Forschern des Instituts für Flugzeugbau (IFB) der Universität Stuttgart ist es gelungen, mit einem spektakulären Flug über die Alpen die Leistungsfähigkeit und Alltagstauglichkeit von Flugzeugen mit Batterieantrieb nachzuweisen. Damit ist ein wichtiger Schritt hin zur einer CO2-armen und energieeffizienten Luftfahrt gelungen. Am 4. Juli 2015 vom Flugplatz Hahnweide bei Stuttgart ist das Elektroflugzeug „e-Genius“ der Universität Stuttgart über die Alpen nach Italien geflogen. Um den norditalienischen Platz „Calcinate del Pesce“ zu erreichen, musste das High-Tech-Batterieflugzeug über 320 km Distanz zurücklegen. Die über 3000 m hohen Gipfel in der Zentralschweiz überflog der e Genius dabei in einer sicheren Höhe von nahezu 4000 m. Pilotiert wurde das zweisitzige Flugzeug vom erfahrenen Alpenflieger und Rekordpiloten Klaus Ohlmann sowie Ingmar Geiß vom Institut für Flugzeugbau der Universität Stuttgart. Der Zielflugplatz wurde bereits nach gut zwei Stunden Flugzeit erreicht. Am Nachmittag waren die Akkus wieder geladen und der e-Genius startete zum Rückflug. Dieser war dabei aufgrund des steilen Alpenanstiegs in der Südschweiz eine besondere Herausforderung. Um ausreichend Zeit für den Steigflug auf 4000 m Höhe zu gewinnen, verlief die Rückflugroute über den Gotthartpass und war mit 365 km nochmals deutlich länger als der Flug am Vormittag. Neben der Emissionsfreiheit und Geräuscharmut überzeugt vor allem der geringe Energieverbrauch des Forschungsfliegers. So wurden für Hin- und Rückflug trotz der anspruchsvollen Steigflüge nur 83 kWh an elektrischer Energie verbraucht, was dem Energieinhalt von 9,2 l Benzin entspricht. Werden aktuelle deutsche Preise für Ökostrom angesetzt, entstehen gerade einmal Kosten in Höhe von 21 Euro für den Transport von zwei Personen nach Italien und zurück.
In Baden-Württemberg entsteht bis Ende 2019 eine Teststrecke für schwere Lkw mit elektrischem Antrieb. Mit rund 16,8 Millionen Euro fördert das Bundesumweltministerium das Pilotprojekt auf zwei Teilstücken der Bundesstraße 462 im Murgtal zwischen Gernsbach-Obertsrot und Kuppenheim in beiden Richtungen mit einer Gesamtlänge der Elektrifizierung von etwa sechs Kilometern in beiden Fahrtrichtungen. Bundesumweltministerin Barbara Hendricks überreichte am 11. September 2017 in Kuppenheim (Kreis Rastatt) dem Landesverkehrsminister Winfried Hermann den Förderbescheid. Auf der Pilotstrecke werden jährlich über 500.000 Tonnen Papier und Pappe im 24 Stunden/7 Tage-Betrieb von drei Papierherstellern in Obertsrot in ein Logistikzentrum nach Kuppenheim verbracht. Damit ergibt sich pro Kalendertag die hohe Anzahl von durchschnittlich 64 Umläufen. In Summe legen die Oberleitungs-Lkw damit pro Jahr über 250.000 km im Bereich der Oberleitungen zurück.
Im Rahmen dieses Forschungsvorhabens wurden Lösungsansätzen erarbeitet, wie das Lärmminderungspotenzial von Kraftfahrzeugen mit elektrischem Antrieb unter der Bedingung der Erhaltung bzw. Erhöhung der Verkehrssicherheit ausgeschöpft werden kann. Ein erhöhtes Unfallrisiko für den Fuß- und Radverkehr, sowie speziell für sehbehinderte und blinde Verkehrsteilnehmer*innen, durch elektrisch angetriebene Kraftfahrzeuge konnte zum jetzigen Zeitpunkt nicht eindeutig festgestellt werden. Alternativen, welche ein Acoustic Vehicle Alert System (kurz AVAS, „Fahrzeug-Warngeräusch-Generator“) zum Teil oder vollständig ersetzen könnten, wären indes vorhanden, wodurch sowohl schwächere Verkehrsteilnehmer*innen im Verkehr, als auch Anwohner*innen vor Lärm geschützt werden könnten. Veröffentlicht in Texte | 122/2021.
Mindestanforderungen für Umweltentlastungen und Stromeinsparungen beschlossen Ab dem 16. Juni 2011 dürfen nur noch hocheffiziente Asynchron-Drehstrommotoren des Leistungsbereichs 0,75 Kilowatt (kW) bis 375 kW in Verkehr gebracht werden. Das beschloss der Ökodesign-Regelungsausschuss für Elektromotoren für die EU-Mitgliedstaaten und veröffentlichte die Mindestanforderungen für Energieeffizienz von Asynchron-Drehstrommotoren im Amtsblatt der EU (640/2009). Diese Motorenart kommt vorwiegend in Industrie und Gewerbe zum Einsatz und verursachte im Jahr 2005 fast 90 Prozent des Stromverbrauchs der Elektromotoren in den 27 EU-Mitgliedstaaten. Mit effizienteren Elektromotoren ließen sich EU-weit bis zum Jahr 2020 voraussichtlich 135 Milliarden kWh und 63 Millionen Tonnen Kohlendioxid (CO2) einsparen. „Das rechnet sich auch für Deutschland”, sagt der UBA-Vizepräsident Dr. Thomas Holzmann, „denn allein in Deutschland können so bis zum Jahr 2020 circa 27 Milliarden Kilowattstunden Strom weniger verbraucht und damit rund 16 Millionen Tonnen CO2-Emissionen vermieden werden. Zum Vergleich: Wir könnten auf den Bau von acht Großkraftwerken mit einer elektrischen Leistung von je 700 Megawatt verzichten.” Effizienzklassen ermöglichen, elektrische Antriebe nach ihrem Stromverbrauch und ihrem Wirkungsgrad zu klassifizieren. Die bisherigen europäischen Effizienzklassen (EFF) werden nach einer Übergangsfrist künftig durch die weltweit gültigen Effizienzklassen IE1 (entspricht EFF2), IE2 (entspricht EFF1) sowie IE3 und später IE4 ersetzt und ergänzt. Der Einsatz der IE2- und der noch effizienteren IE3-Motoren sowie der Drehzahlregelung ist in den meisten Fällen sehr wirtschaftlich. Eine Drehzahlregelung ermöglicht eine höhere Stromeinsparung als die alleinige Steigerung des Wirkungsgrads der Motoren. Bereits nach wenigen Jahren erbringen die neuen Effizienzvorgaben finanzielle Entlastungen für die Unternehmen. Zudem stärken sie die Konkurrenzfähigkeit der europäischen Motorenhersteller und sichern Arbeitsplätze. Auch nach 2020 ermöglicht der zunehmende Einsatz hocheffizienter Elektromotoren mit höherer Lebensdauer enorme Einsparpotentiale bei Energie. Ohne die Einführung verpflichtender Mindeststandards ließe sich diese Stromeinsparung nicht erreichen. In Europa ist der Verkaufsanteil der Hocheffizienzmotoren - trotz ihrer hohen Wirtschaftlichkeit - in zehn Jahren von zwei Prozent auf rund neun Prozent gestiegen. In den nächsten Jahren wird sich dieser Anteil erhöhen. Laut EU dürfen ab 2011 Motoren der bisherigen Effizienzklasse EFF2 nicht mehr verkauft werden. Außerdem können in Europa nur noch asynchrone Drehstrommotoren des Leistungsbereichs von 0,75 kW bis 375 kW in Verkehr gebracht werden, falls sie den künftigen Effizienzstandard IE2 erfüllen. Ein weiterer Schritt, den Wirkungsgrad der Elektromotoren zu erhöhen folgt ab Januar 2015: Dann dürfen in der Effizienzklasse IE2 im Leistungsbereich 7,5 kW bis 375 kW nur noch Elektromotoren mit Drehzahlregelung in Verkehr gebracht werden. Andernfalls müssen sie die höhere Effizienzklasse IE3 erfüllen. Ab Januar 2017 gilt dies auch für Elektromotoren des Leistungsbereichs 0,75 kW bis 7,5 kW. In den USA gelten seit Jahren Mindesteffizienzstandards. Dort erreichen die Hocheffizienzmotoren (IE2) bereits einen Anteil von 54 Prozent und die noch effizienteren IE3-Motoren derzeit schon 16 Prozent. In Deutschland und Europa liegt der Anteil der IE3-Motoren noch bei unter einem Prozent.
Auf Straßen und Wegen stellt Laub bei Regen und Nässe eine Unfallgefahr dar. Bei der Beseitigung von Laub greifen viele Städte und Gemeinden häufig zu motorgetriebenen Laubbläsern oder Laubsaugern. Auch in privaten Gärten werden diese Geräte gerne als Hilfe zum Laub sammeln und entsorgen genutzt. Laubbläser mit Verbrennungsmotoren erzeugen am Ohr der betreibenden Person einen Schalldruckpegel zwischen 83 und 90 Dezibel (dB(A)). Das ist in etwa so laut wie ein Presslufthammer. Dabei gilt nach Meinung von Fachleuten eine Dauerbelastung ab 80 dB(A) als schädigend für das menschliche Ohr. Deshalb wundert es nicht, dass der Lärm von Laubbläsern und Laubsaugern mit klassischen Benzin- Verbrennungsmotoren häufig als besonders belästigend empfunden wird. Lärm und Emissionen sind heutzutage in vielen Einsatzbereichen vermeidbar, denn wesentlich leisere und emissionsärmere Laubbläser und Laubsauger mit elektrischen Antrieben haben sich am Markt bewährt. Je nach Einsatzbedingungen und Leistung halten die Akkus nach Herstellerangaben bis zu elf Stunden – damit ist auch ein professioneller Einsatz gewährleistet. Bei vergleichbarer Leistung liegt der Schallleistungspegel eines modernen Akku-Laubbläsers heute bis zu 10 dB(A) unter dem Schallleistungspegel eines Laubbläsers mit Benzinmotor. Sollen nur kleine Flächen vom Laub befreit werden, können Akku-Laubsauger verwendet werden, deren Schallleistungspegel nochmals geringer ist. Diese deutliche Lärmminderung schont nicht nur die Nerven in der Nachbarschaft, auch Nasen und Lungen profitieren von den Akkulösungen und Elektroantrieben, da keine Verbrennungsabgase mehr entstehen. In der Lärmschutzverordnung für Geräte und Maschinen ist die Kennzeichnungspflicht für Laubbläser und Laubsauger geregelt. Alle Geräte dieser Art, die neu auf den Markt kommen, müssen mit einer Kennzeichnung versehen werden, auf der die Hersteller den Schallleistungspegel angeben, der garantiert nicht überschritten werden darf. Die Verordnung regelt aber auch, welche Geräte zu welcher Zeit und an welchem Ort eingesetzt werden dürfen. Demnach dürfen besonders laute Geräte in Wohngebieten grundsätzlich nur werktags von 09:00 Uhr bis 13:00 Uhr und von 15:00 Uhr bis 17:00 Uhr genutzt werden. Das gilt sowohl für die private als auch für die professionelle Nutzung. Örtliche Bestimmungen können die Betriebszeiten weiter einschränken. Weitere Informationen zum Thema „Lärm im Alltag sind zu finden beim Aktionsbündnis „NRW wird leiser“: www.nrw-wird-leiser.nrw.de Vor allem für private und kleinere Flächen sollte geprüft werden, ob ein Laubbläser oder Laubsauger wirklich benötigt wird, oder ob das Laub nicht ebenso schnell und einfach mit einem Laubrechen beseitigt werden kann. Damit werden nicht nur Umwelt und Gesundheit geschont, sondern auch kleine Lebewesen. Denn vor allem durch Laubsauger werden viele wertvolle Kleintiere wie Regenwürmer oder Käfer mit eingesaugt und vernichtet, die für die Bodenverbesserung wichtig sind. Zudem hilft es, Energie zu sparen, wenn auf den Einsatz einen Laubbläsers oder Laubsaugers verzichtet wird. zurück
Zug für Gütertransport mit Elektrotraktion in Polen, alle Daten nach #1 Fahrleistung: 150000km/a Kraftstoff/Antrieb: Elektrizität Lebensdauer: 25a spezifischer Verbrauch: 36MJ/km Tonnage: 100t
Zug für Gütertransport mit Elektrotraktion in Polen, alle Daten nach #1 Fahrleistung: 150000km/a Kraftstoff/Antrieb: Elektrizität Lebensdauer: 25a spezifischer Verbrauch: 30MJ/km Tonnage: 100t
Zug für Gütertransport mit Elektrotraktion in Polen, alle Daten nach #1 Fahrleistung: 150000km/a Kraftstoff/Antrieb: Elektrizität Lebensdauer: 25a spezifischer Verbrauch: 36MJ/km Tonnage: 100t
Zug für Gütertransport mit Elektrotraktion in Polen, alle Daten nach #1 Fahrleistung: 150000km/a Kraftstoff/Antrieb: Elektrizität Lebensdauer: 25a spezifischer Verbrauch: 30MJ/km Tonnage: 100t
Güterzug mit Elektrotraktion zum Transport in Russland, Daten geschätzt deutschen Angaben in #1 durch Erhöhung des spezifischen Bedarf um 10%. Alle anderen Daten nach #2 Fahrleistung: 150000km/a Kraftstoff/Antrieb: Elektrizität Lebensdauer: 25a spezifischer Verbrauch: 23,4MJ/km Tonnage: 100t
Origin | Count |
---|---|
Bund | 1413 |
Land | 21 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 1330 |
Text | 87 |
Umweltprüfung | 3 |
unbekannt | 12 |
License | Count |
---|---|
geschlossen | 49 |
offen | 1352 |
unbekannt | 33 |
Language | Count |
---|---|
Deutsch | 1433 |
Englisch | 56 |
unbekannt | 1 |
Resource type | Count |
---|---|
Archiv | 33 |
Datei | 36 |
Dokument | 52 |
Keine | 737 |
Webseite | 651 |
Topic | Count |
---|---|
Boden | 660 |
Lebewesen & Lebensräume | 572 |
Luft | 1055 |
Mensch & Umwelt | 1430 |
Wasser | 364 |
Weitere | 1434 |