Durum wheat is mainly grown as a summer crop. An introduction of a winter form failed until now due to the difficulty to combine winter hardiness with required process quality. Winter hardiness is a complex trait, but in most regions the frost tolerance is decisive. Thereby a major QTL, which was found in T. monococcum, T.aestivum, H. vulgare and S.cereale on chromosome 5, seems especially important. With genotyping by sequencing it is now possible to make association mapping based on very high dense marker maps, which delivers new possibilities to detect main and epistatic effects. Furthermore, new sequencing techniques allow candidate gene based association mapping. The main aim of the project is to unravel the genetic architecture of frost tolerance and quality traits in durum. Thereby, the objectives are to (1) determine the genetic variance, heritability and correlations among frost tolerance and quality traits, (2) examine linkage disequilibrium and population structure, (3) investigate sequence polymorphism at candidate genes for frost tolerance, and (4) perform candidate gene based and genome wide association mapping.
Existing models of soil organic matter (SOM) formation consider plant material as the main source of SOM. Recent results from nuclear magnetic resonance analyses of SOM and from own incubation studies, however, show that microbial residues also contribute to a large extent to SOM formation. Scanning electron microscopy showed that the soil mineral sur-faces are covered by numerous small patchy fragments (100 - 500 nm) deriving from microbial cell wall residues. We will study the formation and fate of these patchy fragments as continuously produced interfaces in artificial soil systems (quartz, montmorillonite, iron oxides, bacteria and carbon sources). We will quantify the relative contributions of different types of soil organisms to patchy fragment formation and elucidate the effect of redox con-ditions and iron mineralogy on the formation and turnover of patchy fragments. The develop-ment of patchy fragments during pedogenesis will be followed by studying soil samples from a chronosequence in the forefield of the retreating Damma glacier. We will characterize chemical and physical properties of the patchy fragments by nanothermal analysis and microscale condensation experiments in an environmental scanning electron microscope. The results will help understanding the processes at and characteristics of biogeochemical interfaces.
Flowering time (FTi) genes play a key role as regulators of complex gene expression networks, and the influence of these networks on other complex systems means that FTi gene expression triggers a cascade of regulatory effects with a broad global effect on plant development. Hence, allelic and expression differences in FTi genes can play a central role in phenotypic variation throughput the plant lifecycle. A prime example for this is found in Brassica napus, a phenotypically and genetically diverse species with enormous variation in vernalisation requirement and flowering traits. The species includes oilseed rape (canola), one of the most important oilseed crops worldwide. Previously we have identified QTL clusters related to plant development, seed yield and heterosis in winter oilseed rape that seem to be conserved in diverse genetic backgrounds. We suspect that these QTL are controlled by global regulatory genes that influence numerous traits at different developmental stages. Interestingly, many of the QTL clusters for yield and biomass heterosis appear to correspond to the positions of meta-QTL for FTi in spring-type and/or winter-type B. napus. Based on the hypothesis that diversity in FTi genes has a key influence on plant development and yield, the aim of this study is a detailed analysis of DNA sequence variation in regulatory FTi genes in B. napus, combined with an investigation of associations between FTi gene haplotypes, developmental traits, yield components and seed yield.
This project aims at analysing the influence of competing national and international bureaucracies on the fragmentation of the international forest regime complex (IFRC). Its objectives are: - describing the political dimension of fragmentation of the IFRC programme- explaining the political dimension of fragmentation based on the model of bureaucratic politics- analysing the steering consequences resulting from fragmentation - trans-disciplinary design of solutions for coping with political aspects of fragmentationBuilding on the bureaucratic politics approach these objectives will be pursued by testing the linking hypothesis: Interest and influence of the bureaucracies cause a fragmented programme of the IFRC. This programme supports the goal of profitable timber production but keeps the decision about biodiversity and CO2 sequestration open hindering the effective steering by the IFRC. The project develops an analytical framework consisting of the following independent variables: competing national and competing international bureaucracies, elected politicians, national and international non-state actors and media discourses. The fragmentation of the political programme of the IFRC is the overall dependent variable. This project will analyse the influence of bureaucracies and their coalitions on fragmentation at the international level as well as in national case studies in Sweden, Poland and Germany. The other independent variables will be covered by sub-projects 2, 3 and 4. The findings will be linked to the other political and to the economic and technic-ecological sub projects in order to contribute to the multi-disciplinary description and explanation of fragmentation and its steering consequences.
The development of sustainable and efficient energy conversion processes at interfaces is at the center of the rapidly growing field of basic energy science. How successful this challenge can be addressed will ultimately depend on the acquired degree of molecular-level understanding. In this respect, the severe knowledge gap in electro- or photocatalytic conversions compared to corresponding thermal processes in heterogeneous catalysis is staggering. This discrepancy is most blatant in the present status of predictive-quality, viz. first-principles based modelling in the two fields, which largely owes to multifactorial methodological issues connected with the treatment of the electrochemical environment and the description of the surface redox chemistry driven by the photo-excited charges or external potentials.Successfully tackling these complexities will advance modelling methodology in (photo)electrocatalysis to a similar level as already established in heterogeneous catalysis, with an impact that likely even supersedes the one seen there in the last decade. A corresponding method development is the core objective of the present proposal, with particular emphasis on numerically efficient approaches that will ultimately allow to reach comprehensive microkinetic formulations. Synergistically combining the methodological expertise of the two participating groups we specifically aim to implement and advance implicit and mixed implicit/explicit solvation models, as well as QM/MM approaches to describe energy-related processes at solid-liquid interfaces. With the clear objective to develop general-purpose methodology we will illustrate their use with applications to hydrogen generation through water splitting. Disentangling the electro- resp. photocatalytic effect with respect to the corresponding dark reaction, this concerns both the hydrogen evolution reaction at metal electrodes like Pt and direct water splitting at oxide photocatalysts like TiO2. Through this we expect to arrive at a detailed mechanistic understanding that will culminate in the formulation of comprehensive microkinetic models of the light- or potential-driven redox process. Evaluating these models with kinetic Monte Carlo simulations will unambiguously identify the rate-determining and overpotential-creating steps and therewith provide the basis for a rational optimization of the overall process. As such our study will provide a key example of how systematic method development in computational approaches to basic energy sciences leads to breakthrough progress and serves both fundamental understanding and cutting-edge application.
The soil fauna affects soil structure, nutrient mineralization, decomposition processes, and the activity and composition of the microbial community in soil. These effects likely also modify plant performance, plant competition and the use of plant tissue by above-ground herbivores. The proposed project investigates effects of earthworms and soil insects on the above-ground system in grassland communities of different diversity. Earthworm and soil insect density is manipulated in experimental plots differing in plant diversity. The manipulations include the combined exclusion of below-ground insects and above-ground herbivores. It is expected that the response of the above-ground plant and animal community to manipulations of soil animal populations depends on plant species, plant diversity and plant functional group. The differential response is expected to propagate into the herbivore system thereby affecting the structure of the above-ground animal community.
Im Rahmen des Forschungsvorhabens werden Untersuchungen zum Vorkommen der genannten Verbindungen und ihr Verhalten in der Nahrungskette (Carry Over von Futtermitteln fuer Milchtiere in die Milch u.ae.) durchgefuehrt.
On 18 Januar 1986 at the east-looking slope of the Kleiner Watzmann in the Berchtesgaden National Park a snow avalanche came down from an elevation of about 2.000 m to the Königssee near St. Bartholomae (610 m above see level). It destroyed 12 to 15 ha of old growth forests dominated by beech (Fagus sylvatica); about 2.000 m3 of wood were thrown down. The soil survace was not intensively effected by the snow avalange. Because the area is situated in the central protection zone of the national park no clearing procedure was done, and a free stand develeopment without any direct impact of man is allowed to take place. In 1989 permanent plots (3 transects, each starting in the surrounding forest and crossing to avalanche area) were established. Vegetation and stand structure records were carried out in 1989, 1994 and 1999. Vegetation development in the first place is characterised by (1) a re-establishment of the tree layer by the (beech) trees, which were bent to the ground but not killed by the avalanche, (2) by seedling and sapling establishment (especially Acer and Fraxinus, but not by pioneer trees) and (3) by continuing floristic composition of the ground vegetation (coverage increasing or decresing depending on the light conditions).
Bamboos (Poaceae) are widespread in tropical and subtropical forests. Particularly in Asia, bamboos are cultivated by smallholders and increasingly in large plantations. In contrast to trees, reliable assessments of water use characteristics for bamboo are very scarce. Recently we tested a set of methods for assessing bamboo water use and obtained first results. Objectives of the proposed project are (1) to further test and develop the methods, (2) to compare the water use of different bamboo species, (3) to analyze the water use to bamboo size relationship across species, and (4) to assess effects of bamboo culm density on the stand-level transpiration. The study shall be conducted in South China where bamboos are very abundant. It is planned to work in a common garden (method testing), a botanical garden (species comparison, water use to size relationship), and on-farm (effects of culm density). Method testing will include a variety of approaches (thermal dissipation probes, stem heat balance, deuterium tracing and gravimetry), whereas subsequent steps will be based on thermal methods. The results may contribute to an improved understanding of bamboo water use characteristics and a more appropriate management of bamboo with respect to water resources.
Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.
| Origin | Count |
|---|---|
| Bund | 540 |
| Wissenschaft | 8 |
| Type | Count |
|---|---|
| Daten und Messstellen | 7 |
| Förderprogramm | 539 |
| Text | 1 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 547 |
| Language | Count |
|---|---|
| Deutsch | 125 |
| Englisch | 510 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Datei | 6 |
| Keine | 440 |
| Webseite | 101 |
| Topic | Count |
|---|---|
| Boden | 485 |
| Lebewesen und Lebensräume | 524 |
| Luft | 438 |
| Mensch und Umwelt | 548 |
| Wasser | 441 |
| Weitere | 548 |