API src

Found 1474 results.

Similar terms

s/etc/ETS/gi

Sentinel-5P TROPOMI – Ozone (O3), Level 3 – Global

Ozone vertical column density in Dobson Units as derived from Sentinel-5P/TROPOMI observations. The stratospheric ozone layer protects the biosphere from harmful solar ultraviolet radiation. Ozone in troposphere can pose risks to the health of humans, animals, and vegetation. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Daily observations are binned onto a regular latitude-longitude grid. Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI – Cloud-Top Height (CTH), Level 3 – Global

Global Cloud-Top Height (CTH) as derived from the Sentinel-5P/TROPOMI instrument. Clouds play a crucial role in the Earth's climate system and have significant effects on trace gas retrievals. The cloud-top height is retrieved from the O2-A band using the ROCINN algorithm. Daily observations are binned onto a regular latitude-longitude grid. The TROPOMI instrument aboard the SENTINEL-5P space craft is a nadir-viewing, imaging spectrometer covering wavelength bands between the ultraviolet and the shortwave infra-red. TROPOMI's purpose is to measure atmospheric properties and constituents. It is contributing to monitoring air quality and providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the Top Of Atmosphere (TOA) solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum, allowing operational retrieval of the following trace gas constituents: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4). Within the INPULS project, innovative algorithms and processors for the generation of Level 3 and Level 4 products, improved data discovery and access technologies as well as server-side analytics for the users are developed.

Sentinel-5P TROPOMI – Aerosol Layer Height (ALH), Level 3 – Global

Aerosols are an indicator for episodic aerosol plumes from dust outbreaks, volcanic ash, and biomass burning. Daily observations are binned onto a regular latitude-longitude grid. The Aerosol layer height is provided in kilometres. The TROPOMI instrument onboard the Copernicus SENTINEL-5 Precursor satellite is a nadir-viewing, imaging spectrometer that provides global measurements of atmospheric properties and constituents on a daily basis. It is contributing to monitoring air quality and climate, providing critical information to services and decision makers. The instrument uses passive remote sensing techniques by measuring the top of atmosphere solar radiation reflected by and radiated from the earth and its atmosphere. The four spectrometers of TROPOMI cover the ultraviolet (UV), visible (VIS), Near Infra-Red (NIR) and Short Wavelength Infra-Red (SWIR) domains of the electromagnetic spectrum. The operational trace gas products generated at DLR on behave ESA are: Ozone (O3), Nitrogen Dioxide (NO2), Sulfur Dioxide (SO2), Formaldehyde (HCHO), Carbon Monoxide (CO) and Methane (CH4), together with clouds and aerosol properties. This product is created in the scope of the project INPULS. It develops (a) innovative retrieval algorithms and processors for the generation of value-added products from the atmospheric Copernicus missions Sentinel-5 Precursor, Sentinel-4, and Sentinel-5, (b) cloud-based (re)processing systems, (c) improved data discovery and access technologies as well as server-side analytics for the users, and (d) data visualization services.

Beratung der EU-Kommission und der European Environment Agency (EEA) zur internationalen Klimapolitik als Mitglied im European Topic Center on Air and Climate Change (ETC/ACC)

GrassLands - Mowing Frequency - Yearly, 10m

Grassland mowing dynamics (i.e. the timing and frequency of mowing events) have a strong impact on grassland functions and yields. As grasslands in Germany are managed on small-scale units and grass grows back quickly, satellite information with high spatial and temporal resolution is necessary to capture grassland mowing dynamics. Based on Sentinel-2 data time series, mowing events are detected throughout Germany and annual maps of the grassland mowing frequency generated. The grassland mowing detection approach operates per pixel, including preprocessing of the Enhanced Vegetation Index (EVI) time series and a calibrated rule-based grassland mowing detection which is specified in more detail in Reinermann et al. 2022, 2023.

Ermittlung von Emissionsfaktoren und Emissionen in 2020 und 2030 für nicht genehmigungsbedürftige Öl- und Gasfeuerungen im Geltungsbereich der EU-Richtlinie über mittelgroße Feuerungsanlagen

An 100 mittelgroßen Feuerungsanlagen mit 1 ⁠ MW ⁠ bis unter 10 MW Feuerungswärmeleistung wurden Emissionen von Stickstoffoxiden, Kohlenmonoxid, Staub, Gesamtkohlenstoff, Methan und (bei Ölfeuerung) der Rußzahl gemessen. Es wurden Emissionsfaktoren gebildet, Emissionen für Deutschland im Jahr 2020 berechnet und für das Jahr 2030 in zwei Szenarien abgeschätzt. Weiterhin wurden beste verfügbare Techniken zur Emissionsminderung ermittelt. Dabei wurden u. a. regulative Vorgaben für mittelgroße Öl- und Gasfeuerungsanlagen in sechs europäischen Ländern ausgewertet. Veröffentlicht in Texte | 97/2025.

Greenhouse Gas Emission Trading - Challenges and Opportunities for Japan

Bereitstellung der Erfassungssoftware für das Antragsverfahren durch die Deutsche Emissionshandelsstelle (DEHSt) im Umweltbundesamt (UBA)

National Ordinance on Measures to Avoid Carbon Leakage in the National Fuel Emissions Trading System' (BEHG Carbon Leakage Ordinance, BECV)

According to the approval under state aid law of the Carbon Leakage Ordinance of the Fuel ⁠ Emission ⁠ Trading Act (BECV) by the European Commission (State Aid SA.63191 (2023/N)), a comprehensive evaluation of the regulation is required by 2028. The aim of this evaluation is to examine the effectiveness of the BECV in terms of avoiding carbon leakage while maintaining competitiveness, promoting investment in energy efficiency and climate protection measures, and achieving these objectives in a cost-effective manner. The underlying progress report, which was submitted to the Commission in 2024 as requested in the aforementioned authorization, develops the conceptual and methodological foundations for this evaluation presenting a robust empirical research design. Veröffentlicht in Climate Change | 36/2025.

Distribution and concentration of nutrients, carbon compounds and methane during the January flood 2024, from the Elbe Estuary to the German Bight (North Sea), on the MOSES Sternfahrt-11

In winter 2023/24 a high precipitation rate in northern and eastern Germany increased the run-off volume of the Elbe and Weser rivers tremendously. The MOSES Sternfahrt-11 was conducted during and directly after the flood event, between 28th of December 2023 and 29th of January 2024 to identify its influence on the solution of different indication parameters. On January 10th and 11th in total seven samples within the port of Hamburg and the Elbe Estuary were taken from HPS ships and the Glückstadt ferry. The last two ships Mya II and Littorina covered the outflow of the Elbe into the German Bight. Both Ships had a transportable container laboratory (MOSES container) with a sensor system (see additional metadata) on board, measuring continuously different environmental data. Mya II started sampling on the 17th of January in Cuxhaven, cruising along the northern part of the German Bight towards Büsum. The second day the crew headed west towards Helgoland. The following crew on Littorina took over for the last two days, the 28th and 29th of January, covering the western part of the German Bight between Helgoland and Cuxhaven.

1 2 3 4 5146 147 148