The SAEU62 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SA): Aviation routine reports A1A2 (EU): Europe (The bulletin collects reports from stations: EDQD;LIML;LINATE ;EDVK;KASSEL-CALDEN ;ETSN;NEUBURG ;LIRA;CIAMPINO ;EDHI;HAMBURG-FINKENWERDER ;ETSL;LECHFELD ;EDMA;AUGSBURG ;EDQM;HOF-PLAUEN ;EDXW;WESTERLAND SYLT ;EDAH;HERINGSDORF ;EDNY;FRIEDRICHSHAFEN ;) (Remarks from Volume-C: COMPILATION FOR REGIONAL EXCHANGE)
Hinweise zu Absatz 4.3.4.1.1 Tankcodierung "F" und 6.8.2.2.3 ADR / RID Explosionsdruckstoßfestigkeit (ehemals TRT 006) Allgemeiner Hinweis: Das hier beschriebene Verfahren des Nachweises der Explosionsdruckstoßfestigkeit ist ein zulässiges Alternativverfahren zum Nachweis nach DIN EN 14460. Tanks sind explosionsdruckstoßfest, wenn sie so gebaut sind, dass sie einer Explosion infolge eines Flammendurchschlags standhalten können, ohne dass sie undicht werden, wobei jedoch Verformungen zulässig sind. Der für den Nachweis der Explosionsdruckstoßfestigkeit maßgebliche Explosionsdruck ist stoffabhängig und abhängig von dem Ausgangsdruck, bei dem die Zündung im Tank erfolgt. Bei Transporttanks ist davon auszugehen, dass eine störungsbedingte Zündung durch eine betriebsmäßig freie Öffnung erfolgt. Für den Ausgangsdruck kann daher der Atmosphärendruck von 1000 mBar angesetzt werden. Für den Ausgangsdruck von 1000 mBar weist ein Gemisch von 8,0 Volumen-% Ethylen in Luft unter allen bislang untersuchten Stoffen 1) den höchsten Explosionsdruck von 9,7 Bar (absolut) auf. Ein Tank gilt auch als explosionsdruckstoßfest, wenn in einer experimentellen Prüfung an einem Baumuster eine Explosion mit dem o. g. Gemisch unter atmosphärischen Ausgangsbedingungen vom Tank ertragen wird, ohne dass er undicht wird, wobei jedoch Verformungen zulässig sind. Die Prüfung wird von der Bundesanstalt für Materialforschung und -prüfung, Berlin oder der Physikalisch-Technischen Bundesanstalt, Braunschweig durchgeführt. Ein Tank gilt ferner als explosionsdruckstoßfest, wenn die Berechnung aller drucktragenden Teile des Tanks auf der Grundlage eines maximalen Explosionsdruckes von mindestens 9,7 Bar (absolut) nach den Maßgaben der Europäischen Norm EN 14025 durchgeführt wird. Unter Berücksichtigung der guten Verformungsfähigkeit der eingesetzten Tankwerkstoffe (Bruchdehnung nach Absatz 6.8.2.1.12, 6.8.3.1.1 ADR/RID) ist eine Sicherheit gegen die Zugfestigkeit ( R m ) von 1,3 ausreichend. Gewölbte End- und Trennböden von Tanks können bei Einhaltung der nachfolgenden Bedingungen als explosionsdruckstoßfest betrachtet werden, auch wenn die Berechnung nach dem vorgenannten Regelwerk eine höhere Wanddicke als die des zylindrischen Teils angeben würde: der zylindrische Teil und der Boden sind aus einheitlichem Werkstoff, die Wanddicke ist für einen Prüfdruck von mindestens 4 Bar ausgelegt, die Wanddicke ist nicht kleiner als die Wanddicke des zylindrischen Teils, die sich aufgrund ihrer Auslegung auf die Explosionsdruckstoßfestigkeit ergibt, andere Zuschläge müssen ebenfalls Berücksichtigung finden. Ein Tank gilt auch als explosionsdruckstoßfest, wenn nachgewiesen ist, dass er einem Wasserdruckversuch mit dem 1,3-fachen des höchsten auftretenden Explosionsdruckes standhält, ohne dass er undicht wird, wobei jedoch Verformungen zulässig sind. Die Nachweise nach Nummer 3 und 4 gelten nur für Tanks ohne Einbauten, die den Tankquerschnitt nennenswert einschränken (insbesondere Schwallwände), die zu einer weiteren Druckerhöhung im Explosionsverlauf führen können. 1) Ausgenommen sind solche Stoffe, die zum Selbstzerfall neigen. Stand: 19. Juni 2025
Abfaelle aus polyolefinischen Materialien fallen einerseits in grossen Mengen in Form von Verpackungsmaterial oder Ein-Weg-Gebrauchsgegenstaenden beim Endverbraucher an. Andererseits werden auch bei der Herstellung von Polyolefinen, je nach Herstellungsverfahren und -bedingungen niedermolekulare und wachsartige Nebenprodukte erhalten, die nur zum geringen Teil Verwendung finden. Diese Abfaelle - sowohl die Nebenprodukte aus der Produktion als auch die Abfaelle aus dem Endverbrauch - werden zum groessten Teil verworfen und finden nur zum geringen Teil Anwendung, z.B. bei der Dampferzeugung in Kraftwerken oder Muellverbrennungsanlagen. Mit dem Forschungsprojekt soll daher geprueft werden, wie weit aus diesen Polyolefinabfaellen die Rohstoffe - Aethylen oder Propylen - oder andere Komponenten der chemischen Grundstoffproduktion - z.B. Acetylen - gewonnen werden koennen.Bei den entwickelten Verfahren wurden, im Gegensatz zu den mechanisch-thermischen Aufbereitungsverfahren, die Polyolefine einer partiellen Oxidation unterworfen. Bei dem Forschungsprojekt wurde zunaechst von ataktischem Polypropylen ausgegangen. Dies wurde aufgeschmolzen und in einem Injektionsbrenner zerstaeubt und anschliessend in einer Brennkammer mit Sauerstoff partiell oxidiert. Der Oxidationsvorgang wird dabei durch die Eigenschaften des Brennstoffnebels - Troepfchengroesse, Relativgeschwindigkeit Troepfchen/Gas- und durch die Menge des im Unterschuss eingesetzten Sauerstoffs beeinflusst. Hierdurch laesst sich die Produktverteilung bei der partiellen Oxidation, insbesondere die Konzentration an Olefinen und Acetylen, in relativ weiten Grenzen steuern.
Methan (CH4) ist ein potentes Treibhausgas, das zur globalen Erwärmung beiträgt und eine wichtige Rolle in der Atmosphärenchemie spielt. Aquatische Systeme wurden kürzlich als bedeutende Quellen von CH4 identifiziert, die bis zu 50 % zu den globalen CH4-Emissionen ausmachen. Es besteht jedoch weiterhin erhebliche Unsicherheit über das Ausmaß dieser Emissionen, insbesondere über deren räumliche und zeitliche Treiber. Dies gilt besonders für CH4-Emissionen aus den aquatischen Systemen der Arktis, die bisher kaum untersucht wurden. Um das Verständnis des globalen CH4-Budgets zu verbessern, ist es daher entscheidend die Quellen von CH4 in aquatischen Systemen genau zu charakterisieren und zu klassifizieren. Aktuelle Methoden zur Klassifizierung von CH4-Quellen nutzen stabile Isotopenverhältnisse wie stabile Kohlenstoff- (delta13C) und Wasserstoff- (delta2H) Isotopenwerte von CH4 (13C vs. 2H Diagramme) sowie geochemische Bernard-Verhältnisse, welche die molaren Verhältnisse von CH4 zu Ethan und Propan gegen delta13C-CH4 Werte darstellt (Bernard-Diagramme). Beide Diagramme werden verwendet, da verschiedene CH4-Quellen durch spezifische Bereiche von delta13C- und delta2H-CH4-Werten sowie Bernard-Verhältnissen charakterisiert sind. Eine wesentliche Einschränkung ergibt sich aus der CH4-Oxidation (MOx) durch methanotrophe Bakterien, die in aquatischen Umgebungen weit verbreitet sind. Dieser Prozess verändert die CH4-Konzentrationen und stabilen Isotopenwerte sowie die Ethan- und Propankonzentrationen, wobei die Oxidation dieser Gase bezüglich der CH4-Quellenklassifizierung bisher unberücksichtigt bleibt. Dies kann zu einer erschwerten Klassifizierung von CH4-Quellen bis hin zu Fehlinterpretationen führen. Ein vielversprechender neuer Parameter, um die Klassifizierung von CH4-Quellen in dieser Hinsicht zu verbessern, ist der sogenannte Delta(2,13)-Parameter, der auf den delta13C- und delta2H-Werten von CH4 basiert, jedoch zusätzlich für die durch MOx verursachte Isotopenfraktionierung korrigiert. Derzeit beeinträchtigen jedoch die begrenzte Nutzung des Delta(2,13) Parameters sowie fehlendes Wissen über potenzielle Einflussfaktoren seine Zuverlässigkeit und erfordern eine systematische Untersuchung. Das Ziel von AMIOX ist es, das Verständnis des aquatischen CH4-Kreislaufs zu vertiefen, indem die Klassifizierung von CH4-Quellen und -Senken in gemäßigten und arktischen aquatischen Systemen verbessert wird. Dies soll durch die Einführung des neuen Delta(2,13)-Parameters in Kombination mit Bernard- und 13C vs. 2H-CH4 Diagrammen erreicht werden. Um diese Ziele zu erreichen, werde ich den Einfluss von MOx auf die Delta(2,13)-Werte und Bernard-Verhältnisse durch drei weit verbreitete methanotrophe Spezies in Laborstudien unter verschiedenen Umweltbedingungen untersuchen. Schließlich werde ich die erworbenen Erkenntnisse im Feld anwenden, um das Verständnis des CH4-Kreislaufs in Seen in gemäßigten Breiten in Deutschland und arktischen Seen in Grönland zu verbessern.
Langsame Diffusionsprozesse von Schadstoffen in geringdurchlässigen wasser-gesättigten Gesteinen sind ein wesentlicher Grund für den beschränkten Erfolg vieler Untergrundsanierungen. Zu den immer noch wichtigsten Schadstoffen im Grundwasser zählen die chlorierten Lösemittel, die trotz jahrzehntelanger Sanierungsanstrengungen inzwischen lange Fahnen im urbanen Raum ausbilden. Eine langsame Diffusion bedingt aber auch lange Aufenthaltszeiten in der Gesteinsmatrix und damit können langsame abiotische Abbaumechanismen zum Tragen kommen, die auf Fe2+-haltige Mineralien wie z.B. Eisensulfide, Magnetit oder Phyllosilikate zurückgehen, und bei der Einschätzung des natürlichen Abbaupotentials berücksichtigt werden sollten. Ziel dieses Vorhabens ist es daher, die Transformation von Tri- und Perchlorethen während der Diffusion in Gesteinsproben geklüfteter Aquifere und Aquitarde zu quantifizieren. Weil die Reaktionsraten der Ausgangssubstanzen sehr wahrscheinlich zu klein sind, um im Labor gemessen werden zu können, liegt der Fokus auf der Bestimmung von Transformations- und Abbauprodukten (bspw. teil-chlorierte Ethene, Azetylen, Ethan). Die Experimente zur reaktiven Diffusion müssen mit intakten Gesteinsproben durchgeführt werden, da beim Zerkleinern reaktive Mineralober-flächen (z.B. bei Quarz und Pyrit) entstehen könnten, die zur Dehalogenierung der Ausgangssubstanzen führen könnten. Im Unterschied zu früheren Studien sollen hier die für die Reaktivität verantwortlichen spezifischen Minerale in der Gesteins-matrix identifiziert werden. Die Ergebnisse sind nicht nur für das Langzeitverhalten von chlorierten Lösemitteln im Grundwasser, sondern generell auch für die Endlagerung von radioaktiven Abfällen oder die chemische Verwitterung (Oxidation) von reduzierten Gesteinen relevant.
Nitratreduktion von Wurzeln hat positive Auswirkungen auf die Überflutungstoleranz, doch sind die Mechanismen nur unzureichend verstanden. Nitratreduktase(NR)-haltige Wurzeln eines Tabakwildtyps produzierten unter Anoxia viel weniger Ethanol und Lactat als Wurzeln einer Tabaktransformante (LNR-H), die keine lösliche NR in der Wurzel (aber normale NR-Aktivität in den Blättern) besitzt. Auch der cytosolische pH und der Energiezustand der Wurzeln waren in WT unter Anoxia besser und die Pflanzen zeigten im Gegensatz zur LNR-H keine Welkeerscheinungen. Wir wollen nun überprüfen, inwieweit Nitrat- und Nitritreduktion, Atmung und oxidativer Pentosephosphatzyklus um Metabolite konkurrieren, und weshalb unter Anoxia in WT-Wurzeln die NR-Expression gesteigert und/oder die Proteolyse gehemmt ist. nitratreduzierende Pflanzen ermittieren unter Anoxia auch vermehrt Stickstoffmonoxid (NO). Wir wollen die NO-Emission von Wurzeln unter Normoxia/Anoxia/Post-Anoxia quantifizieren und beteiligte Reaktionen identifizieren. Eine mögliche Korrelation zwischen NO- und Ethylenemission sowie eine vermutete Akkumulation von NO-Verbindungen (Nitrosothiole und Nitrotyrosin) soll untersucht werden. Alle Experimente werden mit dem WT, der LNR-H-Transformante sowie an der Nitritreduktaseantisensetransformante von Tabak durchgeführt.
Ethylen spielt eine bedeutsame Rolle in Bildungs- und Abbauprozessen troposphärischen Ozons. Zudem kommt Ethylen in der Wechselwirkung zwischen Biosphäre und Atmosphäre eine besondere Bedeutung zu. So kann es durch Bildung von Ozon indirekt zu einer Schädigung von pflanzen führen, andererseits wird unter Stressbedingungen, z.B. unter erhöhten ambienten Ozonkonzentrationen, Ethylen von Pflanzen abgegeben. Ethylen wird jedoch auch von anthropogenen Quellen emittiert. Ziel des Vorhabens ist die Untersuchung des biogenen und anthropogenen Anteils der Ethylenemission und -immission in einem unter Ozonstress stehendem Waldgebiet. Das Vorhaben wird im besonderen auf die Ethylenemission von Buchen eingehen. Mittels gaschromatographischer Online-Messung von Ethylen, Isopren sowie Acetylen sollen die Emissions- und Immissionsgänge im Tagesverlauf sowie während einer Vegetationsperiode erfasst werden. Isopren wird nur durch biogene Prozesse emittiert. Für Acetylen sind keine biogenen Quellen bekannt. Somit ist über die gleichzeitige Messung von Acetylen und Isopren eine Diskriminierung des biogenen Anteils der Ethylenemissionen und -immissionen möglich. Als weitere Absicherung des biogenen Ethylenanteils soll die in der Ethylenbiosynthese wichtige Ethylenvorstufe 1-Aminocyclopropan1-Carboxylsäure berücksichtigt werden.
Die Abhaengigkeit der Rate chemo- und strahleninduzierter Mutationen in Keimzellen der Maus von verschiedenen biologischen Faktoren und unterschiedlichen Behandlungsbedingungen wird untersucht. Die Kenntnis dieser Zusammenhaenge verbessert die Extrapolationsmoeglichkeiten der Tierversuche fuer die Beurteilung des genetischen Risikos von physikalischen und chemischen Noxen fuer den Menschen. Zur Abschaetzung des genetischen Risikos fuer den Menschen ist ausserdem die Kenntnis notwendig, in welchem Verhaeltnis zueinander dominante und rezessive Genmutationen, Stoffwechselmutationen und erbliche Trtanslokationen induziert werden. In einem koordinierten Versuch wird deshalb die Wirkung von Aethylnitrosoharnstoff auf die verschiedenen genetischen Endpunkte untersucht.
| Origin | Count |
|---|---|
| Bund | 533 |
| Land | 19 |
| Zivilgesellschaft | 2 |
| Type | Count |
|---|---|
| Chemische Verbindung | 180 |
| Daten und Messstellen | 60 |
| Förderprogramm | 222 |
| Gesetzestext | 100 |
| Text | 68 |
| Umweltprüfung | 8 |
| unbekannt | 9 |
| License | Count |
|---|---|
| geschlossen | 255 |
| offen | 226 |
| unbekannt | 66 |
| Language | Count |
|---|---|
| Deutsch | 523 |
| Englisch | 104 |
| Resource type | Count |
|---|---|
| Archiv | 59 |
| Datei | 118 |
| Dokument | 69 |
| Keine | 364 |
| Webseite | 114 |
| Topic | Count |
|---|---|
| Boden | 345 |
| Lebewesen und Lebensräume | 337 |
| Luft | 326 |
| Mensch und Umwelt | 547 |
| Wasser | 311 |
| Weitere | 381 |