To document trends in human exposure to environmental pollutants, the German Environmental Specimen Bank (ESB) has been routinely collecting and archiving 24-h urine samples from young adults at four sampling sites in Germany on an annual basis. For the purpose of normalizing measured analyte concentrations, urinary creatinine (UC), specific gravity (SG), conductivity (CON), and total urine volume (UVtot) of 24-h urine samples have also been recorded. These parameters are however susceptible to variation over time, as well as within/among participants and normalization against them can thus affect the interpretation of data regarding exposure to environmental pollutants. To evaluate the influence of normalization against these parameters, we first sought to determine variations of these parameters with regard to differences between sexes and trends over time. We analysed data from 8619 urine samples collected from 1997 to 2016. We observed an inverse relation between UVtot and UC, SG, and CON. We also found differences between sexes for UC, SG and CON, but not UVtot. UC, SG, and CON showed significant decreasing trends over time in both sexes. In contrast, a significant increase of over 30% in UVtot, independent of participant age and BMI, was revealed. This increase in UVtot and the concomitant sample dilution is likely to have an impact on measured analyte concentrations in 24-h urine samples. Hence, normalization of urinary concentrations is warranted when interpreting time trends of human exposure. Next, urinary calcium (Ca2+) concentrations of ESB participants were used to demonstrate the effects of normalization against each of the four urine parameters. From 1997 to 2016, measured Ca2+ concentrations showed a statistically significant but scientifically implausible decrease. Normalization of Ca2+ concentrations against UVtot (by calculating the total daily excretion), UC, or CON, but not SG, eliminated this decrease. Consistent with previous work, Ca2+ concentrations in urine and total daily Ca2+ excretion were higher for males than females. Normalization against UC, SG, or CON, however, attenuated this difference. Thus, to avoid misinterpretation in trend analysis and sex-specific excretion in 24-h urine samples, the calculation of the total daily excretion is recommended.
Background: Assessments of age-specific mortality and life expectancy have been done by the UN Population Division, Department of Economics and Social Affairs (UNPOP), the United States Census Bureau, WHO, and as part of previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD). Previous iterations of the GBD used population estimates from UNPOP, which were not derived in a way that was internally consistent with the estimates of the numbers of deaths in the GBD. The present iteration of the GBD, GBD 2017, improves on previous assessments and provides timely estimates of the mortality experience of populations globally. Methods: The GBD uses all available data to produce estimates of mortality rates between 1950 and 2017 for 23 age groups, both sexes, and 918 locations, including 195 countries and territories and subnational locations for 16 countries. Data used include vital registration systems, sample registration systems, household surveys (complete birth histories, summary birth histories, sibling histories), censuses (summary birth histories, household deaths), and Demographic Surveillance Sites. In total, this analysis used 8259 data sources. Estimates of the probability of death between birth and the age of 5 years and between ages 15 and 60 years are generated and then input into a model life table system to produce complete life tables for all locations and years. Fatal discontinuities and mortality due to HIV/AIDS are analysed separately and then incorporated into the estimation. We analyse the relationship between age-specific mortality and development status using the Socio-demographic Index, a composite measure based on fertility under the age of 25 years, education, and income. There are four main methodological improvements in GBD 2017 compared with GBD 2016: 622 additional data sources have been incorporated; new estimates of population, generated by the GBD study, are used; statistical methods used in different components of the analysis have been further standardised and improved; and the analysis has been extended backwards in time by two decades to start in 1950. Findings: Globally, 187% (95% uncertainty interval 184â€Ì190) of deaths were registered in 1950 and that proportion has been steadily increasing since, with 588% (582â€Ì593) of all deaths being registered in 2015. At the global level, between 1950 and 2017, life expectancy increased from 481 years (465â€Ì496) to 705 years (701â€Ì708) for men and from 529 years (517â€Ì540) to 756 years (753â€Ì759) for women. Despite this overall progress, there remains substantial variation in life expectancy at birth in 2017, which ranges from 491 years (465â€Ì517) for men in the Central African Republic to 876 years (869â€Ì881) among women in Singapore. The greatest progress across age groups was for children younger than 5 years; under-5 mortality dropped from 2160 deaths (1963â€Ì2381) per 1000 livebirths in 1950 to 389 deaths (356â€Ì4283) per 1000 livebirths in 2017, with huge reductions across countries. Nevertheless, there were still 54 million (52â€Ì56) deaths among children younger than 5 years in the world in 2017. Progress has been less pronounced and more variable for adults, especially for adult males, who had stagnant or increasing mortality rates in several countries. The gap between male and female life expectancy between 1950 and 2017, while relatively stable at the global level, shows distinctive patterns across super-regions and has consistently been the largest in central Europe, eastern Europe, and central Asia, and smallest in south Asia. Performance was also variable across countries and time in observed mortality rates compared with those expected on the basis of development. Interpretation: This analysis of age-sex-specific mortality shows that there are remarkably complex patterns in population mortality across countries. The findings of this study highlight global successes, such as the large decline in under-5 mortality, which reflects significant local, national, and global commitment and investment over several decades. However, they also bring attention to mortality patterns that are a cause for concern, particularly among adult men and, to a lesser extent, women, whose mortality rates have stagnated in many countries over the time period of this study, and in some cases are increasing. Funding: Bill & Melinda Gates Foundation. © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license
For mapping, quantifying and monitoring regional and global forest health, satellite remote sensing provides fundamental data for the observation of spatial and temporal forest patterns and processes. While new remote-sensing technologies are able to detect forest data in high quality and large quantity, operational applications are still limited by deficits of in situ verification. In situ sampling data as input is required in order to add value to physical imaging remote sensing observations and possibilities to interlink the forest health assessment with biotic and abiotic factors. Numerous methods on how to link remote sensing and in situ data have been presented in the scientific literature using e.g. empirical and physical-based models. In situ data differs in type, quality and quantity between case studies. The irregular subsets of in situ data availability limit the exploitation of available satellite remote sensing data. To achieve a broad implementation of satellite remote sensing data in forest monitoring and management, a standardization of in situ data, workflows and products is essential and necessary for user acceptance. The key focus of the review is a discussion of concept and is designed to bridge gaps of understanding between forestry and remote sensing science community. Methodological approaches for in situ/remote-sensing implementation are organized and evaluated with respect to qualifying for forest monitoring. Research gaps and recommendations for standardization of remote-sensing based products are discussed. Concluding the importance of outstanding organizational work to provide a legally accepted framework for new information products in forestry are highlighted. Quelle: http://www.mdpi.com
Background<BR> Draft standards for the determination of organic pollutants in the solid matter of environmental matrices such as sludge, treated biowaste and soil have been basically developed in the framework of the European standardisation project HORIZONTAL. A research project financed by the German Federal Environment Agency was initiated to finalise some of these CEN standard drafts, since fully validated standard procedures are crucial for the evaluation of their reliability in the context of implementation in legislation on environmental health.<P> Approach<BR>Appropriate test materials (<2 mm particle size) were prepared and homogenised from contaminated soils, sludge and treated biowaste containing polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), dioxins, furans and dioxin-like-PCB and served, along with reference solutions, as the basis for international interlaboratory comparisons. Performance data of three analytical standard procedures were obtained by the statistical evaluation of results received from 11 to 29 participants per test material.<P> Results<BR>The overall variation coefficients of reproducibility (between-lab standard deviations) for the sum parameters were roughly between 10 and 35%. The variation coefficients of repeatability (within-lab standard deviations) range between 3 and 8% and show no trend considering the substance groups or matrices. The highest coefficients of reproducibility were found for the analysis of PAH, which were between 26 and 35%, depending on the matrix, whereas 7-17% reproducibility was observed for toxicity equivalents (TEQ) comprising dioxins, furans and dl-PCB.<P> Conclusions<BR>Overall, the results confirm that the procedures described in the Technical Specifications are fit for purpose for all three matrices and that the feasibility of the HORIZONTAL approach, to cover several matrices with one standard per analyte, was thereby proven. Quelle: https://enveurope.springeropen.com
After a release of genetically modified organisms, monitoring of potential adverse effects on the environmentis mandatory. The protocol used for monitoring should be previously tested in practical studies andmust be standardised. Moreover, sampling methods and the evaluation of results must meet current scientificand technical standards. Due to their particular role in maintaining soil quality and in a multitude ofecological processes in agro-ecosystems, soil organisms belong to those groups for which VDI guidelinesare being developed. The guideline 4331 Part 1 describes fundamental criteria for the selection and sampling of soil organisms for GMO monitoring and gives guidance for sampling design, sampling strategyand statistical evaluation. In the guideline three approaches are followed: (1) a compilation of previouslyknown effects and exposure pathways, (2) a documentation of ecological functions of soil organisms (ecosystemservices) as well as (3) a description of characteristic species compositions in the soil. The aim wasto develop a selection matrix that helps to choose the appropriate animal groups to be sampled. Besidesthe habitat type and the ecological relevance, the selection matrix also considers the suitability of animalgroups in terms of practical issues and, in specific cases, anticipated effects. Further parts of the guideline4331 will describe sampling methods for relevant soil animal groups.Quelle: BioRisk (2013)8, S. 73-87
Das Projekt "Standardization of Ice Forces on Offshore Structures Design (STANDICE)" wird vom Umweltbundesamt gefördert und von Dr. J. Schwarz durchgeführt. Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.
Das Projekt "Renewables in a Stable Electric Grid (RE-SERVE)" wird vom Umweltbundesamt gefördert und von Ericsson GmbH durchgeführt. Future energy systems will use renewable energy sources to minimise CO2 emissions. Currently large generators powered by fossil fuel turbines maintain the stability and quality of energy supplies through their inertia. The inertia of these generator-turbine groups gives providers a significant time window in which to react to network events. We urgently need to find ways to stabilise energy systems with up to 100% RES (where inertia is often lost due to power converter mediated energy transfer) to generate 'RE-SERVEs' so that society can relax in the knowledge that it has a stable and sustainable energy supply. RE-SERVE will address this challenge by researching new energy system concepts, implemented as new system support services enabling distributed, multi-level control of the energy system using pan-European unified network connection codes. Near real-time control of the distributed energy network will be enabled by innovative 5G based ICT. Energy system use case scenarios supplied by energy providers will form the basis of energy system models. Performance characteristics of the new control mechanisms will be investigated through integration of energy simulations and live 5G communications. We will create a pan-European multi-site simulation test-bed, bringing together the best facilities in Europe. RE-SERVE results include published models of system support services, innovative architectures for the implementation of the services, performance tests on our pan-European real-time simulation, and live, test-beds, a model for pan-European unified network connection codes and actions to promote results to standardisation organisations, all of which maintain the RE-SERVE in energy systems. Commercialisation of results will result in breakthroughs in the efficient utilisation of use of RES, a spin-off and a wide range of enhanced professional solutions and services.
Das Projekt "Boosting Life Cycle Assessment Use in European Small and Medium-sized Enterprises: Serving Needs of Innovative Key Sectors with Smart Methods and Tools (LCA TO GO)" wird vom Umweltbundesamt gefördert und von Fraunhofer-Institut für Optronik, Systemtechnik und Bildauswertung durchgeführt. Objective: 'LCA to go' develops sectoral methods and tools for bio-based plastics, industrial machinery, electronics, renewable energy, sensors and smart textiles. These sectors have been chosen, as the manufacturers show a high interest in making clear the environmental benefits of their products to customers ('Green industries') and in prioritizing so they can reduce their environmental impacts. This is particularly the case for SMEs. Free webtools ('apps') will serve dedicated needs of these sectors, addressing the specifics of the technologies and implementing parameterised models, such as calculators for energy-break-even-point of photovoltaics, Product Carbon Footprints (PCF) based on technology parameters of printed circuit boards, and Key Environmental Performance Indicators (KEPIs) for smart textiles. Selected Product Category Rules will be developed to provide a robust LCA guidance for SMEs. Practically, the project website will provide an exchange of scientifically validated data templates, to assist SMEs to pass the right questions to their suppliers. Carbon Footprints are a perfect entry point for SMEs to LCA strategies. Thus, implementation of an SME-compatible PCF methodology is a key element of the project. The approaches will be tested in 7 sectoral case studies, involving suppliers, end-product manufacturers and engineering companies. Inter-linkages between the sectors (on a technical and data level) will be thoroughly addressed. A broad dissemination campaign includes a mentoring programme for 100 SMEs, which will act as showcases for others, boosting use of LCA approaches among European SMEs at large. RTD and dissemination activities will be complemented by policy recommendations and liaison with standardisation activities. The web-tools, being compatible with ILCD data and other external sources, will be made available as open source software, to be adapted to other sectors. The project will have a direct impact on sectors representing nearly 500,000 SMEs.
Das Projekt "Modellierung der Auswirkungen der Degradierung des Bodens auf das Klima" wird vom Umweltbundesamt gefördert und von Potsdam-Institut für Klimafolgenforschung e.V. durchgeführt. General Information: The Mediterranean region has experienced drastic changes in land use and climate in the last century. Some of these changes are still occurring. Modelling studies have shown that rainfall in particular may be strongly related to antecedent soil moisture and that the land surface plays a critical role in determining size and location of the rain events. Critical is how a long term drought will exacerbate or extend the aridity of a region. This study will focus on the climatic effects of land degradation in the Mediterranean and the Sahel, the latter area already subject to severe land degradation. A combination of GCM and Regional scale modelling will be used to better understand the climate response to land degradation and will try to assess the uncertainty involved in current climate forecast as well as the relative role of the ocean versus the land surface in forcing the climate. Datasets from the series of land surface experiments in semi-arid areas (EFEDA, HAPEX-Sahel) will be used to calibrate, improve and test the models. OBJECTIVES: - to understand the climatic responses associated with land cover ' change ' in semi-arid regions, particularly land surface degradation, and thus the causes of persistent drought. - To understand the relative influences of Sea surface temperature anomalies and land cover change on likely climate variability in the Mediterranean and the Sahel. - Investigate the influence of scale and degree of degradation on the climatic response. METHODOLOGY: Three of the major Global Climate Models in Europe (and one from the USA) plus two Regional Climate Models will be used. To intercompare the results from these models the land surface schemes will be calibrated and tested with common sets of land surface data from the EFEDA and HAPEX-Sahel field experiments. Also common land cover classifications and desertification scenarios will be developed. Model integrations will be made using sea surface temperature patterns from extreme wet and dry years. Questions of scale will be tackled, firstly, by simulating effect in the Sahel (continental scale) and the Iberian Peninsula (regional scale), secondly, by investigating partial desertification and, finally, by using regional and global climate models. The project will increase our understanding of the climate system, improve climate models, provide a better understanding of climate variability and develop the scientific foundation for rational management of land resources in parts of Europe threatened by desertification. Prime Contractor: Natural Environment Research Council, Institute of Hydrology; Crowmarsh-Gifford; UK.
Das Projekt "Sub project: Shock effects in sulfates: nature - experiments - modeling" wird vom Umweltbundesamt gefördert und von Universität Münster, Institut für Planetologie durchgeführt. Durch den Chicxulub-Impakt wurden aus karbonatisch-sulfatischen Sedimenten die klimawirksamen Gase CO2 bzw. S0x freigesetzt. Eine Quantifizierung der dadurch ausgelösten drastischen, globalen Kurz- und Langzeiteffekte ist derzeit nicht möglich, da das Verhalten von Karbonaten und Sulfaten bei der Impaktmetamorphose nur unzureichend bekannt ist. Ziele unseres Vorhabens sind (i) die Erfassung von Schockeffekten in Kalzit bzw. Anhydrit im niedrigen Druckbereich und (ii) Festlegung des pT-Feldes, in dem bei Impaktprozessen C02 bzw. S0x aus diesen Phasen entweicht. Die Kompressionsphase natürlicher Impaktereignisse soll mit 1) Sprenganordnungen (kleiner 100Gpa; Vorheizung kleiner 900K), die schnelle (kleiner 15 s) Entlastung nach nunmehr erfolgreichem Abschluß der Eichungen in einer 2) Multianvil-Presse (kleiner 20 Gpa, 2.500 K) simuliert werden; das für die Entgasung wichtige pT-Feld soll durch Versuche in einer 3) Piston-Zylinder-Apparatur eingegrenzt werden. Zum Verständnis der experimentellen Daten werden Zustandsgleichungen für CaC03 bei hohen p, T neu berechnet und die Schockexperimente numerisch simuliert (B.A. Ivanov, Moskau). Die Charakterisierung der rückgewonnenen Proben erfolgt licht- und elektronenoptisch, röntgenographisch sowie mit Ramanspektroskopie; der Schwerpunkt liegt auf TEM-Analysen, darunter Elektronen-Energieverlust-Spektroskopie (EELS). (iii) Zum Vergleich werden karbonatische Gesteine aus den Kratern Chicxulub, Haughton, Popigai und Ries untersucht und die Kraterbildung numerisch simuliert (B.A. Ivanov).
Origin | Count |
---|---|
Bund | 251 |
Type | Count |
---|---|
Förderprogramm | 246 |
unbekannt | 5 |
License | Count |
---|---|
geschlossen | 5 |
offen | 246 |
Language | Count |
---|---|
Deutsch | 246 |
Englisch | 69 |
Resource type | Count |
---|---|
Keine | 176 |
Webseite | 75 |
Topic | Count |
---|---|
Boden | 163 |
Lebewesen & Lebensräume | 164 |
Luft | 171 |
Mensch & Umwelt | 250 |
Wasser | 144 |
Weitere | 251 |