API src

Found 557 results.

Similar terms

s/elektrische leitung/Elektrische Leistung/gi

Alternative Dispersionsschichten für Hochleistungskontakte - ALDIHOK

Verknüpfung von Fertigung, Qualität und Variationen im Alterungsverhalten von Batteriezellen, LIMA - Verknüpfung von Fertigung, Qualität und Variationen im Alterungsverhalten von Batteriezellen

Kataster Deponie- und Klärgasanlagen des Landes Brandenburg

Standortdaten von Deponie- und Klärgasverwertungsanlagen mit Straße und Hausnummer, Ort und Ortsteil sowie Koordinaten, technische Daten wie elektrische und thermische Leistung.

Kraftwerke: konventionelle und erneuerbare Energieträger

<p>Kraftwerke: konventionelle und erneuerbare Energieträger </p><p>Die Energiewende ändert die Zusammensetzung des deutschen Kraftwerksparks. Die Anzahl an Kraftwerken zur Nutzung erneuerbarer Energien nimmt deutlich zu. Kraftwerke mit hohen Treibhausgas-Emissionen werden vom Netz genommen. Gleichzeitig muss eine sichere regionale und zeitliche Verfügbarkeit der Stromerzeugung zur Deckung der Stromnachfrage gewährleistet sein.</p><p>Kraftwerkstandorte in Deutschland</p><p>Die Bereitstellung von Strom aus konventionellen Energieträgern verteilt sich unterschiedlich über die gesamte Bundesrepublik. Das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠ stellt verschiedene Karten mit Informationen zu Kraftwerken in Deutschland zur Verfügung.</p><p>Kraftwerke und Verbundnetze in Deutschland, Stand August 2025.<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke mit Kraft-Wärme-Kopplung (KWK) in Deutschland, Stand August 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Windleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Karte Kraftwerke und Photovoltaikleistung in Deutschland, Stand Juni 2025<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Installierte Kraftwerksleistung in Deutschland 2024 (Stand: Januar 2025)<br> Das Umweltbundesamt weist ausdrücklich darauf hin, dass diese Karte dem Urheberrecht unterliegt und nur zur nichtkommerziellen Nutzung verwendet werden darf.</p><p>Kraftwerke auf Basis konventioneller Energieträger</p><p>Der deutsche Kraftwerkspark beruhte vor der Energiewende vor allem auf konventionellen Erzeugungsanlagen auf Grundlage eines breiten, regional diversifizierten, überwiegend fossilen Energieträgermixes (Stein- und Braunkohlen, Kernenergie, Erdgas, Mineralölprodukte, Wasserkraft etc.). Die gesamte in Deutschland installierte Brutto-Leistung konventioneller Kraftwerke ist basierend auf Daten des Umweltbundesamtes in der Abbildung „Installierte elektrische Leistung von konventionellen Kraftwerken ab 10 Megawatt nach Energieträgern“ dargestellt. Die aktuelle regionale Verteilung der Kraftwerkskapazitäten ist in der Abbildung „Kraftwerksleistung aus konventionellen Energieträgern ab 10 Megawatt nach Bundesländern“ dargestellt.</p><p>In den letzten Jahrzehnten hat sich die Energiebereitstellung aus erneuerbaren Energien sehr dynamisch entwickelt. Gleichzeitig wurden mit dem im Jahr 2023 erfolgten gesetzlichen Ausstieg Deutschlands aus der Nutzung der Kernenergie und dem fortschreitenden Ausstieg aus der Braun- und Steinkohle konkrete Zeitpläne zur Reduktion konventioneller Kraftwerkskapazitäten festgelegt (siehe Abb. „Installierte Leistung zur Stromerzeugung aus konventionellen Kraftwerken). Unabhängig davon übt der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=CO2#alphabar">CO2</a>⁠-Preis einen wesentlichen Einfluss auf die Rentabilität und insofern den Einsatz fossiler Kraftwerke aus.</p><p>Kraftwerke auf Basis erneuerbarer Energien</p><p>Im Jahr 2024 erreichte der Ausbau der erneuerbaren Energien in Deutschland einen neuen Höchststand: In diesem Jahr wurden über 21 Gigawatt (GW) an erneuerbarer Kraftwerkskapazität zugebaut. Dieser Zubau liegt damit nochmals höher als die vorherige Ausbaurekord aus dem Jahr 2023. Insgesamt stieg damit die Erzeugungskapazität erneuerbarer Kraftwerke auf knapp 191 GW (siehe Abb. „Installierte Leistung zur Stromerzeugung aus erneuerbaren Energien“).</p><p>Getragen wurde der Erneuerbaren-Zubau in den vergangenen Jahren vor allem von einem starken Ausbau der <strong>Photovoltaik</strong> (PV). Seit Anfang 2020 wurden mehr als 53 GW PV-Leistung zugebaut, damit hat sich die installierte Leistung in den letzten fünf Jahren mehr als verdoppelt. Mit einem Zubau von über 18 GW wurde im Jahr 2024 darüber hinaus ein neuer Zubaurekord erreicht. Nach den Ausbaustarken Jahren 2011 und 2012 war der Photovoltaikausbau zunächst stark eingebrochen, seit etwa 10 Jahren wächst der Zubau aber kontinuierlich mit einer deutlichen Beschleunigung innerhalb der letzten fünf Jahre. Um das im EEG 2023 formulierte PV-Ausbauziel von 215 GW im Jahr 2030 zu erreichen, wurde ein Ausbaupfad festgelegt. Das Zwischenziel von 89 GW zum Ende des Jahres 2024 wurde deutlich übertroffen. In den Folgejahren bis 2030 bleibt allerdings ein weiterer Zubau von jährlich fast 20 GW zur Zielerreichung notwendig.</p><p>Auch wenn das Ausbautempo bei <strong>Windenergie</strong> zuletzt wieder zugelegt hat, sind die aktuelle zugebauten Anlagenleistungen weit von den hohen Zubauraten früherer Jahre entfernt. Im Jahr 2024 wurden 3,3 GW neue Windenergie-Leistung zugebaut (2023: 3,2 GW; 2022: 2,4 GW). In den Jahren 2014 bis 2017 waren es im Schnitt allerdings 5,5 GW. Insgesamt lag die am Ende des Jahres 2024 installierte Anlagenleistung von Windenergieanlagen an Land und auf See bei 72,7 GW. Um die im EEG 2023 festgelegte Ausbauziele von 115 GW (an Land) und 30 GW (auf See) im Jahr 2030 zu erreichen, ist jeweils eine deutliche Beschleunigung des Ausbautempos notwendig.</p><p>Durch die Abhängigkeit vom natürlichen Energiedargebot unterscheidet sich die Stromerzeugung der erneuerbaren Erzeugungsanlagen teilweise beträchtlich. So kann eine Windenergieanlage die vielfache Menge Strom erzeugen wie eine PV-Anlage gleicher Leistung. Ein einfacher Vergleich der installierten Leistungen lässt deshalb noch keinen Schluss über die jeweils erzeugten Strommengen zu. Neben Photovoltaik- und Windenergieanlagen mit stark witterungsabhängiger Stromerzeugung liefern Wasserkraftwerke langfristig konstant planbaren erneuerbaren Strom, sowie Biomassekraftwerke flexibel steuerbare Strommengen. Beide Energieträger haben in Deutschland aber nur ein begrenztes weiteres Ausbaupotential.</p><p>Weitere Informationen und Daten zu erneuerbaren Energien finden Sie auf der <a href="https://www.umweltbundesamt.de/themen/klima-energie/erneuerbare-energien/erneuerbare-energien-in-zahlen">Themenseite „Erneuerbare Energien in Zahlen“</a>.</p><p>Wirkungsgrade fossiler Kraftwerke</p><p>Beim ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Brutto-Wirkungsgrad#alphabar">Brutto-Wirkungsgrad</a>⁠ ist im Vergleich zum Netto-Wirkungsgrad der Eigenverbrauch der Kraftwerke enthalten. Insgesamt verbesserte sich der durchschnittliche Brutto-Wirkungsgrad des eingesetzten deutschen Kraftwerksparks seit 1990 um einige Prozentpunkte (siehe Abb. „Durchschnittlicher Brutto-Wirkungsgrad des eingesetzten fossilen Kraftwerksparks“). Diese Entwicklung spiegelt nicht zuletzt die kontinuierliche Modernisierung des Kraftwerksparks und die damit verbundene Außerbetriebnahme alter Kraftwerke wider.</p><p>Der Brennstoffausnutzungsgrad von Kraftwerken kann durch eine gleichzeitige Nutzung von Strom und Wärme (Kraft-Wärme-Kopplung, KWK) gesteigert werden. Dies kann bei Großkraftwerken zur Wärmebereitstellung in Industrie und Fernwärme, aber auch bei dezentralen kleinen Kraftwerken wie Blockheizkraftwerken lokal erfolgen. Dabei müssen neue Kraftwerke allerdings auch den geänderten Flexibilitätsanforderungen an die Strombereitstellung genügen, dies kann beispielsweise über die Kombination mit einem thermischen Speicher erfolgen.</p><p>Obwohl bei konventionellen Kraftwerken in den letzten Jahren technisch eine Steigerung der Wirkungsgrade erreicht werden konnte, werden die dadurch erzielbaren Brennstoffeinsparungen nicht ausreichen, um die erforderliche Treibhausgasreduktion im Kraftwerkssektor für die Einhaltung der Klimaschutzziele zu erreichen. Dafür ist ein weiterer Ausbau der erneuerbaren Stromerzeugung notwendig.</p><p>Kohlendioxid-Emissionen</p><p>Folgende Aussagen können zum Kohlendioxid-Ausstoß von Großkraftwerken für die Stromerzeugung getroffen werden:</p><p>Weitere Entwicklung des deutschen Kraftwerksparks</p><p>Um die Klimaschutzziele zu erreichen, ist ein weiterer Ausbau der erneuerbaren Kraftwerkskapazitäten notwendig (siehe Tab. "Genehmigte oder im Genehmigungsverfahren befindliche konventionelle Kraftwerksprojekte").</p><p>Um den Herausforderungen der Energiewende begegnen zu können, wird es außerdem einen zunehmenden Fokus auf Flexibilisierungsmaßnahmen brauchen. Dabei handelt es sich um einen Ausbau von Speichern (etwa Pumpspeicher, elektro-chemische Speicher, thermische Speicher) sowie um den Ausbau der Strominfrastruktur (Netzausbau, Außenhandelskapazitäten) und Anreize zur Flexibilisierung des Stromverbrauchs („Demand Side Management").</p>

Regionaler zellularer Verbund von Versorgungseinheiten mit Netzregelaufgaben

Für einen stabilen Netzbetrieb muss das Angebot an elektrischer Leistung stets dem Verbrauch entsprechen. Dazu halten die Übertragungsnetzbetreiber Regelleistung zur Primär- und Sekundärregelung sowie Minutenreserve vor. Mit der Zunahme der Leistungseinheiten mit volatiler Netzeinspeisung aus erneuerbaren Energien, wie Windkraft und Photovoltaik, erhöht sich permanent der Bedarf an Regelleistung. Gleichzeitig wird die eingespeiste Leistung aus konventionellen Großkraftwerken und damit die zur Verfügung stehende Regelleistung abnehmen. Aktuelle Studien zeigen zudem, dass in der Primärregelung künftig signifikant kürzere Reaktionszeiten und höhere Leistungsänderungsgeschwindigkeiten erforderlich sind. Die so entstehende Bedarfslücke kann künftig durch regionale zellulare Verbünde von Versorgungseinheiten abgedeckt werden. Sie sind gekennzeichnet durch eigene dezentrale Versorger-, Verbraucher- und Speicherkapazitäten , insbesondere Industriebetriebe mit eigenen Heizkraftwerken auf Basis von Gas, Biomasse oder Kohle mit Priorität der Wärmeversorgung, Windenergie- und Photovoltaik-Anlagen sowie elektrische Batteriesysteme und thermische Speicher. Sie stellen nach außen einen Verbund mit positiver und negativer Regelreserve dar. Der Netzbetreiber kann die einzelnen Verbünde gestuft einsetzen und abrufen. Hierdurch entstehen zusätzliche Redundanzen, welche die Gesamtsystemstabilität erhöhen. Ziel des Vorhabens ist es zunächst, Lösungsansätze zu entwickeln, so dass regionale zellulare Verbünde von Versorgungseinheiten auch hochdynamische Netzregelaufgaben erfüllen können. Das komplexe Zusammenwirken von Energiebereitstellungs-, Nutzungs- und Speichereinheiten unterschiedlicher Energieformen stellt dabei eine besondere Herausforderung dar. Die Übernahme von Netzregelaufgaben muss ohne Abstriche bei Prozess- und Versorgungsstabilität, Betriebszuverlässigkeit und Anlagenlebensdauer erfolgen. Nur durch die Integration geeigneter Speicher, einer intelligenten Nutzung systeminhärenter Speicherkapazitäten sowie einer übergeordneten Steuerung und Überwachung des komplexen dezentralen Systems können die Anforderungen erfüllt werden. Als Entwicklungsplattform und Demonstrator soll das Technikum des Zentrum für Energietechnik (ZET) der TUD dienen. Es repräsentiert einen derartigen Verbund dezentraler Erzeuger- und Verbrauchereinheiten von Elektroenergie und Wärme mit Kopplung zum Strom- und Wärmenetz des lokalen Energieversorgers im Universitätscampus.

Wesentliche Änderung einer bestehende Biogasanlage in 25584 Holstenniendorf, G10/2025/023

Die Firma BT-Energie GmbH & Co. KG in 25584 Holstenniendorf, Kirchenweg 50, plant die wesentliche Änderung einer bestehende Biogasanlage in 25584 Holstenniendorf, Kirchweg 50, Gemarkung Holstenniendorf, Flur 15, Flurstück 503. Gegenstand des Genehmigungsantrages sind im Wesentlichen folgende Maßnahmen: - Änderung der Einsatzstoffe- und mengen mit geringfügiger Erhöhung der Biogasproduktionsmenge auf 2,68 Mio. Nm³/a - Rückbau der vorhanden Lagune mit einem Bruttovolumen von 8.300 m³ inkl. der Abfüllanlage - Errichtung und Betrieb eines neuen Gärrückstandsbehälters mit Gasspeicher und Abfüllfläche im Bereich der vorhandenen Lagune - durch die Errichtung eines neuen gasdichten Behälters wird erstmalig die untere Klasse der StörfallV erreicht (> 10t Biogasmenge) - Stilllegung der bestehenden BHKWs 1-2 mit 350 kWel. in der Maschinen- und Lagerhalle (Nr. 2) mit Peripherie - Drosselung der beiden Geisberger BHKWs 3 - 4 von je 550 kWel auf je 390 kWel - Errichtung und Betrieb eines neuen BHKW im Container inkl. Peripherie mit: ◦ 4.803 kW FWL ◦ 2.147 kW elektrische Leistung ◦ 2.016 kW thermische Leistung ◦ Schmier- und Altöllagerung (je 1 m³), Harnstofftank (5 m³), Not- und Gemischkühler, Biogasreinigung, Schornstein ◦ Trafokompaktstation - Errichtung und Betrieb eines Wärmepufferspeichers (815 m³) zur Speicherung von thermischer Energie sowie eines Technikcontainers für die Heizverteilung

Kataster Biomasseheizwerke und -heizkraftwerke des Landes Brandenburg

Standortdaten von Biomasseheizwerken und -heizkraftwerken mit Straße und Hausnummer, Ort und Ortsteil sowie Koordinaten, technische Daten wie elektrische und thermische Leistung.

Kataster Biogas des Landes Brandenburg

Standortdaten von Biogasanlagen mit Straße und Hausnummer, Ort und Ortsteil sowie Koordinaten, technische Daten wie elektrische und thermische Leistung.

Online-Steuerung einer flexiblen Kraft-Waerme-Kopplungsanlage

Zur Versorgung des Forschungsgelaendes Garching der Technischen Universitaet Muenchen wird eine Gasturbine eingesetzt, die nach dem Cheng-Prozess arbeitet: aus der Abwaerme der Gasturbinenabgase wird Dampf erzeugt, der entweder den Waermebedarf deckt, oder aber - bei erhoehtem Bedarf an elektrischer Energie - in der Gasturbine entspannt wird. Mittels dieser Dampfinjektion in die Gasturbine kann die elektrische Leistung in zwei Minuten um 50 Prozent, d.h. von 4 MWe auf 6 MWe erhoeht werden. Um das Potential dieser Flexibilitaet ausnutzen zu koennen, ist ein Online-Steuerungsprogramm erforderlich. Dieses ermittelt den optimalen Betriebspunkt mittels der GGLP-Methode (Gemischt Ganzzaehlig Lineare Programmierung) und setzt den gefundenen Betriebspunkt ueber ein neuronales Netz um. Derzeit findet eine Weiterentwicklung und Erprobung dieses Online-Steuerungsprogramms in der Anlage statt.

Netzgebiet für die Stromversorgung der Stadtwerke Peine GmbH

Das Strom-Versorgungsnetz beinhaltet die Nieder- und Mittelspannungsleitungen des Stadtgebietes der Stadt Peine mit den angeschlossenen Ortschaften. Bei berechtigtem Interesse haben sowohl Privatpersonen, als auch Firmen die Möglichkeit sich Informationen zu dem Netz als PDF-Datei per Email anzufordern. Firmen steht auf Antrag zusätzlich die Möglichkeit des Zugriffs auf unser Onlineplanauskunftsportal zur Verfügung. Wir sind ein kommunales Energiedienstleistungsunternehmen, das sich aktiv für die Entwicklung von Peine und des Peiner Landes einsetzt. Erzielte Gewinne fließen zurück an die Menschen in unserer Region. Wir schaffen Arbeits- und Ausbildungsplätze, fördern Kultur, Sport, Bildung und soziale Infrastruktur. Wir übernehmen bewusst Verantwortung für den Schutz von Umwelt und Klima und setzen auf eine nachhaltige und ressourcenschonende Energieversorgung.

1 2 3 4 554 55 56