Die Auswirkungen von Zirrus-Wolken auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre sind ein nur mit großen Unsicherheiten bekannter Faktor im globalen Klimawandel. Die Nukleation und das Wachstum von Eispartikeln in Zirren können die vertikale Umverteilung des wichtigsten Treibhausgases Wasserdampf (H2O) bewirken. Weiterhin sind Eispartikel in Zirren in der Lage, Salpetersäure (HNO3) und weitere Verbindungen aufzunehmen und vertikal umzuverteilen. Genaue Simulationen von Zirren und deren Auswirkungen auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre stellen eine Herausforderung für numerische Wettervorhersagemodelle und Chemie-Klima-Modelle dar. In dem vorgestellten Projekt sollen mittels Messungen des GLORIA-Spektrometers während der HALO-Mission (High Altitude and LOng range research aircraft) POLSTRACC/GW-LCYCLE/SALSA und Modell-Simulationen die Auswirkungen von Zirren auf die chemische Zusammensetzung der oberen Troposphäre und unteren Stratosphäre in hohen Breiten untersucht werden.
Große Unsicherheiten in der Klimavorhersage gehen auf den derzeitig eingeschränkten Wissensstand bezüglich Zirruswolken zurück. Dies unterstreicht die Bedeutung von mehr quantitativen Information durch Beobachtungen von Zirruswolken und gilt insbesondere für Zirren in der Tropopausen-Region, wo diese eine große Wärmewirkung im Vergleich zu darunter liegenden und optisch dickeren Zirren haben und nur sehr eingeschränkte Informationen vorliegen. Bodengestützte LIDAR-Beobachtungen und satellitengestützten IR Limb Messungen zeigen zudem eine neue Klasse von Zirruswolken in der sogenannten Lowermost Stratosphere (LMS). Dieser Wolkentyp ist bisher nicht gut durch Messungen charakterisiert und ist insbesondere in globalen Klimamodell-Studien noch nicht berücksichtigt. Die vorgeschlagenen Studie CiTroS steht für Cirrus cloud in the extratropical tropopause and LMS region und beschäftigt sich mit exakt diesen Wolken anhand von Messungen, die während der vorgeschlagenen WISE Kampagne des Forschungsflugzeugs HALO im September/Oktober 2017 stattfinden sollen. Besonderer Schwerpunkt der vorliegenden Studie soll auf der Analyse und Auswertung der Wolkenmessungen der neuartigen GLORIA Instruments liegen. Durch die Imaging Technik und der Schwenkvorrichtung von GLORIA ist es möglich tomographische Messungen von Luftvoluminna im Wellenlängenbereich 780 bis 1400 cm-1 durchzuführen, die eine dreidimensionale Rekonstruktion der beobachteten Wolkenstrukturen ermöglichen. IR Limb Sounder zeichnen sich durch eine extrem hohe Empfindlichkeit zur Messung optisch dünnen Zirruswolken aus, die in der langen optischen Pfadintegration begründet ist. Die Kombination von GLORIA mit dem LIDAR Instrument WALES erlaubt eine der empfindlichsten Fernerkundungsmessungen zur Charakterisierung von mikro- und makrophysikalischen Eigenschaften von Zirruswolken. Zusammen mit den in-situ-Messung für Wasserdampf und Eiswassergehalt eignet sich Nutzlast der HALO-WISE Kampagne hervorragend für Vermessung von Wolken in der LMS. Ein größerer Teil der Studie ist für die Entwicklung neuer Analysetechniken für die Auswertung der neuartigen IR-Imager GLORIA Messungen von Zirren vorgesehen. Die tomographischen Messungen werden es erstmalig ermöglichen mikrophysikalische Eigenschaften wie Eis Wassergehalt oder Partikelradius aus IR Limb-Messungen abzuleiten. Simulationen und Vorhersagen des Chemical Lagrangian Model for the Stratosphere (CLaMS) stehen nach der Kampagne für detaillierte Studien zur Verfügung. Diese sollen gezielt genutzt werden um die meso- und synoptisch-skaligen dynamischen Prozesse, die die Bildung von Zirren bei mittleren und hohen Breiten möglicherweise verantworten, zu untersuchen. Das neu entwickelte CLaMS-Ice-Modul mit einen mikrophysikalische zwei-Momenten-Schema mit den wichtigsten Bildungsprozessen von Zirren, wird im Anschluss für detaillierte Fallstudien zur Entstehung und Entwicklung der beobachteten Zirruswolken genutzt.
Im Rahmen dieses Projekts soll das Wolkenpartikelinstrument PHIPS-HALO des KIT um die Messung der winkelabhängigen Polarisation von einzelnen Eispartikeln im rückwärtigen Streuwinkelbereich erweitert werden. Diese Messung ergänzt die bestehenden PHIPS-HALO-Messmethoden zur Erfassung der Partikelform sowie der winkelabhängigen Streufunktion. Die neuen Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets des KIT werden in der Wolkensimulationskammer AIDA umfangreich getestet und charakterisiert, um diese am Ende der ersten Förderperiode für Messungen auf HALO zur Verfügung zu haben. Dadurch werden schon im Vorfeld der nächsten, für den Winter 2018/2019 geplanten Zirrusmission neuartige relevante Datensätze gewonnen, die von großem Nutzen für die Atmosphärenwissenschaft sein werden. Zusätzlich zu den Labormessungen, soll das verbesserte PHIPS-HALO Instrument sowie das PHIPS-HALO/SID-3 Instrumentpaket im Rahmen des Projekts auch auf anderen Messflugzeugen betrieben und getestet werden. Mit den erweiterten Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets können in zukünftigen HALO-Missionen Validierungen von Satellitenbeobachtungen durchgeführt werden, die sich auf Polarisationsmessmethoden stützen. Da diese Messmethoden sehr empfindlich auf die Komplexität der Form sowie der Oberflächenrauheit der Eispartikel sind, könnte auf Basis solcher Validierungsmissionen die Frage geklärt werden, ob die Eispartikelkomplexität eine dominante mikrophysikalische Eigenschaft von Zirren ist. Sollte dies der Fall sein, würden Wolkeneispartikel einen deutlich anderen Strahlungseinfluss auf den Wärmehaushalt der Erde haben als bisher angenommen.
This project aims at a better understanding of the formation of particles (contrail and aerosols in the wake of subsonic airplanes, in order to investigate the microphysical and radiative properties of contrails as function of the meteorological conditions during their life cycle, i.e. from the early phase of jet expansion to a cirrus like stage. Expected achievements are: 1) The determination of the range of variability of the microphysical and optical properties of contrails during their life cycle as function of the ambient meteorological conditions, 2) The determination of the basic physical processes that control the evolution and life cycle of contrails i.e. the derivation of relationships between the occurrence of persistent contrails and the meteorological properties of upper air masses (transition from young contrail to natural cirrus), 3) The determination of the basic physical processes that control the formation and evolution of the aerosols generated in the wake of an aircraft, 4) The investigation of the interactions between aerosol, contrails and subsequent cloud formation, 5) The parameterization schemes that describe the formation and dissipation of contrails as well as their radiative properties in order to use them in large scale circulationmodels (GCM's).
Three specific objectives have been identified for INTACC: Objective 1. Determine the physical, chemical and cloud nucleating properties of the aerosol in the free troposphere over northern Europe and investigate the relationship between these properties. Objective 2. Quantify the physical and chemical processes controlling the activation or nucleation of ice particles in laer clouds and orographic clouds over northern Europe. Objective 3. Develop parametrisations of the glaciation processes in clouds for inclusion in large scale numerical models.