The energetic efficiency of C4 photosynthesis is strongly affected by bundle sheath leakiness, which is commonly assessed with the 'linear version' of the Farquhar model of 13C discrimination, and leaf gas exchange and 13C composition data. But, the linear Farquhar model is a simplification of the full mechanistic theory of ? in C4 plants, potentially generating errors in the estimation of leakiness. In particular, post-photosynthetic C isotope fractionation could cause large errors, but has not been studied in any detail. The present project aims to improve the understanding of the ecological and developmental/physiological factors controlling discrimination and leakiness of the perennial grass Cleistogenes squarrosa. C. squarrosa is the most important member of the C4 community which has spread significantly in the Mongolia grasslands in the last decades. It has an unusually high and variable discrimination, which suggests very high (and potentially highly variable) leakiness. Specifically, we will conduct the first systematic study of respiratory 13C fractionation in light and dark at leaf- and stand-scale in this C4 species, and assess its effect on discrimination and estimates of leakiness. These experiments are conducted in specialized 13CO2/12CO2 gas exchange mesocosms using ecologically relevant scenarios, testing specific hypotheses on effects of environmental drivers and plant and leaf developmental stage on discrimination and leakiness.
Whether primordial bodies in the solar system possessed internally-generated dynamos is a fundamental constraint to understand the dynamics and timing of early planetary formation. Paleointensity studies on several meteorites reveal that their host planets possessed magnetic fields within an order-of magnitude of the present Earths field. Interpretation of paleointensity data relies heavily on fundamental knowledge of the magnetic properties of the magnetic carriers, such as the single to multidomain size threshold or how the saturation magnetization varies as a function of grain size, yet very little knowledge exists about these key parameters for some of the main magnetic recorders in meteorites: the iron-nickel alloys. Moreover, most meteorites have experienced some amount of shock during their histories, yet the consequence of even very small stresses on paleointensity data is poorly known.We wish to fill these gaps by magnetically characterizing Fe-Ni alloys as a function of grain size and by determining how absolute and relative paleointensity data are biased by strain levels lower than those petrologically observable (less than 4-5 GPa). For example, our preliminary work shows that an imposed stress of 0.6 GPa will reduce absolute paleointensity estimates by 46Prozent for single domain magnetite-bearing rocks. In general, paleointensity determinations possess inherent disadvantages regarding measurement precision and the inordinate amount of human time investment. We intend to overcome these limitations by extending and improving our fully automated magnetic workstation known as the SushiBar.
Durum wheat is mainly grown as a summer crop. An introduction of a winter form failed until now due to the difficulty to combine winter hardiness with required process quality. Winter hardiness is a complex trait, but in most regions the frost tolerance is decisive. Thereby a major QTL, which was found in T. monococcum, T.aestivum, H. vulgare and S.cereale on chromosome 5, seems especially important. With genotyping by sequencing it is now possible to make association mapping based on very high dense marker maps, which delivers new possibilities to detect main and epistatic effects. Furthermore, new sequencing techniques allow candidate gene based association mapping. The main aim of the project is to unravel the genetic architecture of frost tolerance and quality traits in durum. Thereby, the objectives are to (1) determine the genetic variance, heritability and correlations among frost tolerance and quality traits, (2) examine linkage disequilibrium and population structure, (3) investigate sequence polymorphism at candidate genes for frost tolerance, and (4) perform candidate gene based and genome wide association mapping.
Farm structures are often characterized by regional heterogeneity, agglomeration effects, sub-optimal farm sizes and income disparities. The main objective of this study is to analyze whether this is a result of path dependent structural change, what the determinants of path dependence are, and how it may be overcome. The focus is on the German dairy sector which has been highly regulated and subsidized in the past and faces severe structural deficits. The future of this sector in the process of an ongoing liberalization will be analyzed by applying theoretical concepts of path dependence and path breaking. In these regards, key issues are the actual situation, technological and market trends as well as agricultural policies. The methodology will be based on a participative use of the agent-based model AgriPoliS and participatory laboratory experiments. On the one hand, AgriPoliS will be tested as a tool for stakeholder oriented analysis of mechanisms, trends and policy effects. This part aims to analyze whether and how path dependence of structural change can be overcome on a sector level. In a second part, AgriPoliS will be extended such that human players (farmers, students) can take over the role of agents in the model. This part aims to compare human agents with computer agents in order to overcome single farm path dependence.
Subproject 3 will investigate the effect of shifting from continuously flooded rice cropping to crop rotation (including non-flooded systems) and diversified crops on the soil fauna communities and associated ecosystem functions. In both flooded and non-flooded systems, functional groups with a major impact on soil functions will be identified and their response to changing management regimes as well as their re-colonization capability after crop rotation will be quantified. Soil functions corresponding to specific functional groups, i.e. biogenic structural damage of the puddle layer, water loss and nutrient leaching, will be determined by correlating soil fauna data with soil service data of SP4, SP5 and SP7 and with data collected within this subproject (SP3). In addition to the field data acquired directly at the IRRI, microcosm experiments covering the broader range of environmental conditions expected under future climate conditions will be set up to determine the compositional and functional robustness of major components of the local soil fauna. Food webs will be modeled based on the soil animal data available to gain a thorough understanding of i) the factors shaping biological communities in rice cropping systems, and ii) C- and N-flow mediated by soil communities in rice fields. Advanced statistical modeling for quantification of species - environment relationships integrating all data subsets will specify the impact of crop diversification in rice agro-ecosystems on soil biota and on the related ecosystem services.
Boron (B) is an essential microelement for plants. Despite the use of modern fertilization methods, B deficiency still causes losses in agricultural plant production. Even though many positive effects of B on plant growth and physiology have been reported, a large majority of B functions and the regulatory mechanisms controlling the B nutritional status remain unknown. The main objective of this project is to elucidate how the greatly B deficiency-sensitive Brassica crop plants process and regulate their B status during vegetative and reproductive growth. In this context, the project aims at identifying the mode of action of B in mechanisms regulating the B status itself and uncovering those mechanisms contributing to B efficiency in different genotypes. Plant species subjected to investigation will be the agronomically important oilseed and vegetable plant Brassica napus (rapeseed) and its close relative the genetic and molecular model plant Arabidopsis thaliana. Questions addressed within the scope of this project should lead to a detailed understanding of mechanisms controlling B uptake and allocation from the level of the whole plant down to the cellular level. B transport routes and rates will be determined in sink- and source tissues and in developmental periods with a particularly high B demand. A special focus will be on the identification of B transport bottlenecks and the analysis of B deficiency-sensitive transport processes to and within the highly B-demanding reproductive organs. Recent studies in Arabidopsis suggest that Nodulin26-like Intrinsic Proteins (NIPs), which belong to the aquaporin channel protein family, are essential for plant B uptake and distribution. The systematic focus on the molecular and physiological characterization of B. napus NIPs will clarify their role in B transport and will identify novel NIP-associated mechanisms playing key roles in the B response network.To further resolve the mostly unknown impact of the B nutritional status on gene regulation and metabolism, a transcript and metabolite profile of B-sufficient and B-deficient rapeseed plants will be generated. Additionally, an Arabidopsis transcription factor knockout collection (greater 300 lines) will be screened for abnormalities in responses to the B nutritional status. This will identify yet unknown B-responsive genes (transcription factors and their targets) and gene products (enzymes or metabolite variations) playing key roles in signalling pathways and mechanisms regulating the B homeostasis. Boron (in form of boric acid) and arsenite (As) share in all likelihood the same NIP-mediated transport pathways. To assess the consequences of this dual transport pathway the so far unstudied impact of the plants B nutritional status on the accumulation and distribution of As will be investigated in B. napus. Moreover, the current dimension of the As contamination of Brassica-based food products, to which consumers are exposed to, will be analyzed. usw.
In many plant species, FLOWERING LOCUS T and related proteins are the mobile signal that communicates information on photoperiod from the leaves to the shoots, where the transition to flowering is realized. FT expression is tightly controlled at the transcriptional level so that it is restricted to leaves, occurs only in appropriate photoperiods, and integrates ambient temperature and developmental cues, as well as information on biotic and abiotic stress. We previously established that FT transcription in the model plant Arabidopsis thaliana requires proximal promoter cis-elements and a distal enhancer, both evolutionary conserved among Brassicacea species. In addition, FT transcription is blocked prior vernalization in biannual accessions and vernalization-dependency of FT is controlled through a CArG-box located in the first intron that binds the transcriptional repressor FLOWERING LOCUS C (FLC). Chromatin-mediated repression by the Polycomb Group (PcG) pathway is required for photoperiod-dependent FT regulation and participates in FT expression level modulation in response to other cues.In this project, I propose to explore the available sequence data from the 1001 genome project in Arabidopsis to evaluate how often changes in regulatory cis-elements at FT have occurred and how these translate into an adaptive value. Allele-specific FT expression pattern will be measured in F1 hybrids of different accessions in response to varying environmental conditions. FT alleles that show cis-regulatory variation will be further analyzed to pinpoint the causal regulatory changes and study their effect in more detail. The allotetrapolyploid species Brassica napus is a hybrid of two Brassiceae species belonging to the A- and C-type genome, which are in turn mesopolyploid due to a genome triplication that occurred ca. 10x106 years ago. We will determine allele-specific expression of FT paralogs from both genomes of a collection of B. napus accessions. The plants will be grown in the field in changing environmental conditions to maximize the chance to detect expression variation of the paralogs. We will compare the contribution of the founder genomes to the regulation of flowering time and asses variation in this contribution. A particular focus will be to study the impact of chromatin-mediated repression on allele selection in B. napus.
Das Projekt ÖkoKauf der Stadt Wien hat es sich zum Ziel gesetzt, durch die Erstellung von ökologischen Kriterien, Pilotprojekte und durch Bewusstseinsarbeit das Beschaffungswesen im Magistrat Wien weiter zu ökologisieren. In diesem Rahmen widmete sich der Arbeitskreis 'Desinfektionsmittel unter der Leitung der Wiener Umweltanwaltschaft (WUA) der Aufgabe, für Hygienefachleute ein Instrument zur Beurteilung der Auswirkungen von Desinfektionsmitteln auf Gesundheit und Umwelt zu erstellen. Das Österreichische Ökologie-Institut führte eine Daten- und Literaturrecherche durch, das Umweltbundesamt nahm ergän-zende ökotoxikologische Tests an Wirkstoffen und -produkten vor und 'die umweltberatung ermittelte stationsbezogene Desinfektionsmittelverbräuche in Wiener Krankenanstalten. Die Recherche- und Testergebnisse zu Desinfektionsmittelwirkstoffen und -produkten wurden in einer vom IFZ konzipierten und von der Magistratsabteilung 14 realisierten Datenbank zusammengefasst. Um die ökotoxikologischen Produkteigenschaften vergleichbar zu machen, wurde vom IFZ ein Bewertungsraster entwickelt und in die Datenbank integriert. Dabei werden nachteilige Wirkungen auf die Gesundheit anhand von vier Wirkungskategorien erfasst: Akute Giftigkeit; Reizwirkung auf die Haut; Sensibilisierung, allergenes Potenzial sowie Erbgutschädigende, krebserzeugende und fruchtschädigende Eigenschaften. Zusammen mit der Berücksichtigung des Verhaltens in Oberflächengewässern (Abbauverhalten, Bioakkumulationspotenzial, Toxizität für Wasserorganismen) sowie dem Verhalten in Kläranlagen werden insgesamt sechs Bewertungszahlen generiert, die auf einer Skala von 1 (vernachlässigbar) bis 5 (sehr hoch) das gesamte Gefährdungsprofil des Stoffes beschreiben sollen. Das Gefährdungsprofil eines Handelsproduktes errechnet sich aus den Gefährdungsprofilen der darin enthaltenen Wirkstoffe anhand eines Algorithmus: Dabei wird die Annahme getroffen, dass die Produkteigenschaften von der Konzentration der darin enthaltenen Wirkstoffe abhängen. Bei der Bewertung ist außerdem zu gewährleisten, dass ein Wirkstoff mit einem hohen Gefährdungspotenzial angemessen berücksichtigt wird, auch und gerade wenn seine Konzentration im Produkt gering ist. In der Literatur wird dazu eine logarithmische Skalierung vorgeschlagen. Die Bewertung berücksichtigt derzeit die Wirkstoffe sowie Anwendungsverdünnungen. Die Zusammenfassung der Produkte in Verwendungs- bzw. Expositionskategorien ermöglicht letztlich eine vergleichende Bewertung. Da das Bewertungsraster gerade auf eine vergleichende Bewertung von Produkten abzielt, unterliegt er einer ständigen kritischen Diskussion, die auch häufig von den Herstellern geführt wird. Dieser Umstand sowie das Faktum von Produktlebenszyklen erfordern ein ständiges Update der in der Datenbank enthaltenen Informationen und eine Anpassung des Bewertungsmodells an den aktuellen Stand von Forschung sowie Standards der Stoff- und Produktpolitik.
Barley (Hordeum vulgare) is an important cereal grain which serves as major animal fodder crop as well as basis for malt beverages or staple food. Currently barley is ranked fourth in terms of quantity of cereal crops produced worldwide. In times of a constantly growing world population in conjunction with an unforeseeable climate change and groundwater depletion, the accumulation of knowledge concerning cereal growth and rate of yield gain is important. The Nordic Genetic Resource Center holds a major collection of barley mutants produced by irradiation or chemical treatment. One phenotypic group of barley varieties are dwarf mutants (erectoides, brachytic, semidwarf, uzu). They are characterized by a compact spike and high rate of yield while the straw is short and stiff, enhancing the lodging resistance of the plant. Obviously they are of applied interest, but they are also of scientific interest as virtually nothing is known about the genes behind the development of plant dwarfism. The aim of this project is to identify and isolate the genes carrying the mutations by using state of the art techniques for gene cloning at the Carlsberg Laboratory. The identified genes will be connected with the mutant phenotype to reveal the gene function in general. One or two genes will be overexpressed and the resulting recombinant proteins will be biochemically and structurally characterized. The insights how the mutation effects the protein will display the protein function in particular. Identified genes and their mutant alleles will be tested in the barley breeding program of the Carlsberg brewery.
Chromium (Cr) is introduced into the environment by several anthropogenic activities. A striking ex-ample is the area around Kanpur in the Indian state of Uttar Pradesh, where large amounts of Cr-containing wastes have been recently illegally deposited. Hexavalent Cr, a highly toxic and mobile contaminant, is present in significant amounts in these wastes, severely affecting the quality of sur-roundings soils, sediments, and ground waters. The first major goal of this study is to clarify the solid phase speciation of Cr in these wastes and to examine its leaching behavior. X-ray diffraction and synchrotron-based X-ray absorption spectroscopy techniques will be employed for quantitative solid phase speciation of Cr. Its leaching behavior will be studied in column experiments performed at un-saturated moisture conditions with flow interruptions simulating monsoon rain events. Combined with geochemical modeling, the results will allow the evaluation of the leaching potential and release kinetics of Cr from the waste materials. The second major goal is to investigate the spatial distribution, speciation, and solubility of Cr in the rooting zone of chromate-contaminated soils surrounding the landfills, and to study the suitability of biochar as novel soil amendment for mitigating the deleterious effects of chromate pollution. Detailed field samplings and laboratory soil incubation studies will be carried out with two agricultural soils and biochar from the Kanpur region.
| Origin | Count |
|---|---|
| Bund | 541 |
| Wissenschaft | 8 |
| Type | Count |
|---|---|
| Daten und Messstellen | 7 |
| Förderprogramm | 540 |
| Text | 1 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 548 |
| Language | Count |
|---|---|
| Deutsch | 126 |
| Englisch | 510 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Datei | 6 |
| Keine | 441 |
| Webseite | 101 |
| Topic | Count |
|---|---|
| Boden | 481 |
| Lebewesen und Lebensräume | 541 |
| Luft | 435 |
| Mensch und Umwelt | 549 |
| Wasser | 433 |
| Weitere | 549 |