoclimatic data from Antarctica (Jouzel et al., 2007; Bazin et al., 2013) for reference for older core sections.

Rheology of PDMS silicones used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (CUP)

This dataset provides rheometric data of three PDMS silicones used for analogue modelling in the experimental tectonics laboratory at China University of Petroleum (CUP). The material samples have been analyzed at the Laboratory for Experimental Tectonics at GFZ Helmholtz Centre for Geosciences, Potsdam (HelTec) using an Anton Paar Physica MCR 301 rheometer in a plate-plate configuration at room temperature (21˚C). Rotational (controlled shear rate) tests with shear rates varying from 10^4 to 1 s^-1 were performed. According to our rheometric analysis, the material is quasi-Newtonian (n~1) at strain rates below 10-2 s-1 and weakly shear rate thinning above. The viscosities of the three materials range between 8*10^4 to 3*10^5 Pa s.

New and compiled palaeomagnetic data from western Ross Sea (Antarctica) spanning the last ca. 10 ka

This dataset includes both original and previously published paleomagnetic data. The new data refer to a marine sediment sequence (ANTA02-AV43 core) collected in the in Wood Bay, located along the coast of Victoria Land, within the western Ross Sea (Antarctica) and spanning the last ca. 10 ka. The formerly published paleomagnetic data from coeval sediment cores refer to the from the RS15‐GC57 core of Truax et al. (2025) collected in the adjacent Robertson Bay, and from the PC18 and PC19 cores of Macrì et al. (2005), recovered from the continental rise of the Wilkes Land basin offshore the coast of East Antarctica. The data from these two latter cores were relocated to the location of the ANTA02-AV43 core with the Noel and Batt (1990) method. The estimated age of the formerly published dataset has been re-evaluated after correlation of paleomagnetic trends with the ANTA02-AV43 core and prediction of geomagnetic variation at the ANTA02-AV43 site according to the CALS10k.2 model of Constable et al. (2016). We then combined the new ANTA02-AV43 dataset with existing Holocene records from sediment cores of comparable resolution (PC18 and PC19) to develop the paleomagnetic “HOLOANTA” stack. This composite record averages paleomagnetic data over the last 10,000 years in 200-year intervals. It includes relative paleointensity (RPI) as well as paleomagnetic inclination and declination data, providing a robust regional Holocene RPI curve alongside directional secular variation (PSV) trends.

Analogue modeling results showing fault network evolution during multiphase triaxial strain

This data set includes the results of high-resolution digital image correlation (DIC) analysis and digital elevation models (DEM) applied to analogue modelling experiments (Table 1). Six generic analogue models are extended on top of a rubber sheet. In Series A, as extension velocity increases, the initial biaxial plane strain condition evolves into triaxial constrictional or intermediate strain. Models A1 and A2 are two-phase models and Model A3 is a three-phase model. Conversely, in Series B, as extension velocity decreases, the model starts with triaxial constrictional strain and ends up with biaxial plane or intermediate triaxial strain. Models B1and B2 are two-phase models and Model B3 is a three-phase model. Detailed descriptions of the experiments can be found in Liu et al. (2025) to which this data set is supplement. The data presented here are visualized as topography, the horizontal cumulative surface strain, and incremental profiles.

Ring-shear test data of quartz sand SIBELCO S80 used for analogue modelling in the Tectonic Laboratory (TecLab) at Utrecht University

This dataset provides friction data from ring-shear tests on quartz sand SIBELCO S80 used in analogue modelling of tectonic processes as a rock analogue for the earth’s upper crust (e.g., Klinkmüller et al., 2016). According to our analysis the material shows a Mohr-Coulomb behaviour characterized by a linear failure envelope. Peak, dynamic and reactivation friction coefficients of quartz sand S80 are µP = 0.75, µD = 0.59, and µR = 0.69, respectively (Table 5). Cohesion of the material ranges between 0-80 Pa. The material shows no rate-dependency (<1% per ten-fold change in shear velocity v). The tested bulk material consists of quartz sand SIBELCO S80 with grain size of ~0.63-355 µm (D50 = 175 µm. Bulk and grain densities are 1300 kg/m³ and 2650 kg/m³, respectively and the hardness is 7 on Moh’s scale. S80 is sold e.g., by the company SIBELCO (sibelco.com).

OGS Core Logging Lab - logging sediment cores in Lago Argentino (Brazo Sur), Argentina

The spectacular water outburst occurring semi-periodically when the ice-dam formed by the external front of the Perito Moreno glacier collapses, is one of the most attracting events in the UNESCO ‘Parque Nacional Los Glaciares’ of southern Patagonia. These occurrences have been documented since 1936. Instead, evidence of previous events has been only indirectly provided by dendrochronology analysis. Four sediments cores have been collected on coastal soil in 2017, analysed by X rays, HR photography and Magnetic Susceptibility. The radiographies of these cores allowed to identify lake floodings deposits due to glacier readvance over the coastal soil related to the collapse of the Perito Moreno ice-dam. In November 2018, 10 undisturbed sediment gravity cores were collected within a small inlet of Brazo Sur, that is, the southern arm of Lago Argentino, at water depths ranging from 10 to 6 m using a 4.5 cm diameter gravity corer ‘KC Kajak Sediment Sampler’ Model 13.030. The length of these cores varies from 45 to 65 cm. X rays, HR photography and magnetic susceptibility provide the first evidence of an abrupt change in the stratigraphic record found at variable depths of 14–18 cm from the top of the cores, marked by a hiatus spanning ca. 3200 years, separating planar-laminated sediments below from an alternation of erosional and depositional events above it, indicating recurring high-energy conditions generated by the emptying of the lake basin, as well as ash layers observed in the longest cores. Radio carbon data collected on three of these cores record ice-daming in the Little Ice age, at 324-266 cal yrs BP. These well-preserved stratigraphic records highlight the key role of glaciolacustine deposits in reconstructing the glacial dynamics and palaeoclimate evolution of a glaciated region.

1 2 3 4 520 21 22