API src

Found 589 results.

Similar terms

s/elektrische leitung/Elektrische Leistung/gi

Entwicklung und Qualifikation einer PROzesskette zur industriellen Herstellung Hochtemperatur ThermoElektrischer Module zur Abwärmenutzung, Energieeffizienzsteigerung und Senkung von CO2- Emissionen, Teilvorhaben: Kosteneffizientes, serientaugliches Sintern der TE-Materialien

Ziel ist die Entwicklung einer Pilotlinie zur automatisierten Herstellung von Hochtemperatur - thermoelektrischen (TE-) Modulen (TEM). TEM wandeln Wärme direkt in Elektrizität. Durch Abwärmenutzung mittels TEM ist eine Senkung der CO2 - Emission und eine Steigerung der Energieeffizienz möglich. Dies ist nur realisierbar, wenn die Herstellung von TEM auf ein kosteneffizientes industrielles Niveau gehoben wird. In ProTEM ist eine Senkung der Produktionskosten um 80% und ein Durchsatz von 12500 TEM/Jahr vorgesehen. Mit dem angestrebten, auf die elektrische Leistung bezogenen Preis von kleiner als 1 €/W stellen TE-Generatoren eine wirtschaftliche Alternative zur indirekten Abwärmenutzung dar. Das Konsortium bietet die Chance für eine Umsetzung der Ergebnisse sowie einen Technologietransfer und eine wirtschaftliche Verwertung und Vermarktung nach Projektende. Für kostengünstige TEM eröffnen sich zahlreiche Anwendungsfelder, da in Europa keine Technologie dieser Art existiert. Durch Nutzung industrieller Abwärme in Deutschland könnten jährlich 5 Milliarden € an Energiekosten eingespart werden.

Regionaler zellularer Verbund von Versorgungseinheiten mit Netzregelaufgaben

Für einen stabilen Netzbetrieb muss das Angebot an elektrischer Leistung stets dem Verbrauch entsprechen. Dazu halten die Übertragungsnetzbetreiber Regelleistung zur Primär- und Sekundärregelung sowie Minutenreserve vor. Mit der Zunahme der Leistungseinheiten mit volatiler Netzeinspeisung aus erneuerbaren Energien, wie Windkraft und Photovoltaik, erhöht sich permanent der Bedarf an Regelleistung. Gleichzeitig wird die eingespeiste Leistung aus konventionellen Großkraftwerken und damit die zur Verfügung stehende Regelleistung abnehmen. Aktuelle Studien zeigen zudem, dass in der Primärregelung künftig signifikant kürzere Reaktionszeiten und höhere Leistungsänderungsgeschwindigkeiten erforderlich sind. Die so entstehende Bedarfslücke kann künftig durch regionale zellulare Verbünde von Versorgungseinheiten abgedeckt werden. Sie sind gekennzeichnet durch eigene dezentrale Versorger-, Verbraucher- und Speicherkapazitäten , insbesondere Industriebetriebe mit eigenen Heizkraftwerken auf Basis von Gas, Biomasse oder Kohle mit Priorität der Wärmeversorgung, Windenergie- und Photovoltaik-Anlagen sowie elektrische Batteriesysteme und thermische Speicher. Sie stellen nach außen einen Verbund mit positiver und negativer Regelreserve dar. Der Netzbetreiber kann die einzelnen Verbünde gestuft einsetzen und abrufen. Hierdurch entstehen zusätzliche Redundanzen, welche die Gesamtsystemstabilität erhöhen. Ziel des Vorhabens ist es zunächst, Lösungsansätze zu entwickeln, so dass regionale zellulare Verbünde von Versorgungseinheiten auch hochdynamische Netzregelaufgaben erfüllen können. Das komplexe Zusammenwirken von Energiebereitstellungs-, Nutzungs- und Speichereinheiten unterschiedlicher Energieformen stellt dabei eine besondere Herausforderung dar. Die Übernahme von Netzregelaufgaben muss ohne Abstriche bei Prozess- und Versorgungsstabilität, Betriebszuverlässigkeit und Anlagenlebensdauer erfolgen. Nur durch die Integration geeigneter Speicher, einer intelligenten Nutzung systeminhärenter Speicherkapazitäten sowie einer übergeordneten Steuerung und Überwachung des komplexen dezentralen Systems können die Anforderungen erfüllt werden. Als Entwicklungsplattform und Demonstrator soll das Technikum des Zentrum für Energietechnik (ZET) der TUD dienen. Es repräsentiert einen derartigen Verbund dezentraler Erzeuger- und Verbrauchereinheiten von Elektroenergie und Wärme mit Kopplung zum Strom- und Wärmenetz des lokalen Energieversorgers im Universitätscampus.

Kompensation der akustischen Emissionen von elektrischen Antriebssystemen durch Einprägen von Oberschwingungsströmen

Uniper Kraftwerke GmbH, Errichtung und Betrieb einer H2-Ready Gas- und Dampfturbinenanlage (GuD / Block 8) mit einer maximalen elektrischen Leistung von 890 MWel und einer Feuerungswärmeleistung (FWL) von 1.470 MWth sowie einer jährlichen Betriebsdauer von maximal 8.760 Stunden, RPDA - Dez. IV/F 43.1-53 u 35.11/1-2020/22

Die Uniper Kraftwerke GmbH (im Folgenden UKW) betreibt am Standort Staudinger in Hessen, Hanauer Landstraße 150, 63538 Großkrotzenburg ein Kraftwerk bestehend aus den Kraftwerksblöcken 4 und 5 und drei Hilfskesseln. Die Blöcke 1 bis 3 sind bereits seit einigen Jahren stillgelegt. Der erdgasbefeuerte Block 4 (622 MWel Nettoleistung) und der kohlebefeuerte Block 5 (522 MWel Nettoleistung) werden auf Anforderung des Übertragungsnetzbetreibers TenneT TSO GmbH der-zeit als Netzreserve zur Deckung von Lastspitzen eingesetzt. Für das Anfahren des Blocks 5 und die Besicherung der Fernwärme werden zusätzlich drei Hilfskessel zur Dampferzeugung mit einer genehmigten Feuerungswärmeleistung (FWL) von jeweils 13,38 MW (insgesamt ca. 40,14 MWth) betrieben. Außerdem werden am Standort zwei weitere mobile Hilfskessel mit jeweils 11 MWth (befristet bis zum 31. Dezember 2030) für die Auskoppelung von Fernwärme betrieben. Die Uniper Kraftwerke GmbH (UKW) plant eine H2-Ready GuD Anlage (Block 8) am Standort des Kraftwerk Staudinger (Hanauer Landstraße 150, 63534 Großkrotzenburg). Das Vorhaben beinhaltet eine Gasturbine mit nachgeschaltetem Abhitzekessel und eine Dampfturbine (in Deutsch daher auch Gas- und Dampfturbinen Anlage oder „GuD Anlage“, und in Englisch auch als Combined-Cycle-Gas-Turbine oder „CCGT“ benannt) sowie diverse Nebeneinrichtungen und weist eine elektrische Leistung von 890 MWel bzw. eine FWL von ca. 1.470 MWth auf. Das immissionsschutzrechtliche Verfahren gemäß BImSchG (vorerst nur für den Brennstoff Erdgas) wird als gestuftes Verfahren durchgeführt. Mit dem hiermit vor-gelegten Antrag wird zunächst ein Vorbescheid gemäß § 9 BImSchG beantragt, in dessen Rahmen auch eine Öffentlichkeitsbeteiligung stattfindet. Entsprechend dem Planungsfortschritt soll dann im anschließenden Genehmigungsverfahren nach § 16 BImSchG die endgültige Zulassung für die Errichtung und den Betrieb der GuD Anlage beantragt werden. Für die GuD-Anlage (Block 8) am Standort Kraftwerk Staudinger soll im Rahmen des Vorbescheides nach § 9 BImSchG ab-schließend über den Standort und einzelne Genehmigungsvoraussetzungen wie folgt entschieden werden. Entscheidung über: - bauplanungs- und bauordnungsrechtlichen Zulässigkeit, - immissionsschutzrechtlichen Genehmigungsfähigkeit sowie - die Vereinbarkeit mit anderen öffentlich-rechtlichen Vorschriften.   Im Einzelnen: i: für die Brennstoffe Erdgas und Wasserstoff A. Bauplanungsrechtliche Zulässigkeit und bauordnungsrechtliche Zulässigkeit des Vorhabens; es soll dabei entschieden werden über:  den Standort des Vorhabens (Flächen für Gebäude und Komponenten mit maximalen Flächenbedarf und maximaler Höhe, maximale Höhe der Schornsteine, Zufahrtswege für den Lieferverkehr und die Brandbekämpfung, Feuerwehrflächen sowie Flucht und Rettungswege zu benachbarten Anlagen und öffentlichen Straßen); in bauordnungsrechtlicher Hinsicht soll explizit der Brandschutz geprüft werden.  Vereinbarkeit mit den zugrundeliegenden Bebauungsplänen;  Ausnahmen bzw. Befreiungen von den Festlegungen der für die temporären Baustelleneinrichtungsflächen zugrundeliegenden Bebauungspläne Nr. 30, 31 und 32, sofern erforderlich;  Zulassung der Errichtung der gasisolierten Schaltanlage (GIS); B. Erfüllbarkeit der sich ergebenden rechtlichen Pflichten hinsichtlich des gewählten Anlagenkonzeptes (max. Feuerungswärmeleistung, Brennstoffart, effiziente Ener-gieverwendung, Kühlkonzept, Abwärmenutzung und -einleitung, Abwasser- und Niederschlagswassereinleitung, Brauchwasserbedarf, Abfallvermeidung und -entsorgung); C. Erfüllbarkeit der umweltrechtlichen Pflichten hinsichtlich der Emissionen und Immissionen von Lärm sowie der Anforderungen an die Lagerung von wasserge-fährdenden Stoffen etc.); D. Vereinbarkeit mit naturschutzrechtlichen Regelungen; E. Machbarkeit der Wasserentnahme aus und Kühlwasser- und Abwassereinleitung sowie der Wärmeeinleitung in den Main F. Vereinbarkeit mit naturschutzrechtlichen Regelungen und den wasserrechtlichen Vorschriften für die Entnahme von Oberflächenwasser und Einleitung von Kühlwasser, Abwasser und Niederschlagswasser; G. Ausnahme von den Orientierungswerten der Oberflächengewässerverordnung (OGewV); es wird die folgende Anzahl an Betriebsstunden beantragt, bei der die Orientierungswerte der OGewV für die Temperatur im Main überschritten werden dürfen:  Monat März: 500 Stunden eine Aufwärmung des Mains von 1 K bei maximaler Misch-Temperatur von 13° C des Mains (die OGewV gibt einen Orientierungswert von 10°C vor);  Sommermonate Juni bis August: insgesamt 1.000 Stunden eine Aufwärmung des Mains von 1 K bei maximaler Misch-Temperatur von 26° des Mains (die OGewV gibt einen Orientierungswert von 25°C vor; in der Vergangenheit und bisher gelten noch 28°C); H. Zulässigkeit der Errichtung der Regenwasserrückhaltung, die weitestgehend unter der künftigen Geländeoberkante (GOK) liegt, jedoch Geländer, bis zu 50 cm hohe Aufkantungen und eine Pumpstation über der GOK aufweisen kann, im nicht überbaubaren Teil der Versorgungsfläche 1 des Bebauungsplans Nr. 30, in Übereinstimmung mit § 23 Absatz 3 der BauNV (Zulassung von Ausnahmen) bzw. § 23 Absatz 5 der BauNV (Zulassung von Nebenanlagen); I. Erfüllbarkeit der Pflichten der Störfallverordnung; J. Ausnahmen gemäß § 32 der 44. BImSchV in Verbindung mit der Ausnahmeregelung der Technischen Anleitung Luft (Nr. 5.5.2.1 Absatz 9 TA Luft) hinsichtlich der Einzelfall-Betrachtung bei der Bestimmung der Schornsteinhöhen für Notstromaggregat, Gasvorwärmer, Hilfskessel und Gebäudeheizung; ii: für den Brennstoff Erdgas K. Erfüllbarkeit der umweltrechtlichen Pflichten hinsichtlich der Emissionen und Immissionen von Luftschadstoffen, der Pflichten im Hinblick auf Brandschutz, Explosionsschutz so-wie im Umgang mit wassergefährdenden Stoffen; L. Machbarkeit in Bezug auf die Betriebssicherheitsverordnung. Die jährlichen Betriebsdauer der geplanten Gas- und Dampfturbinen-Anlage Block 8 wird mit 8.760 Stunden (inkl. An- und Abfahrprozesse) beantragt. Für das Projekt wird die am Kraftwerksstandort bereits vorhandene Infrastruktur genutzt. So erfolgt zur Zuführung des Erdgases der Anschluss an eine bereits vorhandene Erdgasstichleitung des Standortes der Open Grid Europe (OGE). Im Zusammenhang mit dem Vorhaben ist zur Anbindung an das 380 kV-Netz der TenneT auch die Errichtung einer erdverlegten 380 kV-Verbindungsleitung am Standort mit oder ohne einer zusätzlichen gasisolierten, eingehausten Schaltanlage (GIS) vorgesehen. Hierzu wurde ein Antrag nach § 9 BImSchG und die zugehörigen Unterlagen eingereicht. Die GuD-Anlage (Block 8) befindet sich im Kraftwerk Staudinger, Hanauer Landstraße 150, 63538 Großkrotzenburg, Gemarkung Großkrotzenburg, Flur 23, 22, 21 und 20, Flurstück 269/22 (Flur 23), 42/1 (Flur 23), 269/16 und 269/20 (Flur 23) und 269/21 (Flur 23), 220/6 (Flur 22), 220/7 (Flur 22), 55/3 (Flur 21), 520/10 (Flur 20), 564 (Flur 20), 565 (Flur 20), 77/2 (Flur 21), 78/3 (Flur 21), 80/2 (Flur 21), 82/3 (Flur 21), 83/2 (Flur 21), 84/2 (Flur 21), 87/5 (Flur 21), 93/2 (Flur 21), 94/2 (Flur 21), 95/2 (Flur 21), 100/7 (Flur 21), 114/6 (Flur 21), 129/6 (Flur 21), 132/5 (Flur 21), 134/5 (Flur 21). Bei der Anlage handelt es sich um eine Anlage nach der Industrieemissionsrichtlinie. Zuständige Behörde für das beantragte Vorhaben ist das Regierungspräsidium Darmstadt, Abteilung Umwelt in Frankfurt. Für das Vorhaben besteht die Pflicht, nach § 6 i. V. m. Nr. 1.1.1 der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG) eine Umweltverträglichkeitsprüfung durchzuführen. Der dazu erforderliche UVP-Bericht wurde mit den Antragsunterlagen vorgelegt und ist dort im Kapitel 20 eingebunden.

Strom aus Windenergie - Installierte Leistung (Plan.-Reg.)

Die Karte zeigt die Summe der installierten elektrischen Leistung der Windenergieanlagen für die Planungsregionen (Plan.-Reg.) in Bayern.

Anlagen nach Bundesimmissionsschutzgesetz in Brandenburg - Download-Service (WFS-LFU-BIMSCHG)

Der Download Service ermöglicht das Herunterladen von Geodaten zu Anlagen nach Bundesimmissionsschutzgesetz (BImSchG) im Land Brandenburg. Datenquelle ist das Anlageninformationssystem LIS-A. Die Anlagen werden zum einen gruppiert nach Anlagenarten 1. Ordnung (ohne Anlagenteile), zum anderen nach Tierhaltungs- und Aufzuchtanlagen, nach Blockheizkraftwerken und nach großen Feuerungsanlagen. Die BImSchG-Anlagen 1. Ordnung werden unterschieden nach: - Wärmeerzeugung, Bergbau und Energie (Nr. 1) - Steine und Erden, Glas, Keramik, Baustoffe (Nr. 2) - Stahl, Eisen und sonstige Metalle einschließlich Verarbeitung (Nr. 3) - Chemische Erzeugnisse, Arzneimittel, Mineralölraffination und Weiterverarbeitung (Nr. 4) - Oberflächenbehandlung mit organischen Stoffen, Herstellung von bahnenförmigen Materialien aus - Kunststoffen, sonstige Verarbeitung von Harzen und Kunststoffen (Nr. 5) - Holz, Zellstoff (Nr. 6) - Nahrungs-, Genuss- und Futtermittel, landwirtschaftliche Erzeugnisse (Nr. 7) - Verwertung und Beseitigung von Abfällen und sonstigen Stoffen (Nr. 8) - Lagerung, Be- und Entladen von Stoffen und Gemischen (Nr. 9) - Sonstige Anlagen (Nr. 10) Die Tierhaltungs- und Aufzuchtanlagen werden gemäß 4. BImSchV unterteilt in: - Geflügel (Nr. 7.1.1 bis 7.1.4) - Rinder und Kälber (Nr. 7.1.5 und 7.1.6) - Schweine (Nr. 7.1.7 bis 7.1.9) - gemischte Bestände (Nr. 7.1.11) Die großen Feuerungsanlagen werden gemäß 4. BImSchV unterteilt in: - Wärmeerzeugung, Energie (Nr. 1.1, 1.4.1.1, 1.4.2.1) - Zementherstellung (Nr. 2.3.1) - Raffinerien (Nr. 4.1.12, 4.4.1) - Abfallverbrennung (Nr. 8.1.1.1, 8.1.1.3) Es werden nur Anlagen gemäß 13. und 17. BImSchV berücksichtigt. Die Blockheizkraftwerke werden hinsichtlich ihrer elektrischen Leistung unterschieden.

Beitrag dezentraler Erzeugungsanlagen zur Versorgungssicherheit - Untersuchungen zur Notwendigkeit einer weitergehenden Systemsteuerung zur Einhaltung der Systembilanz

Diese Studie zur Systembilanz des deutschen Energiesystems erstellten Ecofys und Consentec im Auftrag des Bundesministeriums für Wirtschaft und Energie. Es wurde untersucht, ob in Anbetracht des starken Zubaus dezentraler und teilweise nicht steuerbarer Erzeugungsanlagen kurz- bis mittelfristig Schwierigkeiten bezüglich der Einhaltung der Systembilanz zu erwarten sind. Die abgeleiteten Erkenntnisse erlauben eine Optimierung und wirtschaftliche Bewertung von Maßnahmen. Zudem enthält die Studie explizite Schlussfolgerungen für regulatorischen Handlungsbedarf.

Notwendige Nachrüstung von dezentralen Erzeugungsanlagen - Entwicklung einer Nachrüststrategie für dezentrale Erzeugungsanlagen zum Erhalt der Systemsicherheit bei Über- und Unterfrequenz

Ecofys und Partner entwickelten für das Bundesministerium für Wirtschaft und Energie eine Nachrüststrategie für Stromerzeugungsanlagen zum Erhalt der Systemsicherheit bei Über- und Unterfrequenz. Konkret wurde untersucht, welche Anlagentypen (Wind-, Biomasse-, KWK- und Wasserkraftanlagen) nach welchen Verordnungen an das Stromnetz angeschlossen sind, und wie groß das Gefährdungspotential ist. Darauf aufbauend wurde abgeschätzt, wie hoch der Aufwand zur Anpassung der Anlagen an aktuelle Erfordernisse ist, um die Stabilität des Stromnetzes auch bei Störfällen zu gewährleisten. Als Ergebnis erarbeitete das Konsortium konkrete Handlungsempfehlungen für das Ministerium. Dabei wurden auch juristische Vorschläge für eine neue Verordnung entwickelt.

Steigerung der Energieeffizienz bei der additiven Fertigung von Mikrobauteilen durch Einsatz eines heißdrahtbasierten Laserauftragschweißverfahrens, Teilvorhaben: Konstruktion und Fertigung eines Heißdrahtförderers sowie Sensordatenmanagement

Metallische Bauteile mit Strukturauflösungen von weniger als einem Millimeter werden in der Additiven Fertigung überwiegend mit pulverbasierten Verfahren hergestellt. Von den während der Bauteilgenerierung zugeführten Pulverpartikeln wird nur ein vergleichsweise geringer Anteil Teil der Bauteilgeometrie. Die erforderliche Energie für das Wiederaufbereiten sowie der Umstand, dass trotz Wiederaufbereitung nicht alle über­schüssigen Pulverpartikel erneut verwendet werden können, sind bei pulverbasierten generativen Fer­tigungsverfahren zwei unvermeidliche Faktoren, die zusammen mit dem hohen Schutzgasbedarf deren Energieeffizienz und Ressourcenschonung limitieren. Hier knüpft das Vorhaben an und zielt auf die Entwicklung eines energieeffizienten Verfahrens zum Laserauftragschweißen mit metallischen Drähten im Durchmesserbereich von 100 µm ab. Dabei soll der Draht senkrecht zur Substratoberfläche zugeführt werden und von vier einzeln ansteuerbaren, auf einem koaxialen Ring um die Drahtlängsachse angeordneten Laserstrahlen aufgeschmolzen werden. Zusätzlich wird der Draht in der Prozesszone durch Widerstandserwärmung auf Temperaturen nahe des Schmelzpunktes erwärmt. Zusammen mit einer konsequent auf minimalen Energiebedarf ausgelegten Maschinensteuerung wird es mit diesem Verfahren möglich sein, dünnwandige Mikrobauteile mit einer gegenüber Konkur­renzverfahren um fast 60 % gesteigerten Effizienz zu fertigen. Bei EUTECT wird ein Heißdrahtfördersystem entwickelt, welches auf der einen Seite Feindrähte im Durchmesserbereich zwischen 50 µm und 100 µm prozesssicher fördern kann und auf der anderen Seite über eine Widerstandserwärmung verfügt, welche mit elektrischer Leistung von unter 7 W den Draht auf Temperaturen kurz unterhalb der Schmelztemperaturen erwärmen kann. Zusätzlich soll mit einer zu entwickelnden Kraftmesseinheit die mechanische Widerstandskraft auf den Draht während des Auftragschweißprozesses detektierbar sein.

Entwicklung von Basistechnologien für 100% Wasserstoffgasturbinen zur Beschleunigung der Energiewende in Deutschland, Teilvorhaben: Hochdruckverbrennungstests Einzeljet

1 2 3 4 557 58 59