API src

Found 339 results.

Erweiterung des Gleisanschlusses im BMW-Werk 2.40 in Dingolfing

Das Vorhaben umfasst im Wesentlichen die Verlängerung des bestehenden, von Osten kommenden bisherigen Stumpfgleises A und des nördlich davon liegenden Stumpfgleises B sowie den Anschluss neuer Weichen in das Streckengleis der Deutschen Bahn (DB) 5634 Landshut Hauptbahnhof – Bayerisch Eisenstein am Westkopf des Werkes 2.40 der Antragstellerin in Dingolfing. Das Werk befindet sich links, also nördlich der Strecke etwa bei Bahn-km 27,44. Die bisherigen Abstellgleise A und B liegen außerhalb des Werksgeländes, links der Strecke 5634, in paralleler Lage von ca. Bahn-km 27,32 bis ca. Bahn-km 27,65 im Westkopf des Bahnhofs Dingolfing, das Gleis A etwa 6,61 bis 8,14 m nördlich des Streckengleises und das Gleis B etwa 4,50 m nördlich des Gleises A. Die Verlängerung der Gleise, die eine neue gesamte Nutzlänge von jeweils etwa 839 m pro Gleis erhalten sollen, soll bei etwa Bahn-km 26,57 westlich der Brücke der Industriestraße über die Bahnlinie wieder an das Streckengleis der DB angeschlossen werden. Zusätzlich umfasst das Vorhaben ein neues Abstellgleis für die Abstellung von E-Loks und die mobile Instandhaltung schadhafter Waggons sowie als Sicherungslänge für die Ausfahrt aus Gleis B Richtung Landshut. Das Gleis zweigt im Westen bei etwa Bahn-km 26,60 vom geplanten verlängerten Gleis A ab und führt rund weitere 185 m nach Westen, wo es kurz vor dem Finkenweg, der bei Bahn-km 26,347 die Bahnstrecke höhengleich quert, mit einem Bremsprellbock endet. Alle neuen Gleise werden in Schotteroberbau verlegt. Die neuen Gleise sowie der Anlagenbestand bis zur Anschlussweiche im Bahnhof Dingolfing werden elektrifiziert. Es sind Flach- und Winkelmaste aus Stahl nach dem Regelwerk der DB geplant. Zur Freihaltung der Oberleitung ist ein Rückschnitt der vorhandenen Vegetation vor-gesehen. Unter den Brücken der Industriestraße – Kreisstraße DGF 16 - bei Bahn-km 26,85 einschließlich Geh- und Radweg bei Bahn-km 26,89, der Landshuter Straße – Staatsstraße 2074 - bei Bahn-km 27,67 einschließlich Geh- und Radweg bei Bahn-km 27,71 und der Brumather Straße bei Bahn-km 28,13 ist eine Kettenwerksabsenkung vorgesehen. Die Mindest-fahrdrahthöhe beträgt durchgehend 5,05 m über Schienenoberkante. Für die Einbindung der Gleise der Antragstellerin in die bestehende Oberleitung der DB-Gleise muss auch deren Oberleitung auf einer Länge von etwa 880 m umgebaut werden. Zusätzlich ist für die neuen Gleise eine Gleisfeldbeleuchtung durch etwa 14 m hohe Stahlrohrmasten geplant sowie zusätzlich im Bereich der Unterquerung der Industriestraße eine bodennahe Beleuchtung entlang der Schienen. Das Vorhaben beinhaltet darüber hinaus den Bau von zwei maximal 1 m hohen Winkelstützwänden zur Abfangung des Gleiskörpers von etwa Bahn-km 26,54 bis 26,70 und von etwa Bahn-km 26,90 bis 26,94 sowie einer Winkelstützwand bei der Brücke der Industriestraße, um die Breite zur Durchführung der zwei Gleise einschließlich der Elektrifizierung unter dem Bauwerk zu gewährleisten; außerdem von drei Rangiererwegen zwischen Streckengleis und Gleis A, zwischen Gleis A und Gleis B sowie nördlich des Gleises B. Überwege sollen aus glasfaserverstärkten Kunststoffplatten hergestellt werden. An mehreren Weichen sollen Weichenheizungen eingebaut werden. Auch werden die Berührungsschutze an der Brücke der Industriestraße bei Bahn-km 26,85 einschließlich Geh- und Radweg bei Bahn-km 26,89 über die Bahnlinie erweitert. Mehrere Spartenleitungen und Kabel müssen als Folge der Baumaßnahme umverlegt werden. Naturschutzrechtliche Ausgleichsmaßnahmen sind auf zwei Flächen im Eigentum der Antragstellerin im Westen und Nordwesten des Werks sowie einer externen Ökokontofläche im Landkreis Traunstein geplant. Eine umzäunte und befestigte Baustelleneinrichtungsfläche ist unmittelbar nördlich der Neubaugleise etwa 100 m westlich der Unterquerung der Industriestraße vorgesehen. Die Bauarbeiten sollen tagsüber von 7 bis 20 Uhr an Werktagen stattfinden. In Abstimmung mit der Eisenbahninfrastrukturbetreiberin kann die Bahnstrecke während der Durchführung der Baumaßnahmen zeitweise gesperrt werden. Der Asphaltoberbau der Feuerwehrumfahrung muss bauzeitlich vorübergehend zurückgebaut und im Anschluss wiederhergestellt werden.

Klimaforschungsplan KLIFOPLAN, Potentiale für eine weitergehende Elektrifizierung (PowEr)

Aus Gründen der Energieeffizienz, Ressourcenschonung und Treibhausgas-Minderung zeichnet sich ab, dass die Verkehrsarten möglichst elektrifiziert werden sollten. Sofern das nicht möglich ist, muss der Endenergiebedarf durch andere Kraftstoffe gedeckt werden, die langfristig treibhausgasneutral her- und bereitgestellt werden müssen. Batterien wurden in den letzten Jahren deutlich leistungsfähiger (gravimetrische und volumetrische Energiedichte) und werden auch absehbar noch besser und günstiger. Zukünftig sollten dadurch weitere Verkehrsmodi batterieelektrisch betrieben werden können und andere noch umfassender als bisher. Dies ermöglicht geringere Bedarfe an anderen Endenergieträgern und einen geringeren Energiebedarf. Im Vorhaben sollen die jetzigen und insbesondere zukünftigen Möglichkeiten der Batterie-Technik in Anwendungen des Verkehrs detailliert untersucht werden. Die verkehrsträgerseitigen Anforderungen der jeweiligen charakteristischen Segmente der Verkehrsarten (z.B. Fähren, Binnenschiffe, Zweiräder, Linienbusse) an die Energieversorgung müssen dazu detailliert aufgeschlüsselt werden, um diese anschließend ggf. wieder clustern zu können. Welche Arten von Energiespeichern werden dafür benötigt bzw. jetzt schon entwickelt, welche Kostenentwicklungen sind zu erwarten? Batterietechnisch sind alle Ansätze zu identifizieren, die in den nächsten 2 bis 3 Dekaden aus heutiger Sicht relevant werden könnten. Die Beurteilung erstreckt sich auch auf die Risiken der Technik und die Kritikalität von Rohstoffen. Für die auch zukünftig nicht realistisch elektrifizierbaren Verkehrsträger wäre zu untersuchen, welche Energieträger (PtG-H2, PtG-Methan, PtL) und Antriebe dann, unter Berücksichtigung der Energieeffizienz, Ressourcen und THG-Minderung, als geeignete Alternative erscheinen. Diese Arbeiten sind die Grundlage für eine Abschätzung des zukünftigen Endenergie- und Primärenergiebedarfs im Verkehr, was in drei Szenarien ermittelt werden soll.

Abgeschlossene Forschungs- und Entwicklungsprojekte

Nachfolgend findet sich eine Übersicht ausgewählter abgeschlossener Forschungs- und Entwicklungsprojekte, die mit aktiver Beteiligung oder inhaltlicher Unterstützung der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt in der Abteilung Mobilität durchgeführt wurden. Zudem besteht die Möglichkeit, sich zu jedem Forschungs- und Entwicklungsprojekt vertiefende Informationen anzeigen zu lassen. Bild: SenMVKU Ladeinfrastruktur an stationsbasierten Carsharingstationen Das Pilotprojekt hatte zum Ziel, die Umsetzung von Stellflächen für stationäre Carsharing-Angebote mit Ladeinfrastruktur zu erproben und einen einheitlichen Genehmigungsrahmen zu schaffen. Die Elektrifizierung der stationären Carsharingflotte ist ein weiterer elementarer Baustein der Antriebs- und Mobilitätswende in Berlin. Weitere Informationen DIN SPEC 91504 – Barrierefreie Ladeinfrastruktur für Elektrofahrzeuge Im Rahmen der DIN SPEC 91504 wurden Anforderungen an barrierefreie Ladeinfrastruktur ausgewiesen. Weitere Informationen e-Taxi-Flotte Berlin: Mittelfristiges Testen von e-Taxis und Aufbau gesteuerter Ladeinfrastruktur zum Abbau von Vorurteilen in Bezug auf das Fahren und Laden Über das Pilotvorhaben sollten wichtige Erkenntnisse für eine umfängliche Elektrifizierung der Berliner Taxiflotte gewonnen werden. Dies umfasste auch die Errichtung von Schnellladeeinrichtungen an zwei Taxihalteständen. Weitere Informationen Neue Berliner Luft – Teilvorhaben ElMobileBerlin In dem Teilvorhaben „ElMobileBerlin“ wurde untersucht, inwiefern eine Infrastruktur mittels Laternen im öffentlichen Raum dazu beitragen kann, die Attraktivität von Elektromobilität durch möglichst einfach zugängliche Ladegelegenheiten zu steigern. Weitere Informationen Cities in Charge Im Rahmen des Projekts sollen an den Nutzendenpräferenzen ausgerichtete sowie tragfähige Geschäftsmodelle für den Aufbau und Betrieb von Ladeinfrastruktur erforscht werden. Diese Forschungsarbeiten fokussieren sich auf insgesamt acht deutsche Großstädte. Weitere Informationen Bild: CCat82 - stocks.adobe.com City-Rail-Logistics: Gütermitnahme in der S-Bahn Das Projekt "City-Rail-Logistics" untersucht das Potenzial und die Umsetzbarkeit des Gütertransports im schienengebundenen Nahverkehr am Beispiel der S-Bahn Berlin. Es stellt Chancen und Herausforderungen gegenüber. Weitere Informationen Umweltfreundliche Mobilität (MEISTER) Das Projekt MEISTER entwickelt, pilotiert und evaluiert in drei verschiedenen europäischen Städten – Berlin, Málaga und Stockholm – innovative Geschäftsmodelle für Elektromobilität. Weitere Informationen Shuttles & Co: Autonome Shuttles & Co im digitalen Testfeld Stadtverkehr Mit dem Vorhaben Shuttles & Co will das Land Berlin die Entwicklung der Digitalisierung, Vernetzung und Automatisierung urbaner Mobilität mitgestalten, um die Voraussetzungen für eine sichere, effiziente und nachhaltige Mobilität auch in Zukunft bereitstellen zu können. Weitere Informationen Next-ITS 3 Ziel des Projektes ist die Verbesserung der Performance auf dem Scandinavian-Mediterranean-Corridor, angrenzenden Korridoren (North Sea-Baltic, Orient-East Med), dem Kernnetz sowie den Schnittstellen zu städtischen Bereichen mittels des Aufbaus von intelligenten Verkehrssystemen (ITS). Weitere Informationen SAFARI: Sicheres automatisiertes und vernetztes Fahren auf dem Digitalen Testfeld Stadtverkehr in Berlin Reinickendorf Im Forschungsprojekt SAFARI erprobt das Land Berlin zusammen mit seinen Partnern den Austausch und die Aktualisierung digitaler Karten als eine der Grundvoraussetzungen für das automatisierte und vernetzte Fahren (AVF). Weitere Informationen RAMONA: Realisierung automatisierter Mobilitätskonzepte im Öffentlichen Nahverkehr Das Projekt RAMONA hat zum Ziel, ein hochautomatisiertes und vernetztes Mobilitäts-, Fahrzeug- und Betriebskonzept zum Einsatz im öffentlichen Nahverkehr zu entwickeln. Weitere Informationen DORA: Door-to-Door Information for Air Passenger Das Gesamtziel des DORA-Projekts ist die Optimierung und Verkürzung der Gesamtreisezeit unter Berücksichtigung der Ausgangs- und Endziele der Reisen (Wohnung, Büro, Hotel, etc.) von Fluggästen. Weitere Informationen Mobilitätsstationen auf Quartiersebene in städtischen Randlagen (MobistaR) Das Projekt MobistaR hatte zum Ziel herauszufinden, wie Mobilitätsstationen ausgestattet, verortet und miteinander vernetzt sein sollten, damit diese dem Ziel der Verringerung des motorisierten Individualverkehrs am Stadtrand dienen können. Weitere Informationen Move Urban Das Forschungsprojekt Move Urban erarbeitet, systematisiert und vermittelt Wissen und Handlungsmöglichkeiten, indem es die Erforschung innovativer und flächeneffizienter Mobilitätskonzepte mit einem konkreten, sich aktuell in Bau befindlichen neuen Stadtquartier verknüpft. Weitere Informationen T30: Untersuchung zur lufthygienischen und verkehrlichen Wirkung von Tempo 30 mit Verkehrsverstetigung als Maßnahmen des Luftreinhalteplans zur Reduzierung von NO2 Das Ziel von Tempo 30 ist die Reduzierung der NO2-Belastung durch eine Verkürzung der emissionsträchtigen Beschleunigungsphasen und Verstetigung des Verkehrs. Durch die Geschwindigkeitsreduzierungen soll eine umweltgerechte Mobilität erreicht werden. Weitere Informationen

Reduktion von Volumen und Lufteintrag für Tanks in mobilen Arbeitsmaschinen

Messsysteme für Großerzeugungs-Anlage, Teilvorhaben: Durchführung des Feldtests

Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleiner Erzeugungsanlagen möglich und beschrieben. Für Großerzeugungsanlagen werden wir dafür im Projekt MeGA ein Konzept entwickeln und bis zum Feldtest bringen. Mit unserem Projekt ermöglichen wir damit die Basis für die Nutzung des Cyber-Security-Konzepts des Smart Meter Gateways (SMGW) in zusätzlichen Anwendungsbereichen. Die Stadtwerke Pforzheim hat den Schwerpunkt ihrer Arbeiten in der praktischen Erprobung der Vorhabenziele. Konkret werden wir uns intensiv im Labortest und Feldversuch beteiligen.

Messsysteme für Großerzeugungs-Anlage, Teilvorhaben: Entwicklung und Evaluation von Open Source Modulen zur Integration von Steuerberechtigten in die iMSys

Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleinere Erzeugungsanlagen möglich und beschrieben. Für Großerzeugungsanlagen werden wir dafür im Projekt MeGA ein Konzept entwickeln und bis zum Feldtest bringen. Mit unserem Projekt ermöglichen wir damit die Basis für die Nutzung des Cyber-Security-Konzepts des Smart Meter Gateways (SMGW) in zusätzlichen Anwendungsbereichen. Der Fokus des Fraunhofer-Teilvorhabens liegt dabei auf der Entwicklung und Evaluierung von Open Source-Modulen zur Integration von Steuerberechtigten in die iMSys-Infrastruktur. Dazu werden die technischen und regulatorischen Anforderungen aus Sicht der Regelreserve und Direktvermarktung zur Nutzung der Infrastruktur gesammelt und bei der Erstellung des Umsetzungskonzepts eingebracht. Zur Anbindung und Integration von Steuerungsberechtigten werden Open Source Software-Bibliotheken, zur Fernauslesung und Ansteuerung der Anlagen für Marktpartner, implementiert. Zur Evaluierung der entwickelten Bibliotheken sowie der Infrastruktur wird prototypisch ein virtuelles Kraftwerk in Form eines Aggregators bzw. Regelreserve-Anbieter-Leitsystem aufgebaut. Die Funktionalitäten und Software-Bausteine werden vorab in einer Testumgebung (Virtual Lab) evaluiert und kontinuierlich verbessert, nachdem sie später im Rahmen der Feldtests eingesetzt werden. Während der Projektlaufzeit wird der wissenschaftliche Diskurs durch Publikation angeregt sowie die Open SourceBibliotheken kontinuierlich erweitert und der Community zur Verfügung gestellt.

Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Einsatz von Graph Neuronalen Netzen zur Lastflussberechnung und die Entwicklung eines Empfehlungssystems

Messsysteme für Großerzeugungs-Anlage, Teilvorhaben: Weiterentwicklung des SMGW

Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleinere Erzeugungsanlagen möglich und beschrieben. Im Projekt MeGA werden wir unser Smart Meter Gateway und damit interagierende Steuerlösungen für die Anwendung in Großerzeugungsanlagen mit einer installierten Leistung über 100 kW weiterentwickeln. Dabei werden Anforderungen des Anlagenbetreibers, des Marktes und des Netzes sowie der Regulatorik analysiert und in das Lastenheft für eine entsprechende SMGW-Weiterentwicklung aufgearbeitet. Im Ergebnis soll der durch das MsbG bereits gesetzlich adressierte Einsatzbereich der Erzeugungsanlagen über 100 kW mit dem Projekt MeGA auch technisch erschlossen werden, so dass entsprechende SMGW und Steuerlösungen dem Markt bereitgestellt werden können.

Graph Neuronale Netze für die Netzsteuerung, Teilvorhaben: Spezifikation und Erprobung eines Empfehlungssystems mit Graph Neuronalen Netzen für das Übertragungsnetz von TenneT TSO GmbH

Messsysteme für Großerzeugungs-Anlage, Teilvorhaben: Definition der Testfälle, Systemlandschaft und Anforderungen an die Laborumgebung

Neue erneuerbare Erzeugungsmengen von mehr als 300 TWh werden bis 2030 zur Erreichung der Klimaziele und der Erhöhung der Gasunabhängigkeit durch Elektrifizierung in den Sektoren Wärme und Mobilität benötigt. Über ein intelligentes Messsystem können diese Anlagen sicher informationstechnisch angebunden und für die Netzintegration sowie Vermarktung gesteuert werden. Bislang ist dies für kleinere Erzeugungsanlagen möglich und beschrieben. Für Großerzeugungsanlagen wird dazu im Projekt MeGA ein Konzept entwickelt und bis zum Feldtest gebracht. Der Schwerpunkt der THU liegt in der Konzeption und der Durchführung von Tests der im Projekt entwickelten Anwendungen im Smart-Grid-Labor und der Simulationsumgebung der THU auf der Informations-, Kommunikations- und Funktionsebene. Im Smart-Grid-Labor der THU wird dazu eine virtualisierte Simulationsumgebung eingerichtet, die die Implementierung und das Testen von Anwendungen und Komponenten der Smart-Meter-Infrastruktur ermöglicht. Die THU wird auch aus akademischer Sicht Unterstützung bei der Klärung von Anforderungen und der Spezifikation der Systemimplementierung leisten. Darüber hinaus können die im MeGA-Projekt geplanten Neuentwicklungen mit der aufgebauten Simulationsumgebung getestet und validiert werden. Insbesondere für die CLS-Steuerung in Kombination mit dem SMGW wird ein Virtualisierungskonzept entwickelt und erprobt, welches die Skalierbarkeit der Erzeugungseinheiten auf der Basis der Nutzung internationaler Normen und Standards (z.B. IEC 61850 und SunSpec-Modbus) berücksichtigt. Die THU kann auf bestehende Lösungen und breite Erfahrungen im Bereich der Integration von Smart-Meter-Infrastruktur, SMGW, CLS-Steuerbox, CLS-Backend und die Einbindung in Verteilnetzleittechnik zurückgreifen.

1 2 3 4 532 33 34