API src

Found 1081 results.

Related terms

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein

Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Dummy mit Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025

Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität

Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität Projektleitung: Dipl.-Ing. Gernot Schmid, Seibersdorf Labor GmbH Beginn: 18.03.2021 Ende: 11.11.2024 Finanzierung: 449.025 Euro Hintergrund Elektromobilität gilt als Schlüssel für eine klimafreundliche Mobilität. Elektroantriebe arbeiten weitgehend schadstoffemissionsfrei. Betriebsbedingt entstehen allerdings Magnetfelder, die von dem elektrifizierten Antriebsstrang eines Elektrofahrzeugs ausgehen und auf Fahrer*in und Passagier*innen einwirken. Expositionen ( d.h. ein Ausgesetztsein gegenüber solchen Feldern) in relevanten Größenordnungen können dabei nicht von Vornherein ausgeschlossen werden. Gründe sind der geringe Abstand der Sitze zu den Komponenten, die Magnetfelder erzeugen, und die hohen Stromstärken in leistungsstarken Fahrzeugen. Darüber hinaus können bei rein batterieelektrischen Fahrzeugen (BEV) und bei Plug-In-Hybriden (PHEV) Expositionen bei Fahrzeugstillstand während des Ladevorgangs auftreten. Magnetfeldquellen sind dann zum Beispiel die Ladeeinrichtung selbst, das Ladekabel im Fall konduktiven Ladens, als Gleichrichter arbeitende Leistungselektronik sowie die Leitungen im Fahrzeug und die Fahrzeugbatterie. Magnetfeldquellen nur in Elektroautos und Hybriden Zielsetzung In dem Vorhaben wurde die Exposition von Personen gegenüber elektromagnetischen Feldern der Elektromobilität bestimmt. Einbezogen wurden Expositionsbeiträge durch den Fahrzeugfahrbetrieb und durch Batterieladevorgänge bei Fahrzeugstillstand. Die Studie ist aussagekräftig für Elektroautos und Elektro-Zweiräder ( d.h. ein- und zweispurige Personenkraftfahrzeuge). Als Fahrräder eingestufte Elektrofahrzeuge ( sog. E -Bikes) waren ausgenommen. Die Ergebnisse können mit Werten einer im Jahr 2009 abgeschlossenen Studie des BfS und mit in der Literatur veröffentlichten Werten verglichen werden. Zudem geben die Ergebnisse Hinweise für die Standardisierung. Durchführung Untersucht wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle und zusätzlich auch leistungsstarke E-Auto-Modelle von verschiedenen Herstellern. Dazu wurden Magnetfeldmessungen an mehreren Stellen im Fahrgastraum der Elektroautos und an den Sitzpositionen der Elektro-Zweiräder ( d.h. Elektroroller bzw. -motorräder) durchgeführt, während sich die Fahrzeuge auf einem Rollenprüfstand und in vorab festgelegten Betriebszuständen befanden. Die Betriebszustände umfassten das Beschleunigen, das Bremsen sowie das Fahren mit konstanten Geschwindigkeiten gegen verschiedene Lastmomente, um Luftwiderstände, Streckensteigungen und -gefälle zu simulieren. Anschließend wurden Magnetfeldmessdaten während eines Worldwide Harmonized Light Vehicle Test Cycle (WLTC) aufgezeichnet. Dabei handelt es sich um einen ca. 30-minütigen genormten Fahrzyklus, der ursprünglich für vergleichbare Abgas- und Verbrauchsmessungen festgelegt wurde. Daten für Zweiräder wurden während eines World Motorcycle Test Cycle (WMTC) aufgezeichnet. Die auf dem Prüfstand ermittelten Daten wurden mit Messungen bei Fahrten auf einer abgesperrten, ebenen Teststrecke und bei einer etwa 90-minütigen Fahrt im öffentlichen Straßenverkehr validiert. Anschließend wurden die im Zeitbereich aufgezeichneten Messdaten entsprechend der spektralen Zusammensetzung analysiert und bewertet. Situationen, die basierend auf den Messungen die höchsten Expositionen erwarten ließen, wurden zusätzlich dosimetrisch analysiert. Die betreffenden Expositionssituationen wurden dazu in einer Simulationssoftware nachgebildet. Ziel war die rechentechnische Bestimmung, der im Körper einer exponierten Person hervorgerufenen elektrischen Feldstärken. Hierfür musste vorab die lokale Verteilung der Magnetfeldstärken in der Fahrgastzelle bzw. im Bereich der Sitze der Elektro-Zweiräder bekannt sein. Stellvertretend für die exponierten Personen wurden hochaufgelöste, digitale Menschmodelle eingesetzt, die anatomisch möglichst korrekt waren und Gewebetypen mit verschiedenen elektrischen Eigenschaften unterschieden. Die Untersuchungen zum Aufladen bei Fahrzeugstillstand berücksichtigten Positionen in und außerhalb der Fahrzeuge. Ebenso wurden die Untersuchungen an Normal- und Schnellladepunkten durchgeführt. Dummy mit Messsonden im Fond eines Elektroautos Ergebnisse Die Studie stellt nach Kenntnis des BfS die bislang detaillierteste Untersuchung zu Magnetfeldexpositionen in Elektrofahrzeugen dar. Die Messungen wurden in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugen unter realen Bedingungen sowie auf Teststrecken durchgeführt. Erstmals wurden auch Zweiräder einbezogen. Die Fahrzeughersteller waren nicht an den Untersuchungen beteiligt. Die Magnetfeldexposition innerhalb der Fahrzeuge war räumlich sehr ungleichmäßig. Hohe Werte traten im Bereich der Beine auf, während der Oberkörper und der Kopf deutlich weniger exponiert waren. Die Exposition variierte je nach Fahrmanöver: Beim Beschleunigen und Bremsen waren die Werte höher als bei konstantem Fahren. Die maximale Motorleistung der Fahrzeuge hing nicht systematisch mit der Magnetfeldexposition zusammen. Langzeit-Effektivwerte aus Messungen während Fahrten im realen Straßenverkehr zeigten höhere Werte als die Daten, die während genormter Fahrzyklen auf einem Fahrzeugprüfstand ermittelt wurden. Die Magnetfeldexposition wurde mit den Referenzwerten der EU -Ratsempfehlung und den ICNIRP -2010-Leitlinien verglichen. Bei sanfter Fahrweise lagen die Ausschöpfungen der EU -Referenzwerte meist im niedrigen zweistelligen Prozentbereich. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der EU -Referenzwerte. Bei Anwendung der moderneren ICNIRP -2010-Leitlinien ergab sich nur in einem Fall eine Überschreitung. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper induzierte elektrische Felder festgestellt. Neben dem Antriebssystem erzeugen weitere Fahrzeugkomponenten Magnetfelder, z.B. die Sitzheizungen, Fensterheber oder Fahrzeugeinschaltung. In einigen Fällen waren diese Expositionen höher als die durch das Antriebssystem verursachten Felder. In vielen Fahrzeugen traten die höchsten Werte beim Einschalten oder Starten auf. Die mittleren Langzeitwerte in Elektroautos (0,5 bis 2,5 Mikrotesla/ µT ) entsprachen weitgehend denen in etablierten elektrisch angetriebenen Verkehrsmitteln wie Straßenbahnen oder U-Bahnen (2 bis 3 µT ). In doppelstöckigen Zügen wurden auf der oberen Fahrgastebene Werte bis zu 13 µT gemessen, also potenziell höhere Expositionen als in Elektroautos. Stand: 21.08.2025

Entwicklung, Evaluierung und Quantifizierung der technischen Vorteile der im CellForm-Verfahren hergestellten Bipolarplatten hinsichtlich der Effizienz und der maximal möglichen Stromstärken des Brennstoffzellenstacks

Herstellung verlustoptimierter Elektroblechpakete durch Co-Sintern von Keramik und Magnetblech im 3D-Siebdruckverfahren, Teilvorhaben: Entwicklung Messtechnik als Qualitätswerkzeug für gedruckte Blechstapel/Blechpakete

Forschungsprojekt „Wasserstoffschiene Heidekrautbahn“

Noch vor wenigen Jahren war es unvorstellbar, dass auf der Heidekrautbahn einmal etwas anderes als die typischen Talent-Dieseltriebwagen unterwegs sein würden. Doch im Dezember 2024 fuhr tatsächlich der erste nagelneue Zug vom Typ Mireo Plus H, der seine Energie für den Elektro-Antrieb aus einer Wasserstoff-Brennstoffzelle bezieht, auf der Traditionsstrecke. Die Umstellung der Regionalbahn RB27 auf Wasserstoffzüge ist Teil eines größeren Projektes, das mit einer Vielzahl an Partnern umgesetzt wird. Kern des vom Bund und den Ländern Berlin und Brandenburg geförderten und wissenschaftlich begleiteten Pilot-Verbundprojektes ist der Aufbau einer regionalen, nachhaltigen Wasserstoffinfrastruktur – und damit die Umsetzung der gesamten Wertschöpfungskette: von der Produktion des grünen Wasserstoffs mit Hilfe von lokal erzeugtem Strom aus Wind- und Sonnenenergie bis zu dessen Verbrauch durch regional agierende Unternehmen, wie beispielsweise der Niederbarnimer Eisenbahn mit der Heidekrautbahn. Für die Projektkoordination sowie den Bau der Tankstelle sind die Kreiswerke Barnim verantwortlich. Das Wasserstoffwerk wird von Enertrag unweit der Bahnstrecke gebaut. Wissenschaftlich begleitet wird das Projekt vom Deutschen Zentrum für Luft- und Raumfahrt sowie der Brandenburgisch Technischen Universität Cottbus-Senftenberg. Nun, nach mehr als einem halben Jahr Zugbetrieb auf der Heidekrautbahn, können die Akteure auf eine erfolgreiche erste Projektumsetzung zurückblicken. Skeptiker hatten im Vorfeld mit ähnlichen Problemen wie bei anderen deutschen Wasserstoffprojekten im Regionalverkehr gerechnet. Doch beim Projekt Wasserstoffschiene Heidekrautbahn gab es nur zum Start Mitte Dezember kleinere Anlaufschwierigkeiten, die aber lediglich logistischer und nicht technischer Natur waren. Seitdem läuft der Betrieb mit den neuen Fahrzeugen stabil. Auftretende Herausforderungen wurden von den Verantwortlichen mit großem Engagement bewältigt. Mit der Überführung der errichteten Tankstelle in den Probebetrieb und dem Spatenstich zum Bau des Wasserstoffwerkes am 12. September 2025 konnten bzw. können noch weitere Meilensteine erreicht werden. Damit befindet sich das Projekt insgesamt auf einem guten Weg. Selbstverständlich interessiert sich auch die Brandenburger und Berliner Landespolitik, die dieses Projekt seit Langem begleitet und fördert, für den Zwischenstand dieses in Deutschland einzigartigen Forschungsprojekts. Am Mittwoch, dem 20. August, besuchten die Brandenburger Landesminister Detlef Tabbert (Infrastruktur und Landesplanung) und Robert Crumbach (Finanzen und Europa) sowie der Berliner Staatssekretär für Mobilität und Verkehr, Arne Herz, und der Geschäftsführer des Verkehrsverbundes Berlin-Brandenburg, Christoph Heuing, das Betriebsgelände der Niederbarnimer Eisenbahn und die neue Wasserstofftankstelle in Basdorf (Gemeinde Wandlitz). Nach einer Zugfahrt ab Gesundbrunnen – natürlich mit einem Wasserstoffzug – gab es vor Ort die Gelegenheit, die Tankstelle zu besichtigen und sich mit den Beteiligten über das Projekt auszutauschen. Detlef Tabbert , Minister für Infrastruktur und Landesplanung des Landes Brandenburg: „Die Inbetriebnahme der Wasserstoffzüge und die neue Tankstelle auf der Heidekrautbahn sind ein wichtiger Meilenstein für eine klimafreundliche und innovative Mobilität in Brandenburg. Mit dieser Technologie gestalten wir den Verkehr nicht nur nachhaltiger, sondern stärken auch die regionale Wertschöpfung und machen uns unabhängiger von fossilen Energien. Unser Ziel ist klar: Brandenburg soll Vorreiterregion bei der emissionsfreien Mobilität werden – die Wasserstoffschiene Heidekrautbahn ist ein wichtiger Schritt auf diesem Weg.“ Robert Crumbach , Minister der Finanzen und für Europa des Landes Brandenburg: „Wichtig für so ein Projekt ist es, dass der Kraftstoff, also der Wasserstoff, in ausreichender Menge zur Verfügung steht. Hier wird mit der Zug-Tankstelle eine nächste Stufe erreicht. So ein Alltagstest kann auch zum Ergebnis kommen, dass zunächst nicht ausreichend grüner Wasserstoff zur Verfügung steht, dass auch aus konventionellem Strom erzeugter Wasserstoff notwendig ist. Ich bin sehr gespannt auf die Ergebnisse dieses Projektes.“ Arne Herz , Staatssekretär für Mobilität und Verkehr in der Senatsverwaltung für Mobilität, Verkehr, Klimaschutz und Umwelt in Berlin: „Ich freue mich, dass die Niederbarnimer Eisenbahn in der Region Vorreiter beim Umstieg auf moderne Antriebsformen im Schienenpersonennahverkehr auf nicht elektrifizierten Strecken ist. Mit dem Wasserstoffbetrieb erproben wir – neben den Elektro-Triebwagen mit Batteriespeicher – eine weitere Antriebsart und gewinnen Erkenntnisse, ob diese Technologie möglicherweise auch für andere Strecken geeignet sein könnte.“ Daniel Kurth , Landrat des Landkreises Barnim: „Die enge Zusammenarbeit zwischen Wirtschaft, Wissenschaft und öffentlicher Hand zeigt, dass wir gemeinsam Großes bewegen können. Ich bin überzeugt, dass die Wasserstoffschiene Heidekrautbahn ein Leuchtturmprojekt für die gesamte Region ist und weit über die Grenzen des Landkreises Barnim hinaus als Vorbild für eine nachhaltige Verkehrswende dienen wird. In diesem Sinne freue ich mich darauf, diesen Weg mit unseren Partnern weiterzugehen und die Zukunft der klimafreundlichen Mobilität aktiv mitzugestalten.“ Christoph Heuing , Geschäftsführer des Verkehrsverbundes Berlin-Brandenburg (VBB): „Unser Ziel steht: Bis 2037 wollen wir im gesamten Verbundgebiet dieselfrei unterwegs sein. Das Wasserstoffprojekt der NEB auf der Heidekrautbahn bringt uns dem Ziel der Dekarbonisierung einen großen Schritt näher und leistet einen wichtigen Beitrag für den Klimaschutz in der Region.“ Christian Mehnert , Geschäftsführer der Kreiswerke Barnim, Projektkoordinator Wasserstoffschiene Heidekrautbahn: „Beim Aufbau einer funktionierenden Wasserstoffinfrastruktur sowie dem Einsatz von Wasserstoff handelt es sich um ein einzigartiges, wenn gleich auch herausforderndes Projekt. Dank dem Zusammenspiel aller Projektbeteiligten konnten in der Vergangenheit Hürden gemeistert und vor allem Fortschritte erzielt werden.“ Dr. Gunar Hering , Vorstandsvorsitzender, Enertrag SE: „Mit der Eröffnung der Wasserstofftankstelle ist ein weiterer wichtiger Meilenstein für die Heidekrautbahn erreicht. Ab 2026 werden wir sie mit grünem Wasserstoff aus unserem neuen Werk in Wensickendorf versorgen – und so eine vollständig regionale, klimafreundliche Wertschöpfungskette schließen.“ Gerhard Greiter , CEO für die Region Nordosteuropa bei Siemens Mobility: „Wir freuen uns, dass sich unsere Wasserstoffzüge Mireo Plus H auf der Heidekrautbahn im täglichen Betrieb bewähren und damit einen wichtigen Beitrag zum lokalen emissionsfreiem Regionalverkehr in Berlin-Brandenburg leisten. Mit einer Reichweite von bis zu 1.200 km, höherer Beschleunigung zur Fahrplanstabilisierung und einem Brennstoffzellensystem der neuesten Generation bietet der Wasserstoffzug eine zukunftsgerichtete, nachhaltige und leistungsstarke Alternative zu Dieseltriebzügen.“ Sebastian Achtermann , Geschäftsführer der Niederbarnimer Eisenbahn: „Das Projekt Wasserstoffschiene Heidekrautbahn ist ein echter Gewinn für die Fahrgäste, die Regionen Barnim und Oberhavel und die Umwelt. Wir können stolz darauf sein, was wir mit unseren Projektpartnern Kreiswerke Barnim und Enertrag, sowie unserem Fahrzeuglieferanten Siemens Mobility geschafft haben – nämlich einen inzwischen sehr stabilen und zuverlässigen Betrieb auf die Beine zu stellen. Das ist herausragend und wegweisend – und in Deutschland derzeit einzigartig.“ Das Projekt „Einsatz von Wasserstoff-Brennstoffzellenantrieben im Nahverkehr des Landkreises Barnim“ wird im Rahmen des Nationalen Innovationsprogramms Wasserstoff- und Brennstoffzellentechnologie mit rund 25 Millionen Euro durch das Bundesministerium für Verkehr (BMV) gefördert. Die Förderrichtlinie wird von der NOW GmbH koordiniert und durch den Projektträger Jülich (PtJ) umgesetzt. Kreiswerke Barnim Justin Rudolph E-Mail: pressestelle@kreiswerke-barnim.de Niederbarnimer Eisenbahn Antje Voigt E-Mail: pressestelle@NEB.de ENERTRAG SE Michael Rassinger E-Mail: michael.rassinger@enertrag.com Bereits im Jahre 2017 veröffentlichten die Projektpartner einen ersten Entwurf für dieses ambitionierte Vorhaben. Mit der Förderung aus dem Nationalen Innovationsprogramms Wasserstoff- und Brennstoffzellentechnologie erfolgte vier Jahre später der Startschuss und weitere drei Jahre später begann die Umsetzung. Der Einsatz von Zügen mit Wasserstoff-Antrieb auf der Heidekrautbahn ist Teil eines größeren Projekts, an dem mehrere Landkreise und Unternehmen beteiligt sind. Zum ersten Mal werden wasserstoffbetriebene Züge im Schienenverkehr in Brandenburg zum Einsatz kommen. Die dafür benötigte Infrastruktur wird speziell für dieses Projekt geschaffen. Damit wird der Wasserstoff nicht nur direkt vor Ort getankt und verbraucht, sondern auch in der Region umweltfreundlich aus lokaler Wind- und Sonnenenergie hergestellt. Das Vorhaben ist als Forschungsprojekt konzipiert, das vom Deutschen Zentrum für Luft- und Raumfahrt sowie der Brandenburgisch Technischen Universität Cottbus-Senftenberg wissenschaftlich begleitet wird. Der Einsatz der Wasserstoffzüge auf der Heidekrautbahn entspricht einer CO 2 -Reduzierung um jährlich drei Millionen Kilogramm und einer Einsparung von 1,1 Millionen Litern Dieselkraftstoff.

Machbarkeitsstudie 'Klimaregion fränkisches Seenland'

Studie zur möglichen Realisierung eines klimaschonenden Elektroantriebs für ein Fahrgastschiff aus 100 Prozent erneuerbaren Energien und unter Einsatz eines Energiespeichers am Altmühlsee.

Modellierung, Optimierung und Regelung vernetzter Fahrzeuge und Fahrzeugflotten mit heterogenen Antriebstechnologien in Echtzeit

Dreistufig automatisiertes Endformen von Flachleiterspulen im Blechpaket

Dreistufig automatisiertes Endformen von Flachleiterspulen im Blechpaket, Teilvorhaben: Technologische Umsetzung des dreistufigen Endformens von Flachleiterspulen

Multikriterielle Synthese und Optimierung von Antriebssträngen für Elektrische Fahrzeuge, Teilvorhaben: Praxisnahes Komponenten- & Systemdesign

1 2 3 4 5107 108 109