API src

Found 533 results.

Related terms

Widerstand und Klimaanpassung von Dünensystemen; Leitantrag

Widerstand und Klimaanpassung von Dünensystemen; Leitantrag, Vorhaben: Hydromorphologische Szenarienentwicklung des Dünenerosionsverhaltens unter Einsatz numerischer Modelle

Die Auswirkung extremer Schmelzereignisse auf die zukünftige Massenbilanz des grönländischen Eisschildes

Im letzten Jahrzehnt war der grönländische Eisschild mehreren Extremereignissen ausgesetzt, mit teils unerwartet starken Auswirkungen auf die Oberflächenmassebilanz und den Eisfluss, insbesondere in den Jahren 2010, 2012 und 2015. Einige dieser Schmelzereignisse prägten sich eher lokal aus (wie in 2015), während andere fast die gesamte Eisfläche bedeckten (wie in 2010).Mit fortschreitendem Klimawandel ist zu erwarten, dass extreme Schmelzereignisse häufiger auftreten und sich verstärken bzw. länger anhalten. Bisherige Projektionen des Eisverlustes von Grönland basieren jedoch typischerweise auf Szenarien, die nur allmähliche Veränderungen des Klimas berücksichtigen, z.B. in den Representative Concentration Pathways (RCPs), wie sie im letzten IPCC-Bericht genutzt wurden. In aktuellen Projektionen werden extreme Schmelzereignisse im Allgemeinen unterschätzt - und welche Konsequenzen dies für den zukünftigen Meeresspiegelanstieg hat, bleibt eine offene Forschungsfrage.Ziel des vorgeschlagenen Projektes ist es, die Auswirkungen extremer Schmelzereignisse auf die zukünftige Entwicklung des grönländischen Eisschildes zu untersuchen. Dabei werden die unmittelbaren und dauerhaften Auswirkungen auf die Oberflächenmassenbilanz und die Eisdynamik bestimmt und somit die Beiträge zum Meeresspiegelanstieg quantifiziert. In dem Forschungsprojekt planen wir zudem, kritische Schwellenwerte in der Häufigkeit, Intensität sowie Dauer von Extremereignissen zu identifizieren, die - sobald sie einmal überschritten sind - eine großräumige Änderung in der Eisdynamik auslösen könnten.Zu diesem Zweck werden wir die dynamische Reaktion des grönländischen Eisschilds in einer Reihe von Klimaszenarien untersuchen, in denen extreme Schmelzereignisse mit unterschiedlicher Wahrscheinlichkeit zu bestimmten Zeitpunkten auftreten, und die Dauer und Stärke prognostisch variiert werden. Um indirekte Effekte durch verstärktes submarines Schmelzen hierbei berücksichtigen zu können, werden wir das etablierte Parallel Ice Sheet Model (PISM) mit dem Linearen Plume-Modell (LPM) koppeln. Das LPM berechnet das turbulente submarine Schmelzen aufgrund von Veränderungen der Meerestemperatur und des subglazialen Ausflusses. Es ist numerisch sehr effizient, so dass das gekoppelte PISM-LPM Modell Ensemble-Läufe mit hoher Auflösung ermöglicht. Folglich kann eine breite Palette von Modellparametern und Klimaszenarien in Zukunftsprojektionen in Betracht gezogen werden.Mit dem interaktiv gekoppelten Modell PISM-LPM werden wir den Beitrag Grönlands zum Meeresspiegelanstieg im 21. Jahrhundert bestimmen, unter Berücksichtigung regionaler Veränderungen von Niederschlag, Oberflächen- und Meerestemperaturen, und insbesondere der Auswirkungen von Extremereignissen. Ein Hauptergebnis wird eine Risikokarte sein, die aufzeigt, in welchen kritischen Regionen Grönlands zukünftige extreme Schmelzereignisse den stärksten Eisverlust zur Folge hätten.

Widerstand und Klimaanpassung von Dünensystemen; Leitantrag, Vorhaben: Analyse der hydrodynamischen Randbedingungen und deren Auswirkungen auf die südwestliche Ostsee

Vorsorgender Bodenschutz

Ziel des Vorsorgegedankens ist es, die natürlichen Ressourcen und Lebensgrundlagen zu schützen, bevor Gefährdungen auftreten. Auch das Bundes-Bodenschutzgesetz zielt darauf, bereits das Entstehen schädlicher Bodenveränderungen durch Vorsorge zu verhindern. Vorsorgender Bodenschutz konzentriert sich auf Gefahrvermeidung, auf Maßnahmen, die schon das Entstehen von schädlichen Bodenveränderungen ausschließen. Vorsorgemaßnahmen setzen bereits dann ein, wenn die Besorgnis einer schädlichen Bodenveränderung besteht. Besorgnis beinhaltet den begründeten Verdacht des Entstehens einer schädlichen Bodenveränderung, falls durch Einwirkung auf den Boden langfristig eine Änderung der Bodenfunktion zu erwarten ist. Diese ist also noch nicht eingetreten, wird aber bei Anhalten des aktuellen Zustandes wahrscheinlich eintreten. Nachsorgender Bodenschutz hingegen beseitigt bereits eingetretene schädliche Bodenveränderungen und damit verbundene konkrete und definierte Gefahren (zum Beispiel Altlastensanierung). Vor allem in der Stadt besteht der vorsorgende Bodenschutz zunächst und wesentlich darin, möglichst viel Bodenfläche unversiegelt zu lassen. Als weitere Aufgabe kommt das Vermeiden von stofflichen Belastungen, von Bodenschadverdichtungen und von Bodenerosionen dazu. Generell ist für vorsorgende Maßnahmen kennzeichnend, dass sie möglichen Schäden vorbeugen sollen, für die oft weder die Eintrittswahrscheinlichkeit noch die Schadenshöhe im Einzelnen bekannt sind. So lässt sich kein exakter Grad der Versiegelung angeben, ab dem zum Beispiel die Hochwassergefahr definiert bedrohliche Ausmaße annimmt. Eine vergleichende Betrachtung von Aufwand (an Maßnahmen) und Wirkung (Vermeidung von Schäden) bleibt deswegen nur vage und hängt auch davon ab, welches Risiko man nicht mehr bereit ist zu tragen. Trotzdem sollte diese Risikoeinschätzung nicht nur auf Vermutungen oder Hoffnungen sondern auf Kenntnis der Schadensmöglichkeiten beruhen. Wichtige Informationen dafür liefern u.a. flächendeckende Karten der Böden und ihrer Nutzung. Über die Informationen für ein Fachpublikum hinaus gehört dabei auch das Bewusst machen von Nutzen und Gefährdungen des Bodens durch Öffentlichkeitsarbeit zum vorsorgenden Bodenschutz; ein Bereich, der sich zunehmend entwickelt. Wegen der ökologischen Besonderheiten des Bodens ist die Vorsorge beim Bodenschutz besonders bedeutend: Böden sind im Gegensatz zu Luft und Wasser ortsfest, zeigen nur einen minimalen horizontalen Stoffaustausch und weisen deswegen kleinräumig stark wechselnde Eigenschaften (und Belastungen) auf. Viele Belastungen (zum Beispiel durch umweltgefährdende Stoffe , Verdichtungen sind somit nur bei sehr engmaschiger Beprobung überhaupt erkennbar. Darüber hinaus entziehen Böden sich überwiegend einer direkten Beobachtung, so dass ein Überblick über den aktuellen Zustand extrem erschwert ist. Sie weisen eine große Pufferwirkung gegenüber stofflichen Veränderungen auf, so dass sie träge und spät auf diese Veränderungen reagieren, dann jedoch mit starken Änderungen. Wichtige Veränderungen (zum Beispiel Versauerung, Eutrophierung) der Böden sind nicht unmittelbar sichtbar. Auch nach Ende einer Belastung erholen sie sich – wiederum wegen der Pufferwirkung – nur extrem langsam. Sie sind flächenmäßig nicht erweiterbar und nach Zerstörung praktisch nicht wieder herstellbar. Zusammenfassend lässt sich feststellen: vorsorgender Bodenschutz schützt Böden gebietsbezogen unmittelbar vor zu erwartenden schädlichen Bodenveränderungen, schützt vor schädlichen Bodenveränderungen, die sowohl ökosystemar als auch volkswirtschaftlich nachteilige, häufig nur schwer oder nicht mehr umkehrbare Auswirkungen zur Folge haben, beinhaltet die Erarbeitung von Informationsgrundlagen zur Abschätzung der Auswirkungen von unmittelbaren Änderungen der Nutzungen von Böden sowie von unmittelbaren und mittelbaren nachteiligen Einwirkungen auf Böden und steht kaum in der öffentlichen Diskussion und Wahrnehmung, weil schädliche Bodenveränderungen auf den Boden bezogen meist nur unspezifisch und mittelbar zur Wirkung kommen (im Gegensatz zu Altlasten, die punktuell ausgeprägt häufig eine direkte Gefahr für die Gesundheit des Menschen darstellen). Entsprechend den Gefährdungen wird zwischen Vorsorge gegen stoffliche Belastungen (chemische Veränderungen) und Vorsorge gegen nichtstoffliche Belastungen (Versiegelung, Verdichtung, Erosion) unterschieden. In beiden Fällen gibt es zahlreiche Fachaufgaben, die am vorsorgenden Bodenschutz beteiligt sind. Der (ehemalige) “Wissenschaftliche Beirat Bodenschutz beim BMU” hat im Jahr 2000 ein umfassendes Konzept Wege zum vorsorgenden Bodenschutz (pdf; 1,8 MB) vorgelegt. Informationsgrundlagen für den vorsorgenden Bodenschutz Bodenschutz ist eine Querschnittsaufgabe und erfordert fachübergreifende Handlungsansätze. Für die Berücksichtigung von Belangen des Bodenschutzes in der räumlichen Planung und den Vollzug von Bodenschutzmaßnahmen werden daher Daten aus verschiedenen Bereichen benötigt. Weitere Informationen Beteiligtes Fachrecht für den vorsorgenden Bodenschutz Das Bundes-Bodenschutzgesetz findet immer dann Anwendung, wenn andere Fachrechte keine bodenbezogenen Regelungen enthalten. Weitere Informationen Vorsorge gegen stoffliche Bodenbelastungen Belastungen des Bodens durch schädigende Substanzen sollen schon im Voraus verhindern werden. Solche Belastungen können durch Unfälle oder unsachgemäßen Umgang mit den Stoffen und Abfällen in Betrieben, Landwirtschaft, Haushalten, Tankstellen oder durch luftbürtigen Schadstoffeintrag entstehen. Weitere Informationen Vorsorge gegen nichtstoffliche Bodenbelastungen Vorsorgender Bodenschutz ist gerade beim nichtstofflichen Bodenschutz eine fach-, behörden- und medienübergreifende Aufgabe. Die Fachaufgabe beinhaltet für die Bodenschutzbehörde vor allem Planung und Koordination. Weitere Informationen Bodenschutz in der Umweltbildung Das Bewusstsein für den einzigartigen und kostbaren Naturkörper Boden, mit seinen verschiedenen Schutzfunktionen sollte Kindern und Jugendlichen schon frühzeitig vermittelt werden. So kann das Verständnis für die Ausnahmestellung von Boden als lokale und globale Lebensressource wachsen. Weitere Informationen

Überschwemmungsgebiete im Land Bremen

Gebiete, die bei einem Hochwasser der Eintrittswahrscheinlichkeit einmal in hundert Jahren oder seltener überflutet werden (nach §76 WHG). Unter dem folgenden Link https://geoportal.bafg.de/INSPIRETabelle/ befindet sich der INSPIRE-konforme Datensatz „Nr. 16, Überflutungsflächen-DE (Hochwasserrisikomanagement-RL 2. Zyklus 2016-2021)“ in dem die Sonderflächen der Hochwassergebietsverordnung Weser - im Gegensatz zu den hier dargestellten Flächen - nicht enthalten sind.

Wassertiefe HQ100 Saarland

Die Hochwassergefahrenkarte HQ 100 stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel alle 100 Jahre auftreten können, also ein Hochwasserszenario mittlerer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden. Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA. Zur Beachtung, die Flächen mit dem APSFR-Code 9999 sind die Überschwemmungsflächen berechnet, aber sie wurden nicht im Rahmen der HWRMRL als Gefahrengebiete bzw. Risikogebiete ausgewiesen und daher auch nicht gemeldet.

Wassertiefe HQExtrem Saarland

Die Hochwassergefahrenkarte HQ Extrem stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel sehr viel seltener als alle 100 Jahre auftreten können, also ein Hochwasserszenario geringer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden. Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA Zur Beachtung, die Flächen mit dem APSFR-Code 9999 sind die Überschwemmungsflächen berechnet, aber sie wurden nicht im Rahmen der HWRMRL als Gefahrengebiete bzw. Risikogebiete ausgewiesen und daher auch nicht gemeldet.

Karte der sulfatsauren Böden in Schleswig-Holstein im Maßstab 1:250.000

Die Karte der sulfatsauren Böden stellt die Verbreitungshäufigkeit von sulfatsauren Böden in Schleswig-Holstein in einer 5 stufigen Skala von sehr seltenes Auftreten bis stark verbreitetes Auftreten dar. Die Karte basiert auf einer Auswertung der Bodenübersichtskarte 1:250.000 von Schleswig-Holstein (BÜK250). Dabei ist wie folgt vorgegangen worden: Den in der BÜK250 ausgewiesenen Bodengesellschaften sind in Abhängigkeit ihrer Bodentypenvergesellschaftung und ihrer geologischen Schichtung eine Auftretens-Wahrscheinlichkeit in Stufen mit Werten von 0 bis 5 zugewiesen worden. Bei den Flächen der Stufe 5 ist der Anteil sulfatsaurer Böden besonders hoch (stark verbreitet), bei den Flächen der Stufe 1 ist deren Anteil sehr gering. Die Karte unterscheidet: - Sehr seltenes Auftreten (Stufe 1) - Seltenes Auftreten (Stufe 2) - Gering verbreitetes Auftreten (Stufe 3) - Verbreitetes Auftreten (Stufe 4) - Stark verbreitetes Auftreten (Stufe 5). Der größte Sprung liegt zwischen den Stufen 3 und 4. Während für die Stufe 3 nicht mit einem regelmäßigen Auftreten sulfatsaurer Böden gerechnet werden kann, ist die Wahrscheinlichkeit sulfatsaure Böden anzutreffen bei der Stufe 4 deutlich erhöht.

Hochwasser - Wassertiefe HQ100

Der Kartendienst (WMS-Gruppe) stellt die Daten der Hochwassergefahrenkarte und der Hochwasserrisikokarte der saarländischen Gewässer dar.:Die Hochwassergefahrenkarte HQ 100 stellt das Ausmaß von Überschwemmungen (Überflutungsflächen und die Wassertiefe) bei Ereignissen dar, die im statistischen Mittel alle 100 Jahre auftreten können, also ein Hochwasserszenario mittlerer Wahrscheinlichkeit. Die Wassertiefe wird in den Gefahrenkarten in fünf Stufen mit unterschiedlichen Blautönen dargestellt. Die gleichen Stufen in Gelbtönen kennzeichnen Gebiete hinter Hochwasserschutzanlagen. Damit soll auf das Restrisiko hinter Dämmen und Deichen aufmerksam gemacht werden.Attribute: KLASSE: Tiefenklasse (1 - 5, in geschützten Bereichen 10 - 15) TIEFE: Tiefenklasse (Textbeschreibung) GEWAESSER: Gewässername GEWKZ: Gewässerkennziffer nach LAWA; Maßstabsbeschränkung: Min entfällt, Max 1:3000.

1 2 3 4 552 53 54