API src

Found 464 results.

Similar terms

s/effet/Effekt/gi

Unraveling the genetic architecture of winter hardiness and quality traits in durum by genome wide and canidate gene based association mapping

Durum wheat is mainly grown as a summer crop. An introduction of a winter form failed until now due to the difficulty to combine winter hardiness with required process quality. Winter hardiness is a complex trait, but in most regions the frost tolerance is decisive. Thereby a major QTL, which was found in T. monococcum, T.aestivum, H. vulgare and S.cereale on chromosome 5, seems especially important. With genotyping by sequencing it is now possible to make association mapping based on very high dense marker maps, which delivers new possibilities to detect main and epistatic effects. Furthermore, new sequencing techniques allow candidate gene based association mapping. The main aim of the project is to unravel the genetic architecture of frost tolerance and quality traits in durum. Thereby, the objectives are to (1) determine the genetic variance, heritability and correlations among frost tolerance and quality traits, (2) examine linkage disequilibrium and population structure, (3) investigate sequence polymorphism at candidate genes for frost tolerance, and (4) perform candidate gene based and genome wide association mapping.

Forschergruppe (FOR) 456 degree of celsius: The role of Biodiversity for element cycling and trophic interactions: An experimental approach in a grassland community, Teilprojekt Decomposers: Decomposer - interaction webs and the effect of belowground biota for ecosystem processes - JenaExp

The soil fauna affects soil structure, nutrient mineralization, decomposition processes, and the activity and composition of the microbial community in soil. These effects likely also modify plant performance, plant competition and the use of plant tissue by above-ground herbivores. The proposed project investigates effects of earthworms and soil insects on the above-ground system in grassland communities of different diversity. Earthworm and soil insect density is manipulated in experimental plots differing in plant diversity. The manipulations include the combined exclusion of below-ground insects and above-ground herbivores. It is expected that the response of the above-ground plant and animal community to manipulations of soil animal populations depends on plant species, plant diversity and plant functional group. The differential response is expected to propagate into the herbivore system thereby affecting the structure of the above-ground animal community.

Ecotoxicology of Organotin compounds

Organotin and especially butyltin compounds are used for a variety of applications, e.g. as biocides, stabilizers, catalysts and intermediates in chemical syntheses. Tributyltin (TBT) compounds exhibit the greatest toxicity of all organotins and have even been characterized as one of the most toxic groups of xenobiotics ever produced and deliberately introduced into the environment. TBT is not only used as an active biocidal compound in antifouling paints, which are designed to prevent marine and freshwater biota from settlement on ship hulls, harbour and offshore installations, but also as a biocide in wood preservatives, textiles, dispersion paints and agricultural pesticides. Additionally, it occurs as a by-product of mono- (MBT) and dibutyltin (DBT) compounds, which are used as UV stabilizer in many plastics and for other applications. Triphenyltin (TPT) compounds are also used as the active biocide in antifouling paints outside Europe and furthermore as an agricultural fungicide since the early 1960s to combat a range of fungal diseases in various crops, particularly potato blight, leaf spot and powdery mildew on sugar beet, peanuts and celery, other fungi on hop, brown rust on beans, grey moulds on onions, rice blast and coffee leaf rust. Although the use of TBT and TPT was regulated in many countries world-wide from restrictions for certain applications to a total ban, these compounds are still present in the environment. In the early 1970s the impact of TBT on nontarget organisms became apparent. Among the broad variety of malformations caused by TBT in aquatic animals, molluscs have been found to be an extremely sensitive group of invertebrates and no other pathological condition produced by TBT at relative low concentrations rivals that of the imposex phenomenon in prosobranch gastropods speaking in terms of sensitivity. TBT induces imposex in marine prosobranchs at concentrations as low as 0,5 ng TBT-Sn/L. Since 1993, for the littorinid snail Littorina littorea a second virilisation phenomenon, termed intersex, is known. In female specimens affected by intersex the pallial oviduct is transformed of towards a male morphology with a final supplanting of female organs by the corresponding male formations. Imposex and intersex are morphological alterations caused by a chronic exposure to ultra-trace concentrations of TBT. A biological effect monitoring offers the possibility to determine the degree of contamination with organotin compounds in the aquatic environment and especially in coastal waters without using any expensive analytical methods. Furthermore, the biological effect monitoring allows an assessment of the existing TBT pollution on the basis of biological effects. Such results are normally more relevant for the ecosystem than pure analytical data. usw.

Carbon and Chorine Isotope Effect Study to Investigate Chlorinated Ethylene Dehalogenation Mechanisms

Chlorinated ethylenes are prevalent groundwater contaminants. Numerous studies have addressed the mechanism of their reductive dehalogenation during biodegradation and reaction with zero-valent iron. However, despite insight with purified enzymes and well-characterized chemical model systems, conclusive evidence has been missing that the same mechanisms do indeed prevail in real-world transformations. While dual kinetic isotope effect measurements can provide such lines of evidence, until now this approach has not been possible for chlorinated ethylenes because an adequate method for continuous flow compound specific chlorine isotope analysis has been missing. This study attempts to close this prevalent research gap by a combination of two complementary approaches. (1) A novel analytical method to measure isotope effects for carbon and chlorine. (2) A carefully chosen set of well-defined model reactants representing distinct dehalogenation mechanisms believed to be important in real-world systems. Isotope trends observed in biotic and abiotic environmental dehalogenation will be compared to these model reactions, and the respective mechanistic hypotheses will be confirmed or discarded. With this hypothesis-driven approach it is our goal to elucidate for the first timdehalogenation reactions.

Tierexperimentelle Untersuchungen zum Verhalten von PCB, HCB und HCH-Isomeren in der Nahrungskette Pflanze - Milchtier - Milch - Mensch

Im Rahmen des Forschungsvorhabens werden Untersuchungen zum Vorkommen der genannten Verbindungen und ihr Verhalten in der Nahrungskette (Carry Over von Futtermitteln fuer Milchtiere in die Milch u.ae.) durchgefuehrt.

Vegetation dynamics following forest stand destruction by snow avalange in the Berchtesgaden National Park

On 18 Januar 1986 at the east-looking slope of the Kleiner Watzmann in the Berchtesgaden National Park a snow avalanche came down from an elevation of about 2.000 m to the Königssee near St. Bartholomae (610 m above see level). It destroyed 12 to 15 ha of old growth forests dominated by beech (Fagus sylvatica); about 2.000 m3 of wood were thrown down. The soil survace was not intensively effected by the snow avalange. Because the area is situated in the central protection zone of the national park no clearing procedure was done, and a free stand develeopment without any direct impact of man is allowed to take place. In 1989 permanent plots (3 transects, each starting in the surrounding forest and crossing to avalanche area) were established. Vegetation and stand structure records were carried out in 1989, 1994 and 1999. Vegetation development in the first place is characterised by (1) a re-establishment of the tree layer by the (beech) trees, which were bent to the ground but not killed by the avalanche, (2) by seedling and sapling establishment (especially Acer and Fraxinus, but not by pioneer trees) and (3) by continuing floristic composition of the ground vegetation (coverage increasing or decresing depending on the light conditions).

Biopores in the subsoil: Formation, nutrient turnover and effects on crops with distinct rooting systems (BioFoNT)

Perennial fodder cropping potentially increases subsoil biopore density by formation of extensive root systems and temporary soil rest. We will quantify root length density, earthworm abundance and biopore size classes after Medicago sativa, Cichorium intybus and Festuca arundinacea grown for 1, 2 and 3 years respectively in the applied research unit's Central Field Trial (CeFiT) which is established and maintained by our working group. Shoot parameters including transpiration, gas exchange and chlorophyll fluorescence will frequently be recorded. Precrop effects on oilseed rape and cereals will be quantified with regard to crop yield, nutrient transfer and H2-release. The soil associated with biopores (i.e. the driloshpere) is generally rich in nutrients as compared to the bulk soil and is therefore supposed to be a potential hot spot for nutrient acquisition. However, contact areas between roots and the pore wall have been reported to be low. It is still unclear to which extent the nutrients present in the drilosphere are used and which potential relevance subsoil biopores may have for the nutrient supply of crops. We will use a flexible videoscope to determine the root-soil contact in biopores. Nitrogen input into the drilosphere by earthworms and potential re-uptake of nitrogen from the drilosphere by subsequent crops with different rooting systems (oilseed rape vs. cereals) will be quantified using 15N as a tracer.

Species discrimination of plant roots by Fourier transform infrared (FTIR) spectroscopy

Comprehension of belowground competition between plant species is a central part in understanding the complex interactions in intercropped agricultural systems, between crops and weeds as well as in natural ecosystems. So far, no simple and rapid method for species discrimination of roots in the soil exists. We will be developing a method for root discrimination of various species based on Fourier Transform Infrared (FTIR)-Attenuated Total Reflexion (ATR) Spectroscopy and expanding its application to the field. The absorbance patterns of FTIR-ATR spectra represent the chemical sample composition like an individual fingerprint. By means of multivariate methods, spectra will be grouped according to spectral and chemical similarity in order to achieve species discrimination. We will investigate pea and oat roots as well as maize and barnyard grass roots using various cultivars/proveniences grown in the greenhouse. Pea and oat are recommendable species for intercropping to achieve superior grain and protein yields in an environmentally sustainable manner. To evaluate the effects of intercropping on root distribution in the field, root segments will be measured directly at the soil profile wall using a mobile FTIR spectrometer. By extracting the main root compounds (lipids, proteins, carbohydrates) and recording their FTIR-ATR spectra as references, we will elucidate the chemical basis of species-specific differences.

Ressortforschungsplan 2024, Auswirkungen des Klimawandels auf die Grundwassertemperatur - Deutschlandweiter Überblick, mögliche Auswirkungen, Empfehlungen

Der Klimawandel und die Verstädterung führen weltweit zu einer Erwärmung der oberflächennahen Grundwasserleiter. Jene Veränderung der oberflächennahen Grundwassertemperaturen die in Deutschland nicht urban überprägt sind ist nur in wenigen Untersuchungen regional, aber nicht bundesweit dokumentiert. Im Vorhaben soll daher eine bundesweite Übersicht der oberflächennahen Grundwassertemperaturen und deren Veränderung während der vergangenen Dekaden anhand bundes- und landesweit vorliegender Daten erstellt werden. Erforderlich sind auch Projektionen/Modellierungen der Zunahme der Grundwassertemperatur aufgrund des Klimawandels bis zum Ende des Jahrhunderts, um rechtzeitig Anpassungsmaßnahmen zu ergreifen. Schwerer einzuschätzen als die Auswirkung des Klimawandels ist die Entwicklung im urbanen Raum durch unterirdische Bauwerke und den Einfluss oberflächennaher Geothermie und unterirdischer Wärmespeicher - der urbane Raum ist nicht Gegenstand des Vorhabens. Die Grundlage wird jedoch auch zur besseren Abschätzung urbaner Überprägung im Vergleich zum zur sich verändernden Ausgangslage dienen können. Die Folgen veränderter Grundwassertemperatur für die Grundwasserqualität und die Grundwasserökologie sowie die erbrachten Ökosystemdienstleistungen sind bislang nicht umfassend verstanden. Die Temperatursensitivität chemischer und biologischer Prozesse lässt vermuten, dass durch die derzeitige Erwärmung hervorgerufene Temperaturveränderungen einen Einfluss auf die Ökologie von Grundwasserleitern und die Zusammensetzung des Grundwassers selbst (z.B. durch verringertes Abbauverhalten, invasive Arten) haben. Auf der Grundlage der Projektionen sind Empfehlungen für Anpassungsmaßnahmen zu entwickeln.

Rehabilitation of Degraded Forests in Yunnan (German-Chinese Cooperation for Agrarian Research)

Background: An increasing frequency of massive flooding along the lower Yangtse River in China ended in a disastrous catastrophe in summer 1998 leaving several thousand people homeless, more than 3.600 dead and causing enormous economic damage. Inappropriate land-use techniques and large scale timber felling in the water catchment of the upper Yangtse and its feeder streams were stated to be the main causes. Immediate timber cutting bans were imposed and investigations on land use patterns were initiated by the Chinese Government. The Institute for World Forestry of the Federal Research Centre for Forestry and Forest Products was approached by the Yunnan Academy of Forestry in Kunming to exchange experiences and to cooperate scientifically in the design and application of appropriate afforestation and silvicultural management techniques in the water catchment area of the Yangtse. This cooperation was initiated in 1999 and is based on formal agreements in the fields of agrarian research between the German and Chinese Governments. Objectives: The cooperation was in the first step focussing on the identification of factors which caused the enormous floodings. After their identification measures of prevention were determined and put into practice. In this context experiences made in past centuries in the alpine region of central Europe served as an incentive and example for similar environmental problems and solutions under comparable conditions. Relevant key questions of the cooperation project were: - Analysis of forest related factors influencing the recent floodings of the Yangtse, - Analysis and evaluation of silvicultural management experiences from central Europe for know-how transfer, - Evaluation of rehabilitation measures for successful application in Yunnan, - Dissemination of knowledge through vocational training. Results: - Frequent wild grazing of husbandry is a key factor for forest degeneration beyond unsustainable timber harvests, forest fires and insect calamities leading to increased water run-off in the mountainous region of Yunnan; - Browsing of cattle interrupts succession thus avoiding natural regeneration and leaving a logging ban ineffective; - Mountain pasture in the Alps had similar effects in the past in central Europe. The introduction of controlled grazing has led to an ecologically compatible coexistence of pasture and ecology. Close-to-nature forestry can have positive effects in this sensitive environment. - Afforestation with site adopted broadleaves and coniferous tree species was implemented on demonstration level using advanced techniques in Yunnan.

1 2 3 4 545 46 47