Erste Auswertungen der Messkampagnen von Bundes- und Landesbehörden bestätigen bisherige Modellrechnungen und verbessern das Verständnis von Hochwasserabläufen. Im Mai und Juni des Jahres 2013 traten in den deutschen Flussgebieten außerordentliche Hochwasser auf. Die Elbe wies in einigen Abschnitten neue Höchstwasserstände auf. Insbesondere aus der Saale strömten große Wassermassen in den Fluss ein, sodass das Hochwasser unterhalb der Saalemündung deutlich höher auflief als beim Sommerhochwasser 2002; bei Magdeburg-Buckau lag der Scheitel 75 cm über dem bisherigen Höchststand. Um die Elbe zu entlasten, aktivierte man den Elbe-Umflutkanal bei Magdeburg, sperrte Nebenflüsse ab und setzte die Havelniederung kontrolliert unter Wasser. Auch durch einige Deichbrüche wurden teilweise erhebliche Volumina aus der Elbe abgeführt. Das führte zu einem Absunk der Wasserspiegel im Bereich mehrerer Dezimeter. Trotzdem wurde in Magdeburg nach Angaben der Bundesanstalt für Gewässerkunde mit ca. 5.100 m3?s ein Hochwasser mit einem Wiederkehrintervall von 200 bis 500 Jahren erreicht. Mehrere Institutionen der Elbe-Anrainerländer und des Bundes führten Messungen während des Hochwassers durch. Die BAW benötigt insbesondere Messwerte von Oberflächen- und Grundwasser, um mit ihnen Modelle zu überprüfen. Hauptziel einer Messkampagne vom 7. bis 13. Juni 2013 war deshalb, zwischen Riesa bei Elbe (El)-km 106 und dem Wehr Geesthacht (El-km 586 ) nah am Hochwasserscheitel den Wasserspiegel etwa in der Flussachse zu messen. Begleitend wurden Durchflussmessungen durchgeführt, die dazu dienten, sowohl den Abfluss als auch Durchflussanteile und Fließgeschwindigkeiten zu ermitteln. Am 14. Juni 2013 wurden im Bereich der Deichrückverlegung Lenzen (bei El-km 480) zusätzlich Fließgeschwindigkeiten in den Deichschlitzen gemessen. Diese wurden durch punktuelle Grund- und Oberflächenwasser-Messungen ergänzt. Die Auswertung der Messungen wird noch geraume Zeit in Anspruch nehmen. Schon jetzt ist aber klar, dass die Ergebnisse von großem Nutzen sein werden, um die Prozesse in der Natur besser verstehen und beschreiben zu können. Auch tragen sie dazu bei, die Strömungsmodelle der (acronym = 'Bundesanstalt für Wasserbau') BAW zu validieren. Zwei erste Auswertungen machen dies deutlich.
Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.
Neue Visualisierungstechniken werden mit speziellem Blick auf die Kohärenz und die Schwankungen in meteorologischen Daten entwickelt. Indikatorfelder für Kohärenz werden hergeleitet und als Grundlage für eine flexible und physikalische Definition von Merkmalen in einzelnen Feldvariablen verwendet sowie deren Extraktion aus umfänglichen Simulationen. Variation in Raum und Zeit sowie die Wechselbeziehung und Auftrittswahrscheinlichkeit von Merkmalen in Ensembles werden gleichermaßen erforscht. Die Entwicklung von Visualisierungstechniken zur Analyse von Fehlerwachstum, Parametersensitivität und Variabilität von Merkmalen in Ensembles runden unser Forschungsvorhaben ab.
Gebiete, die bei einem Hochwasser der Eintrittswahrscheinlichkeit einmal in hundert Jahren oder seltener überflutet werden (nach §76 WHG). Unter dem folgenden Link https://geoportal.bafg.de/INSPIRETabelle/ befindet sich der INSPIRE-konforme Datensatz „Nr. 16, Überflutungsflächen-DE (Hochwasserrisikomanagement-RL 2. Zyklus 2016-2021)“ in dem die Sonderflächen der Hochwassergebietsverordnung Weser - im Gegensatz zu den hier dargestellten Flächen - nicht enthalten sind.
Die Hochwassergefahrenkarten (HWGK) beschreiben die räumliche Ausbreitung der Überflutung sowie die Wassertiefe eines Hochwassers für drei Eintrittswahrscheinlichkeiten. Dabei werden Überflutungen dargestellt, die durch ein Hochwasser eines Gewässers selbst entstehen. Überflutungen die durch kapazitative Überforderung der Abwasseranlagen, zu Tage tretendes Grundwasser, Versagen wasserwirtschaftlicher Stauanlagen oder Starkregen entstehen, werden in den HWGK nicht dargestellt. Die Hochwasserrisikokarten (HWRK) bilden die möglichen hochwasserbedingten nachteiligen Folgen eines Hochwassers der drei Eintrittswahrscheinlichkeiten ab. Sie enthalten Informationen zur Anzahl potentiell betroffener Einwohner je Risikogebiet, zu den negativen Folgen für wirtschaftliche Tätigkeiten bzw. zur Nutzung der betroffenen Flächen, zu negativen Auswirkungen auf UNESCO-Welterbestätten sowie zu potentiell betroffenen Schutzgebieten, wie z. B. Trinkwasserschutz- und Natura 2000-Gebiete.
Die Hochwassergefahrenkarte HQ 100 stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel alle 100 Jahre auftreten können, also ein Hochwasserszenario mittlerer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden. Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA. Zur Beachtung, die Flächen mit dem APSFR-Code 9999 sind die Überschwemmungsflächen berechnet, aber sie wurden nicht im Rahmen der HWRMRL als Gefahrengebiete bzw. Risikogebiete ausgewiesen und daher auch nicht gemeldet.
Die Hochwassergefahrenkarte HQ Extrem stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel sehr viel seltener als alle 100 Jahre auftreten können, also ein Hochwasserszenario geringer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden. Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA Zur Beachtung, die Flächen mit dem APSFR-Code 9999 sind die Überschwemmungsflächen berechnet, aber sie wurden nicht im Rahmen der HWRMRL als Gefahrengebiete bzw. Risikogebiete ausgewiesen und daher auch nicht gemeldet.
Überflutungsflächen eines Hochwassers mit niedriger Wahrscheinlichkeit in Hessen (Bezeichnung nach Wasserhaushaltsgesetz (WHG) §74): Überflutungsflächen mit einem voraussichtlichen Wiederkehrintervall von mindestens 200 Jahren (HQextrem, entspricht mindestens einem 200-jährlichen Hochwasser). Einzelne Gebiete haben auch eine abweichende Jährlichkeit für das Hochwasser mit niedriger Wahrscheinlichkeit. Teil des Datenbestands der Hochwasserrisikomanagementpläne (HWRMP) in Hessen.
Überflutungsflächen eines Hochwassers mit hoher Wahrscheinlichkeit in Hessen (Bezeichnung nach Wasserhaushaltsgesetz (WHG) §74): Überflutungsflächen mit einem voraussichtlichen Wiederkehrintervall von mindestens 10 Jahren (entspricht einem 10-jährlichen Hochwasser, HQ10). Einzelne Gebiete haben auch eine abweichende Jährlichkeit für das Hochwasser mit hoher Wahrscheinlichkeit. Teil des Datenbestands der Hochwasserrisikomanagementpläne (HWRMP) in Hessen.
Origin | Count |
---|---|
Bund | 464 |
Kommune | 3 |
Land | 108 |
Wissenschaft | 6 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 347 |
Text | 94 |
Umweltprüfung | 6 |
unbekannt | 89 |
License | Count |
---|---|
geschlossen | 106 |
offen | 426 |
unbekannt | 5 |
Language | Count |
---|---|
Deutsch | 511 |
Englisch | 88 |
Resource type | Count |
---|---|
Archiv | 9 |
Bild | 5 |
Datei | 7 |
Dokument | 93 |
Keine | 238 |
Multimedia | 1 |
Unbekannt | 1 |
Webdienst | 34 |
Webseite | 222 |
Topic | Count |
---|---|
Boden | 425 |
Lebewesen und Lebensräume | 409 |
Luft | 386 |
Mensch und Umwelt | 537 |
Wasser | 362 |
Weitere | 485 |