Das Projekt "Der Einfluss von Strömung auf Methanproduktion und -oxidation in aquatischen Sedimenten." wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Institut für Umweltwissenschaften.Binnengewässer sind ein wichtiger Bestandteil des globalen Kohlenstoffkreislaufs und vor allem Emissionen des Treibhausgases Methan (CH4) aus Gewässern sind von zunehmendem globalen Interesse. Jüngste wissenschaftliche Untersuchungen zielen darauf ab, das prozessbasierte Verständnis der räumlichen und zeitlichen Dynamik der CH4-Emissionen aus Gewässern und ihrer treibenden Faktoren zu verbessern. Prognosen dazu, wie sich Methanemissionen aus Gewässern durch anthropogenen Einflüsse oder durch den Klimawandel bedingt verändern, sind auf Basis bisheriger Modelle nicht zuverlässig möglich. Viele der Faktoren, welche die Raten der Methanproduktion, -Oxidation und Emission in aquatischen Sedimenten beeinflussen, stehen in direkter oder indirekter Beziehung zur Strömungsgeschwindigkeit. Die Strömungsabhängigkeit der Methanproduktion und Methanemissionen von aquatischen Ökosystemen wurde jedoch bisher nicht explizit untersucht. In diesem Projekt werden wir neuartige experimentelle Mesokosmensysteme einsetzen, um die Strömungsabhängigkeit dieser Prozesse in einer Reihe von gezielten Laborexperimenten zu untersuchen. Der experimentelle Aufbau simuliert die Bedingungen, denen aquatische Sedimente in einem hydraulischen Gradienten von schnell fließenden (lotischen) hin zu schwach strömenden (lentischen) Systemen ausgesetzt sind. Solche Übergänge treten beispielsweise entlang von Längsgradienten in Flussstauhaltungen auf. Unsere Experimente zielen darauf ab, den Einfluss der Strömungsgeschwindigkeit auf diejenigen Prozesse zu untersuchen, die zur Bilanz von Methan im Sediment und an der Sediment-Wasser-Grenzfläche beitragen. Die Ergebnisse werden wir in ein prozessbasiertes Modell implementieren, welches neben relevanten biogeochemischen Parametern auch die Strömungsgeschwindigkeit als explizite Randbedingung berücksichtigt. Mit dem validierten Modell werden wir die Relevanz der Strömungsgeschwindigkeit für die Emissionen von Methan aus unterschiedlichen Gewässern mit Hilfe eines systemanalytischen Ansatzes untersuchen.
Das Projekt "Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center, Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Ludwig-Maximilians-Universität München, Meteorologisches Institut.Die Fähigkeit, das Wetter bis über eine Woche hinaus vorhersagen zu können, erspart unserer Gesellschaft jährlich Kosten in Milliardenhöhe und trägt entscheidend zum Schutz von Leben und Eigentum bei. Die zunehmende Leistungsfähigkeit unserer Computersysteme und neuartige Beobachtungen haben über die Jahre hinweg zu einer kontinuierlichen Verbesserung der Wettervorhersagequalität geführt. Dennoch kommt es immer noch gelegentlich zu erheblichen Fehlvorhersagen. Dies ist nicht allein auf Defizite in den Vorhersagemethoden zurückzuführen - in einem chaotischen System wie der Atmosphäre gibt es Wettersituationen, die per se schwer vorherzusagen sind. Die gegenwärtige Herausforderung ist daher die Vorhersagbarkeit und insbesondere deren Grenzen, abhängig von der jeweiligen Wettersituation, zu identifizieren um eine bestmögliche Vorhersage bereitstellen zu können. Der TRR 165 wird sich dieser Herausforderung stellen und hat sich zum Ziel gesetzt, durch die Beantwortung der zugrunde liegenden wissenschaftlichen Fragestellungen einer neuen Generation von Wettervorhersagesystemen den Weg zu ebnen. Die wichtigsten Ursachen für verbleibende Unsicherheiten in der derzeitigen numerischen Wettervorhersage sind: A das schnelle Wachstum von Fehlern, die durch nicht oder unzureichend dargestellte physikalische Prozesse wie Konvektion oder Mischung in der Grenzschicht entstehen und letztlich zu Veränderungen der Wellen auf synoptischer Skala führen können, B unser begrenztes Verständnis der physikalischen Prozesse in Wolken und C der relative Einfluss lokaler Faktoren und synoptisch-skaliger Wellen auf das Wetter und dessen Vorhersagbarkeit. Im Rahmen von 'Wellen, Wolken, Wetter' werden diese drei Fragestellungen gemeinsam von Experten der Disziplinen Atmosphärendynamik, Wolkenphysik, Statistik, Inverse Methoden und Visualisierung bearbeitet. Dabei wird TRR 165 eine Vielzahl von Methoden anwenden und neu entwickeln, wie etwa numerische Modelle mit detaillierter Darstellung von Wolkenprozessen und Aerosolen, aber auch Ensemblevorhersagen mit hochentwickelten statistischen Nachbearbeitungsverfahren zur mathematischen Beschreibung der Unsicherheit nutzen. Die zusätzliche Entwicklung neuer, interaktiver Visualisierungsmethoden erlaubt eine rasche und intuitive Erfassung komplexer Informationen, die in Ensemblevorhersagen sowohl zu den Ursachen als auch zur Entwicklung der Unsicherheit meteorologischer Strukturen enthalten sind. Die Gesamtziele von 'Wellen, Wolken, Wetter' sind nur durch die Zusammenführung der Expertise von drei renommierten Forschungsstandorten zu erreichen: München mit der LMU, der TUM, dem DLR; Mainz mit der JGU; und Karlsruhe mit dem KIT. Zudem wird im Rahmen dieses Konsortiums ein innovatives Programm geschaffen, das die Entwicklung von Nachwuchswissenschaftlern im Rahmen eines etablierten Netzwerks erfahrener Wissenschaftler fördern und die Chancengleichheit auf allen Karriereniveaus in den beteiligten Disziplinen verbessern soll.
Das Projekt "Sonderforschungsbereich Transregio 165 (SFB TRR): Wellen, Wolken, Wetter; Waves to Weather - A Transregional Collaborative Research Center, Teilprojekt A01: Skalenübergreifender Einfluss diabatischer Prozesse von konvektiver bis zu hemisphärischer Skala" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Ludwig-Maximilians-Universität München, Meteorologisches Institut.Das Fehlerwachstum diabatischer Prozesse, und insbesondere die Bedeutung von latenter Wärmefreisetzung in Wolken, wird skalenübergreifend von der konvektiven bis zur hemisphärischen Skala untersucht. Dazu werden Ensemble-Simulationen für ausgewählte Wetterlagen durchgeführt. Außerdem werden neue Methoden zur Quantifizierung diabatischer Einflüsse auf die potenzielle Vorticity, auf Divergenzen in der oberen Troposphäre und auf nichtlineare Wellenaktivität entwickelt. Auf diese Weise werden Einsichten zu den intrinsischen Grenzen der Vorhersagbarkeit verschiedener Wetterlagen gewonnen.
Das Projekt "Schwerpunktprogramm (SPP) 1833: Building a Habitable Earth, Der Einfluss atmosphärischer, biologischer und geologischer Prozesse auf die Große Sauerstoffkatastrophe" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V., Standort Berlin Adlershof.Die große Sauerstoffkatastrophe (Great Oxidation Event - GOE) kennzeichnet den starken Anstieg von molekularem Sauerstoff (O2) in der Atmosphäre während der Frühgeschichte der Erde, was flächendeckende Habitabilität ermöglicht und komplexes Leben auf der Erde erlaubt. Viele Fragen sind diesbezüglich weiterhin offen. Was dazu führte, dass sich Sauerstoff in der Atmosphäre anreicherte, der Zeitpunkt und das Ausmaß sind nicht gut bestimmt. Erst jetzt ist es möglich die komplizierten Wechselwirkungen zwischen atmosphärischen, biologischen und geologischen Prozessen zu identifizieren. Das sich daraus ergebende Absterben methanogener Lebensformen und das Auftreten eines sogenannten Schneeball-Erden-Zustandes sind Beispiele für die extremen Auswirkungen des GOE. Eine zentrale Frage, die wir untersuchen, ist ob der GOE in einem linearen oder, aufgrund einer möglichen Bistabilität von Sauerstoff, in einem sprungweisen Anstieg von O2 erfolgte. Des Weiteren studieren wir den Einfluss des Kohlenstoffzyklus und des Klimas auf die Charakteristika und den Zeitpunkt des GOE. Wir wenden unsere Erfahrung in eindimensionalen (1D) und 3D Klimamodellierungen an, um die Auswirkung unterschiedlicher Klima auf den GOE zu ermitteln. Um dies zu erreichen entwickeln und verwenden wir unser einzigartiges Atmosphärenmodell mit detailliertem Sauerstoffzyklus (inklusive zum Beispiel Verwitterungsprozesse, atmosphärische Photochemie) welches die Atmosphäre, Biosphäre und Geosphäre umfasst. Ein wichtiges Ziel ist die Analyse der Kernprozesse für den GOE unter der Berücksichtigung jüngster Ergebnisse geologischer Untersuchungen (zu zum Beispiel Oberflächendruck, atmosphärischen Treibhausgases, usw.).
Das Projekt "Sichere und innovative Erschließungskonzepte für Ausbau, Nachnutzung und Monitoring von Untergrundspeichern für Wasserstoff, Teilvorhaben: Einfluss mikrobiologischer Prozesse auf die Gaszusammensetzung und die Korrosionsrate" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Hochschule Merseburg (FH), Fachbereich Ingenieur- und Naturwissenschaften, Professur für Umwelttechnik,Wasser- und Recyclingtechnik.
Das Projekt "Carbon2Polymers, Carbon2Chem-2 L-5 - Carbon2Polymers" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: RWTH Aachen University, Aachener Verfahrenstechnik, Lehrstuhl für Fluidverfahrenstechnik.
Das Projekt "Dauerhafte und ressourcenschonende Composit-Strukturbauteile auf Basis neuartig vorbehandelter und verarbeiteter Bastfasern, Teilvorhaben 4: Mechanismenbasierte Charakterisierung und Modellierung des Ermüdungs- und Schädigungsverhaltens" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Technische Universität Dortmund, Fakultät Maschinenbau, Lehrstuhl für Werkstoffprüftechnik.
Das Projekt "NIP II: Electrolysis & Fuel Cell: Overall Research on Electrode Coating Processes, NIP II: OREO - Electrolysis & Fuel Cell: Overall Research on Electrode Coating Processes" wird/wurde gefördert durch: Bundesministerium für Digitales und Verkehr. Es wird/wurde ausgeführt durch: AUDI AG.
Das Projekt "Wechselwirkung zwischen natürlichen Erdoberflächenprozessen und anthropogener Einflussnahme auf Stoffflüsse in den kolumbianischen Anden" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum Potsdam Deutsches GeoForschungsZentrum.
Das Projekt "NextG-Climate Science-EUREC4-OA, Teilprojekt 3: Radarmessungen zur Abschätzung von CO2 Eintrag in den Ozean (RACEO)" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Helmholtz-Zentrum hereon GmbH.
Origin | Count |
---|---|
Bund | 18 |
Type | Count |
---|---|
Förderprogramm | 18 |
License | Count |
---|---|
offen | 18 |
Language | Count |
---|---|
Deutsch | 18 |
Englisch | 5 |
Resource type | Count |
---|---|
Keine | 14 |
Webseite | 4 |
Topic | Count |
---|---|
Boden | 14 |
Lebewesen & Lebensräume | 13 |
Luft | 11 |
Mensch & Umwelt | 18 |
Wasser | 6 |
Weitere | 18 |