API src

Found 4289 results.

Related terms

Windkraftanlagen Saarland

Windkraftanlagen Saarland, Anlagen, die die kinetische Energie des Windes in elektrische Energie umwandelt und in das Stromnetz einspeist. Attribute: RW, HW: Koordinaten des Rechtswertes und Hochwertes; NAMEN: Namen des Windparks; SACHSTAND: UVP Vorprüfungsverfahren (UVP=Umweltverträglichkeitsprüfung), laufendes Genehmigungsverfahren, genehmigte Anlage; LEISTUNG: Angabe in Megawatt-MW; NABENHOEHE: Höhe der Gondel über dem Turmfuß; GESAMTHOEH: Rotorblattlänge plus Nabenhöhe ergibt die Gesamthöhe.

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025

Planungsleitfaden für die Ermittlung des elektrischen Energiebedarfs und einer umweltgerechten Energieversorgung von Berghütten

Branchenabhängiger Energieverbrauch des verarbeitenden Gewerbes

<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>⁠. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>

Hochinnovative Abgasnachbehandlungskonzepte für dynamisch betriebene Wasserstoffverbrennungsmotoren bis an die Nachweisgrenze, Teilprojekt C

Hybrid-Ofenverfahren für CO2-ärmere bzw. für CO2-freie Hochtemperaturtechnologien zur thermischen Behandlung, Teilvorhaben Durchlaufofen

Hauptziel des beantragten Projektes Hybrid-FIRE ist, eine neue Methode zur hybriden Beheizung von Ofenanlagen zu entwickeln, die es ermöglicht, kohlendioxidarm bzw. kohlendioxidfrei zu arbeiten. Die Grundlagen hierfür bieten umweltfreundlich erzeugter Wasserstoff sowie Elektroenergie. Durch Kombination eines Erdgas-Brenners, dessen Brenngas teilweise durch Wasserstoff ersetzt wird, mit einem bzw. mehreren Mikrowellenplasmabrennern soll durch gezielte Steuerung dies ermöglicht werden. Am Beispiel von ausgewählten keramischen Massenerzeugnissen aus dem Bereich Feuerfest (MgO-Stein), Technischer Keramik (ZrO2) sowie Baukeramik (Ziegelstein, Fließe) sowie am Beispiel Stahlschmelze aus dem Metallurgiesektor, soll gezeigt werden, dass diese zurzeit stark kohlendioxidlastige Verfahrensschritte kohlendioxidarm bzw. -neutral betrieben werden können. Hierzu wird an den ausgewählten Erzeugnissen (fester Werkstoff sowie Stahlschmelze) umfangreiche Entwicklungsarbeit in mikrowellenplasmabeheizten Ofen, in elektrisch beheizten sowie in industriell oft gasbeheizten Öfen zur Eigenschaftsentwicklung betrieben. Im Lauf des Projektes ist geplant einen hybrid beheizten Demonstrator zu konzipieren, zu bauen und für umfangreiche Versuche mit den genannten Produktgruppen einzusetzen. Aufgrund der Änderungen in der Beheizungsart ist damit zu rechnen, dass geänderte Anteile an Wasserdampf bzw. Wasserstoffgehalte u.a. Abgasbestandteile die Eigenschaften beeinflussen. Hierzu können Änderungen in der Sintertechnologie (nur Mikrowellenplasmabrenner-Beheizung unterstützt mit elektrischen Heizer zur Bewältigung der Thermoschockbeanspruchungen im Ofenaggregat) bzw. auch am Werkstoff erforderlich werden. Im letzten Teil des beantragten Projektes sollen die gewonnenen Erkenntnisse im Industrieeinsatz (Feuerfesthersteller, Stahlgießerei) zum Einsatz unter industriellen Bedingungen kommen und erprobt werden.

Energie - Photovoltaikanlagen mit Leistung ab 300 kWp

Der Kartendienst (WMS-Gruppe) stellt die digitalen Geodaten aus dem Bereich Erneuerbare Energien des Saarlandes dar.:Photovoltaik Freiflächenanlagen Photovoltaik Stromanlagen, in denen mittels Solarmodulzellen ein Teil der Sonneneinstrahlung in elektrische Energie umgewandelt wird. Die Datei enthält nur größere Anlagen, kleinere Anlagen in privater Hand sind hier nicht enthalten. Die Daten stammen aus dem Marktstammdatenregister (MaStR). Stand: 06.09.2022

Hinweise zum Abstand von Wohngebäuden zu Freileitungen und Erdkabeln

Hinweise zum Abstand von Wohngebäuden zu Freileitungen und Erdkabeln Es gibt kein deutschlandweit gültiges Gesetz, das einen Mindestabstand von Hochspannungsleitungen zu Wohngebäuden vorschreibt. Seit dem Jahr 2013 gibt es ein Überspannungsverbot von Gebäuden und Gebäudeteilen, die zum dauerhaften Aufenthalt von Menschen bestimmt sind. Mindestabstände zu Hochspannungsleitungen sind aus Sicht des Strahlenschutzes nicht notwendig. Relevant ist die Einhaltung der Grenzwerte. Diese werden in Deutschland nach aktuellem Kenntnisstand an allen Orten des dauerhaften Aufenthalts eingehalten und sogar deutlich unterschritten. Es gibt kein deutschlandweit gültiges Gesetz, das einen Mindestabstand von Hochspannungsleitungen zu Wohngebäuden vorschreibt. Es gibt jedoch seit dem Jahr 2013 ein Überspannungsverbot von Gebäuden und Gebäudeteilen, die zum dauerhaften Aufenthalt von Menschen bestimmt sind. Dies betrifft den Neubau von Freileitungstrassen mit Wechselstrom, die eine Frequenz von 50 Hertz ( Hz ) und eine Nennspannung von 220 Kilovolt ( kV ) oder mehr aufweisen. Es gibt jedoch Ausnahmen, für die eine Stichtagsregelung gilt. Nicht betroffen von dem Überspannungsverbot sind bestehende Freileitungstrassen sowie entsprechende Planfeststellungsbeschlüsse, Planfeststellungs- und Plangenehmigungsverfahren, die bis zum 22. August 2013 eingereicht wurden ( § 4 Abs. 3 26. BImSchV ). Leitungen zur Höchstspannungs-Wechselstrom-Übertragung ( HWÜ ), die in den allermeisten Fällen zum Transport von elektrischer Energie in Deutschland verwendet werden, können im Falle eines Neubaus als Freileitung oder im Rahmen von Pilotprojekten als Erdkabel errichtet werden ( § 4 Bundesbedarfsplangesetz, BBPlG ). Demgegenüber sind bei der Höchstspannungs-Gleichstrom-Übertragung ( HGÜ ) bei einem Abstand zu Wohngebäuden von weniger als 400 Metern im Geltungsbereich eines Bebauungsplans oder im unbeplanten Innenbereich bzw. weniger als 200 Metern im Außenbereich Erdkabelleitungen vorgesehen und Freileitungen – mit wenigen Ausnahmen – verboten ( § 3 Abs. 4 BBPlG ). Manche Bundesländer legen bei neuen Hochspannungsleitungen Mindestabstände fest. Diese Regelungen dienen nicht dem Gesundheitsschutz. Das heißt sie sind nicht mit nachgewiesenen gesundheitsrelevanten Wirkungen begründet. Vielmehr geht es darum, Ziele der Raumordnung zu erreichen und Raumnutzungskonflikte zwischen Hochspannungsleitungen und Wohnbebauung zu verhindern. Teilweise werden die Mindestabstände auch mit dem Orts- und Landschaftsbild begründet. Grenzwerte schützen Mindestabstände zu Hochspannungsleitungen sind aus Sicht des Strahlenschutzes nicht notwendig. Dies gilt auch für verschiedene Faustformeln ("Ein Meter Abstand je kV Spannung"). Relevant ist die Einhaltung der Grenzwerte. Nach aktuellem Stand der Forschung schützt die Einhaltung der Grenzwerte Erwachsene und Kinder selbst bei einer geringen Entfernung vom Wohngebäude zur Hochspannungsleitung vor allen nachgewiesenen gesundheitlichen Wirkungen . Mit jedem Meter Abstand zu den Hochspannungsleitungen werden die dazugehörigen elektrischen und magnetischen Felder sehr schnell deutlich schwächer. Auch im Haushalt erzeugen Leitungen und Geräte elektrische und magnetische Felder. Diese können üblicherweise einen deutlich größeren Anteil an der Gesamtexposition ( d. h. der Art und Weise, wie Menschen elektrischen und magnetischen Feldern ausgesetzt sind) eines Menschen haben. Das gilt umso mehr, je weiter die Hochspannungsleitungen von den Häusern entfernt sind. Die Bundesnetzagentur oder die nach Landesrecht zuständigen Behörden genehmigen neue Hochspannungsleitungen und kontrollieren, dass die Grenzwerte eingehalten werden. Minimierung der Felder Die gesetzlichen Grenzwerte für die elektrischen und magnetischen Felder müssen an allen Orten des dauerhaften Aufenthalts nicht nur eingehalten werden, es besteht darüber hinaus noch ein Minimierungsgebot: Bei der Errichtung neuer oder der wesentlichen Änderung bestehender Hochspannungsleitungen müssen die nach dem Stand der Technik bestehenden Möglichkeiten ausgeschöpft werden, um die von der jeweiligen Anlage ausgehenden Felder zu minimieren. Was bei Messungen zu beachten ist Da die Grenzwerte in Deutschland an allen Orten des dauerhaften Aufenthalts eingehalten werden müssen, ist davon auszugehen, dass eine Messung vor Ort nur Werte deutlich unterhalb der gesetzlichen Grenzwerte liefert. Unterhalb der Grenzwerte treten nach derzeitigem Kenntnisstand keine gesundheitsgefährdenden Wirkungen auf. Wenn man trotzdem wissen möchte, wie stark die niederfrequenten Felder an einem bestimmten Ort sind, kann dies über eine Messung gezeigt werden. Diese sollte stets von Fachleuten durchgeführt werden und mindestens 24 Stunden dauern, um auch Schwankungen im Tagesverlauf zu erfassen. Für die fachgerechte Messung gibt es mehrere Möglichkeiten: Die zuständige untere Immissionsschutzbehörde des Landkreises bzw. der kreisfreien Stadt ist eine passende Anlaufstelle. Sie ist meistens Teil des Umweltamtes. Ebenso der Leitungsbetreiber, der vielleicht bereits entsprechende Messungen durchgeführt hat. Eine Kontaktaufnahme zu Technischen Universitäten oder Hochschulen könnte sich ebenfalls lohnen. Nicht zuletzt gibt es freie Anbieter am Markt. Bei diesen sollte stets auf eine geeignete Qualifikation geachtet werden. So ist zum Beispiel die Bezeichnung "Baubiologe" nicht gesetzlich geschützt, da sich jeder so nennen kann. Skeptisch sollten Auftraggeber auch werden, wenn ein Anbieter andere Grenzwerte als die gesetzlichen Werte der 26. Bundesimmissionsschutzverordnung ( 26. BImSchV ) als Maßstab heranzieht und darauf aufbauend zum Teil sehr kostspielige Abschirmmaßnahmen empfiehlt. Stand: 17.12.2025

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Keramikherstellung mittels 3D-Druck und Charakterisierung

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Solarthermische Raumluftentfeuchtung in Wasserwerken und anderen Anwendungen, Teilvorhaben: Solarthermie

Beim Forschungsvorhaben Solarthermische Raumluftentfeuchtung in Wasserwerken und anderen Anwendungen (dx-Wasser) handelt es sich um ein Verbundvorhaben der Universität Kassel, Fachgebiet Solar- und Anlagentechnik als Koordinatorin in Zusammenarbeit mit den Projektpartnern Munters GmbH und Enertracting GmbH. Ziel des Forschungsvorhabens ist es, den Strombedarf von Luftentfeuchtungsanlagen mit Sorptionsrotoren durch die Einbindung von thermischen Solaranlagen zur Beheizung der Regenerationsluft deutlich zu reduzieren. Im Forschungsvorhabens erfolgt eine Bestandsaufnahme des Istzustandes von Wasserwerken in Deutschland. Im Zuge dessen sollen Energieeffizienzmaßnahmen bzgl. Betrieb und Regelung von Luftentfeuchtungsanlagen entwickelt und anschließend bewertet werden. Im Rahmen von Langzeitmessungen werden mehrere Gebäude von Wasserversorgern messtechnisch untersucht. Die Einbindung solarthermischer Wärme zur Regeneration von Sorptionsrotoren wird umfassend im Labor des Fachgebiets analysiert. Hierzu werden Sorptionsrotoren der Munters GmbH in eine teils bestehende Messumgebung integriert. Im Vorhaben sollen zwei Testanlagen an unterschiedlichen Standorten (Hochbehälter und eine Gasdruckregelanlage) geplant, errichtet und vermessen werden. Um das System abbilden zu können, wird zuerst ein Modell eines Sorptionsrotors in der Simulationsumgebung Dymola aufgebaut und mit den Messdaten validiert. Anschließend wird ein Systemmodel in TRNSYS bestehend aus Sorptionsrotor, Wärmeübertrager, Nachheizregister und thermischer Solaranlage erstellt. Dieses wird ebenfalls mit den Messergebnissen validiert. Durch das Modell soll die Übertragbarkeit der Ergebnisse auf andere Anwendungen gewährleistet sein. Zusätzlich dient das Modell zur Entwicklung eines Vor-Auslegungstools für die Dimensionierung von solarthermisch beheizten Sorptionsrotoren. Die Ergebnisse des Forschungsvorhabens werden in einem Leitfaden zusammengefasst und der interessierten Öffentlichkeit zugänglich gemacht.

1 2 3 4 5427 428 429