The SPDL43 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SP): Special aviation weather reports A1A2 (DL): Germany (The bulletin collects reports from stations: ETOU;WIESBADEN ARMY AIRFIELD;ETIH;HOHENFELS ARMY AIR FIELD;ETIK;ILLESHEIM AIR BASE;ETAR;RAMSTEIN AIR BASE;ETAD;SPANGDAHLEM AIR BASE;) (Remarks from Volume-C: COMPILATION FOR REGIONAL EXCHANGE)
The SADL43 TTAAii Data Designators decode as: T1 (S): Surface data T1T2 (SA): Aviation routine reports A1A2 (DL): Germany (The bulletin collects reports from stations: ETOU;WIESBADEN ARMY AIRFIELD;ETOR;COLEMAN ARMY AIR FIELD;ETIH;HOHENFELS ARMY AIR FIELD;ETIK;ILLESHEIM AIR BASE;ETAR;RAMSTEIN AIR BASE;ETAD;SPANGDAHLEM AIR BASE;) (Remarks from Volume-C: AUTO METAR)
Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks, are the most delayed. The absolute positional accuracy increases with the time delay. This dataset compiles the RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of this compilation. GNSS Constellation: • GNSS 24h (v01) • GNSS 30h (v02) LEO Satellites: • CHAMP • GRACE • GRACE-FO • SAC-C • TanDEM-X/ TerraSAR-X Each solution is given in the Conventional Terrestrial Reference System (CTS). • The GNSS RSOs are 30-hour long arcs starting at 21:00 the day before the actual day and ending at 03:00 the day after. The accuracy of the GPS RSO sizes at the 3-cm level in terms of RMS values of residuals after Helmert transformation onto IGS combined orbit solutions (Version 1 GNSS RSOs are 24-hour long arcs starting at 00:00 and ending at 24:00 the actual day). • The LEO RSOs are generated based on these 30-hour GNSS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename. This dataset compiles RSO products for various LEO missions and the corresponding GNSS constellation in sp3 format in a revised processing version 2. The switch from previous version 1 to 2 was performed on 18-Feb-2019. Major changes from version 1 to 2 are the change from IERS 2003 to IERS 2010 conventions and ITRF 2008 to ITRF-2014, as well as the temporal extension of the GNSS constellation from previous 24 hours (version 1) to 30 hours (version 2) arcs. This temporal expansion eliminates the chaining of two consecutive 24-hour GNSS constellation solutions previously used to process day-overlapping LEO arcs in Version 1. This 24h GNSS constellation (Version 1) will continue to operate and be stored on the ISDC ftp server, as discussed in more detail in Section 8.1. All RSO LEO arcs will no longer be continued in version 1 after the changeover date and will only be available in version 2 since then.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TanDEM-X RSO cover the period: o from 2010 173 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TanDEM-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TanDEM-X RSO cover the period: from 2010 173 to up-to-date The LEO RSOs in version 2 are generated based on the 30-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TerraSAR-X RSO cover the period - from 2007 264 to up-to-date The LEO RSOs in version 1 are generated based on the 24-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. For day overlapping arcs two 24h GNSS constellations are concatenated. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 1 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2003 conventions and related to the ITRF-2008 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Rapid Science Orbits (RSO) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ RSO products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). • The TerraSAR-X RSO cover the period - from 2007 264 to up-to-date The LEO RSOs in version 2 are generated based on the 30-hour GPS RSOs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO RSOs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
This dataset provides Near Realtime Orbits (NRT) from the Low Earth Orbiter (LEO) satellite TerraSAR-X. It is part of the compilation of GFZ NRT products for various LEO missions and the appropriate GNSS constellation in sp3 format. The individual solutions for each satellite mission are published with individual DOI as part of the compilation (Schreiner et al., 2022). The TerraSAR-X NRT cover the period - from 2007 264 to up-to-date The LEO NRTs in version 2 are generated based on the 30-hour GPS NRTs in two pieces for the actual day with arc lengths of 14 hours and overlaps of 2 hours. One starting at 22:00 and ending at 12:00, one starting at 10:00 and ending at 24:00. Due to the extended length of the constellation, there is no need to concatenate several constellations for day-overlapping arcs. The accuracy of the LEO NRTs is at the level of 1-2 cm in terms of SLR validation. Each solution in version 2 is given in the Conventional Terrestrial Reference System (CTS) based on the IERS 2010 conventions and related to the ITRF-2014 reference frame. The exact time covered by an arc is defined in the header of the files and indicated as well as in the filename.
Orbital products describe positions and velocities of satellites, be it the Global Navigation Satellite System (GNSS) satellites or Low Earth Orbiter (LEO) satellites. These orbital products can be divided into the fastest available ones, the Near Realtime Orbits (NRT, Zitat), which are mostly available within 15 to 60 minutes delay, followed by Rapid Science Orbit (RSO, Zitat) products with a latency of two days and finally the Precise Science Orbit (PSO) which, with a latency of up to a few weeks or longer in the case of reprocessing campaigns, are the most delayed. The absolute positional accuracy increases from NRT to PSO. This dataset compiles the PSO products for various LEO missions and GNSS constellation in sp3 format. GNSS Constellation: - GPS LEO Satellites: - ENVISAT - Jason-1 - Jason-2 - Jason-3 - Sentinel-3A - Sentinel-3B - Sentinel-6A - TOPEX Each solution follows specific requirements and parametrizations which are named in the respective processing metric table.
Ziel des Vorhabens ist es, die Effizienz der tertiären Förderverfahren von Erdöl- und Erdgaslagerstätten und das Verpressen von superkritischem CO2 (scCO2) sowie die Einlagerung (Speicherung) von Kohlenwasserstoffen zu verbessern. Das Projekt untersucht auf der Nanoskala die Morphologie von Poren und der dem Porenraum zugewandten Wände der Zemente in Sedimentgesteinen. Die molekularen Wechselwirkungen der Porenoberfläche mit Fluiden, wie z.B. Haftwässer, Erdöl, oder scCO2 des 'Enhanced Oil Recovery' Prozesses (EOR) sollen besser verstanden werden. Diese Reaktionen sind von erheblicher Bedeutung in der Erdöl- und Erdgasgewinnung, sowie allgemein, in der Sedimentologie und Diagenese und haben signifikante Auswirkungen auf den Ausbeutegrad und die Speicherkapazität von Kohlenwasserstofflagerstätten. Das in diesem Projekt erworbene Wissen wird es erlauben, die Öl- und Gasmigration besser zu erklären und modellieren zu können, um die Nutzung dieser Lagerstätten zu optimieren. Gleichzeitig wird dieses Wissen einen bedeutsamen technologischen Vorsprung für Deutschland ermöglichen und der Erdöl-, Chemischen- und Bohrtechnikindustrie neue Möglichkeiten der Entwicklung und Ausbeutung von Öl & Gas Lagerstätten eröffnen. Das Teilprojekt 1 (RWE-Dea AG Hamburg, Petrophysik) hat die Probenbeschaffung und -auswahl und die grundlegende sedimentologische Bearbeitung der Proben sowie die technische und anwendungsorientierte Steuerung der Forschungsarbeiten und der späteren Anwendung der Ergebnisse zum Ziel. Das Teilprojekt 2 (LMU und Deutsches Museum München) hat die Vorbereitung und Durchführung der Rasterkraftmikroskopie und der damit verbundenen Oberflächen und Rauhigkeitsmessungen im Nanobereich zur Aufgabe. Das Teilprojekt 3 (LMU München) hat die sedimentologische Bearbeitung der Proben einschließlich der Porosität und Permeabilitätsmessungen, Licht- und Rasterelektronenmikroskopie (Zusammen mit Teilprojekt 2), geochemische Mikrosondenanalysen und sedimentologische Interpretation dieser Arbeiten (Zusammen mit Teilprojekt 1) zur Aufgabe. Des Weiteren werden die Proben mit scCO2 durchströmt, um die Alteration der Proben in Abhängigkeit vom CO2-Partialdruck und der Gesteinsbeschaffenheit beschreiben zu können. Der Ausbeutegrad von Öllagerstätten ist weltweit trotz kostenintensiver und technologisch sehr aufwendiger Fördermaßnahmen nur gering. Unabhängig von der Entwicklung des Weltmarktes für Rohöl kann nur etwa 30% des Öls einer Lagerstätte gefördert werden. Selbst sekundäre und tertiäre Förderverfahren, wie Druck- und Wegbarkeitserhöhung in der Lagerstätte, beispielsweise durch Flüssigkeits- und Gasverpressung oder Hochdruckgesteinsfragmentierung und künstlicher Herabsetzung der Viskosität des Öl-Wasser-Gemisches durch Additiva, erhöhen die Ausbeute nicht signifikant. Etwa 70 % des Erdöls sind also in jeder Lagerstätte mit den heute bekannten Fördermaßnahmen nicht erreichbar. (Text gekürzt)
Origin | Count |
---|---|
Bund | 7 |
Land | 2 |
Wissenschaft | 7 |
Type | Count |
---|---|
Förderprogramm | 5 |
unbekannt | 9 |
License | Count |
---|---|
offen | 12 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 3 |
Englisch | 12 |
Resource type | Count |
---|---|
Keine | 10 |
Webseite | 4 |
Topic | Count |
---|---|
Boden | 12 |
Lebewesen & Lebensräume | 7 |
Luft | 12 |
Mensch & Umwelt | 14 |
Wasser | 4 |
Weitere | 14 |