API src

Found 36 results.

Related terms

Analyse und Ueberwachung von Radionukliden und toxischen Elementspuren in der Umwelt

Das Projekt "Analyse und Ueberwachung von Radionukliden und toxischen Elementspuren in der Umwelt" wird/wurde ausgeführt durch: Gesellschaft für Strahlen- und Umweltforschung mbH, Institut für Strahlenschutz.Entwicklung, Verbesserung, Anpassung und Erprobung von Verfahren zur Bestimmung von Alphastrahlern und anderen Radionukliden in Luft, Wasser, Bewuchs, Boden und Nahrungsmitteln. Ueberwachung von Alpha-Strahlern, insbesondere Transuranen, in Abluft, Primaer- und Abwasser kerntechnischer Anlagen (mit BGA). Messung des natuerlichen Untergrundes einzelner Radionuklide in Luftstaub und Niederschlag (teilweise mit Usaec). Ausscheidungsanalyse von Radionukliden bei Stoffwechseluntersuchungen an Kleinkindern (mit Kinderklinik der Uni Muenchen). Ueberwachung von Elementspuren in Luftstaub durch Atomabsorptions-, Aktivierungs- und Elektroanalyse sowie Ir-Spektroskopie. Bestimmung von Nullpegel- und Intoxikationsgehalten an Pb und cd in Schlachtrindern zur Festlegung von Toleranzwerten (mit Institut fuer Nahrungsmittelkunde der Uni Muenchen) sowie in Zaehnen (mit Zahnklinik der Uni Muenchen). Ueberwachung von PO-210 in verschiedenen Nahrungsmitteln. Abgabe toxischer Elemente aus Gebrauchsgeschirr.

Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Elektrochemische Herstellung von funktionalen und elektrisch leitfähigen Polymeren als freistehende Kathoden für Lithium Schwefel Batterien: Synthese, Operando Analyse und Simulation

Das Projekt "Schwerpunktprogramm (SPP) 2248: Polymer-basierte Batterien; Priority Program (SPP) 2248: Polymer-based batteries, Elektrochemische Herstellung von funktionalen und elektrisch leitfähigen Polymeren als freistehende Kathoden für Lithium Schwefel Batterien: Synthese, Operando Analyse und Simulation" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Universität Freiburg, Physikalisches Institut, Angewandte Theoretische Physik - Computergestützte Physik.In diesem Projekt wird eine elektrochemisch hergestellte Polymerkathode aus poly(4-(thiophen-3-yl) benzenethiol (PTBT) mit operando Methoden und theoretischen Modellierungen untersucht. Diese Kathode ist frei-stehend, elektrisch leitfähig, mechanisch flexibel und dient als Schwefelreservoir für Lithium/Schwefel Batterien. Im Besonderen, wird PTBT mittels Elektropolymerisation auf einen Nickelschaum aufgetragen. Dies ermöglicht eine Anwendung als hochporöse und binderfreie Kathode in Li-S Batterien. Schwefel kann mit dem Polymer PTBT durch inverse Vulkanisierung ein hochvernetztes Copolymer bilden P(S-PTBT), wobei der Schwefel chemisch an die Thiolgruppen von PTBT gebunden wird. Durch die Anwendung eines neuartigen, eigenentwickelten operando Setups, das mehr als drei verschiedene Messungen gleichzeitig erlaubt, während die Zelle geladen bzw. entladen wird, werden mechanistische Einsichten von wichtigen Reaktionsschritten ermöglicht z.B. der Prozess, der den Schwefel während der elektrochemischen Oxidation chemisch an die Polymerkette bindet. Für diese Untersuchungen werden UV/vis-, Raman- und Impedanzspektroskopie in Kombination mit entweder Röntgenbildgebung oder Kleinwinkelstreuung genutzt. Die Experimente werden in enger Zusammenarbeit mit intensiven Modellierungs- und Simulationsstudien auf elektronischer und molekularer Skala ausgewertet. Es werden sowohl die Stabilität als auch die elektronische/molekulare Struktur des an die Thiolgruppen des neutral und geladenen Polymers kovalent-gebundenen Schwefels untersucht. Hierzu werden moderne Austauschkorellationsfunktionale aus der Dichtefunktionaltheorie (DFT) benutzt. Um die Struktur-Performanz Beziehung der in diesem Projekt vorgeschlagenen Kathoden darzulegen, werden die Ergebnisse der operando Analyse herangezogen. Hierbei werden Resultate der UV/vis Spektroskopie direkt mit DFT-Berechnungen und DFT-optimierten, klassischen molekulardynamischen (MD) Simulationen verglichen. Kurzum, durch die Kombination von Synthese, operando Analyse und Simulation wird ein besseres mechanistisches Verständnis der Energiespeicherprozesse und Struktur-Eigenschafts-Beziehung in diesem System erwartet. Diese so gewonnenen Kenntnisse werden für eine kontinuierliche Verbesserung der Materialparameter verwendet. Somit wird eine Erhöhung der elektrochemischen Leistungsfähigkeit von Li-S Batterien der nächsten Generation erreicht.

ProHybrid - Produktionstechnik für hybride Festkörperbatterien mit Lithium-Metall-Anode

Das Projekt "ProHybrid - Produktionstechnik für hybride Festkörperbatterien mit Lithium-Metall-Anode" wird/wurde ausgeführt durch: Omron Electronics GmbH.

ProHybrid - Produktionstechnik für hybride Festkörperbatterien mit Lithium-Metall-Anode, ProHybrid - Produktionstechnik für hybride Festkörperbatterien mit Lithium-Metall-Anode

Das Projekt "ProHybrid - Produktionstechnik für hybride Festkörperbatterien mit Lithium-Metall-Anode, ProHybrid - Produktionstechnik für hybride Festkörperbatterien mit Lithium-Metall-Anode" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Omron Electronics GmbH.

Leistungsoptimierte Lithium-lonen Batterien

Das Projekt "Leistungsoptimierte Lithium-lonen Batterien" wird/wurde ausgeführt durch: Technische Hochschule Aachen, Lehrstuhl und Institut für Stromrichtertechnik und Elektrische Antriebe.Der schnelle Fortschritt der elektronischen Geräte erhöht die Nachfrage nach verbesserten Li-Ionen Batterien. Kommerziell erhältliche Li-Zellen nutzen meist Lithiumkobaltoxid für die positive Elektrode. Doch gerade dieses Material ist ein Hindernis für eine weitere Optimierung, insbesondere für eine Kostensenkung. Vor allem für größere Anwendungen wie Hybrid- oder Elektrofahrzeuge müssen alternative Materialen erforscht werden, die billiger, sicherer und umweltverträglicher sind. Daher wird im ISEA derzeit ein neues Forschungsprojekt ins Leben gerufen und die dafür benötigte Infrastruktur geschaffen. Die Forschung wird sich auf die Untersuchung geeigneter Übergangsmetalloxide und Polyanionen konzentrieren, die besonders gut zur Einlagerung von Li-Ionen geeignet sind. Es werden neue Herstellungsverfahren unter Verwendung wässriger Precurser-Substanzen untersucht, die Verbindungen mit überlegenen Eigenschaften erzeugen und außerdem leicht an eine Massenproduktion angepasst werden können. Ziel der Arbeiten ist, preisgünstiges Elektrodenmaterial zu entwickeln, das eine spezifische Energie von über 200 Wh/kg und eine Leistungsdichte von 400 W/kg aufweist. Außerdem werden Arbeiten im Bereich der physikalisch-chemischen Charakterisierung der neuen Materialien stattfinden sowie elektrochemische Analysen der gesamten Zellen- und Batteriesysteme durchgeführt. Das elektrodynamische Verhalten der neuen Zellen wird u. a. mit Hilfe der elektrochemischen Impedanzspektroskopie analysiert, um präzise und zuverlässige Algorithmen für ein späteres Batteriemonitoring im realen Betrieb zu finden.

H2Giga: Technologieentwicklung für eine Wasserelektrolyse im Gigawatt-Maßstab, Identifizierung der Degradationsmechanismen in den AEL, PEMEL und HTEL Elektrolyseuren mit Hilfe von standardisierten chemischen und elektrochemischen Testprotokollen

Das Projekt "H2Giga: Technologieentwicklung für eine Wasserelektrolyse im Gigawatt-Maßstab, Identifizierung der Degradationsmechanismen in den AEL, PEMEL und HTEL Elektrolyseuren mit Hilfe von standardisierten chemischen und elektrochemischen Testprotokollen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: DECHEMA Forschungsinstitut Stiftung bürgerlichen Rechts.

Forschergruppe FOR 2397: Multiskalen-Analyse komplexer Dreiphasensysteme

Das Projekt "Forschergruppe FOR 2397: Multiskalen-Analyse komplexer Dreiphasensysteme" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Universität Clausthal, Institut für Chemische und Elektrochemische Verfahrenstechnik.Gasdiffusionselektroden (GDE) sind komplexe Funktionsmaterialien, die eine Schlüsselkomponente in verschiedenen technisch bedeutsamen elektrochemischen Prozessen wie Brennstoffzellen und Metall-Luft-Batterien sind. Im Hinblick auf die Herausforderungen der Energiewende kommt der Entwicklung und Herstellung dieser Funktionsmaterialien eine herausragende Bedeutung zu. In der beantragten Forschergruppe sollen beispielhaft GDE für die Sauerstoffreduktion an Silber- Katalysatoren in alkalischem Elektrolyt untersucht werden. Zu den vielfältigen Anforderungen an derartige Elektroden gehören eine hohe elektrokatalytische Aktivität, ein geringer elektronischer Widerstand sowie eine hohe chemische und mechanische Stabilität. Der Herstellprozess einer GDE muss daher so gestaltet werden, dass die genannten Eigenschaften im Produkt in optimaler Kombination erreicht werden. Dabei kommt neben der Auswahl des Elektrokatalysators der Gestaltung der Morphologie des Porensystems im Hinblick auf eine optimale Zugänglichkeit für Gase (hydrophob) und Flüssigkeiten (hydrophil) eine besondere Bedeutung zu, da die Ausdehnung der Dreiphasengrenze, an der die elektrochemische Reaktion stattfindet, maximiert werden muss. Eine detaillierte Beschreibung der Vorgänge in GDE war bisher nur eingeschränkt möglich. Dies liegt an der Komplexität und Vielzahl der ablaufenden Vorgänge auf unterschiedlichsten Skalen und insbesondere an bisher fehlenden Möglichkeiten zur ortsaufgelösten in situ und in operando Beobachtung der Prozesse sowie an der fehlenden physikalisch-chemisch fundierten Modellierung auf verschiedenen Skalen. Für ein umfassendes Verständnis und damit eine wissensbasierte, gezielte Optimierung von Herstellung und Funktionsweise von GDE ist eine strukturierte Zusammenarbeit von unterschiedlichen Fachrichtungen essentiell. Die geplante Forschergruppe bringt mit fundierten Kompetenzen im Bereich der Elektrodenpräparation (Turek, Roth), der Tomographie (Manke), der mesoskaligen Modellierung von Phasenverteilung und Transport (Nieken), der Mikroelektrochemie (Schuhmann) sowie der elektrochemischen Analyse und Modellierung von Mikrokinetik (Vidakovic- Koch) und Makrokinetik (Turek, Krewer) erstmals alle erforderlichen Methoden zusammen, um die komplexe Interaktion von Reaktions- und Transportprozessen in Gasdiffusionselektroden und ihren Einfluss auf die Leistungsfähigkeit der Elektroden zu verstehen und quantitativ zu beschreiben. Durch diese Kombination experimenteller und modelltheoretischer Methoden soll das Verhalten und die Herstellung von Gasdiffusionselektroden so umfassend charakterisiert werden, dass auf dieser Basis in der zweiten Projektphase GDE für unterschiedliche technisch relevante Einsatzbereiche mit deutlich gesteigerter spezifischer Leistung hergestellt und erprobt werden können.

Verständnis der Wirkzusammenhänge der Alterungsmechanismen zur Lebensdauervorhersage von SOFCs, Teilprojekt KIT: Physikochemische Lebensdauermodelle auf Basis elektrochemischer und (mikro-) struktureller Analysen

Das Projekt "Verständnis der Wirkzusammenhänge der Alterungsmechanismen zur Lebensdauervorhersage von SOFCs, Teilprojekt KIT: Physikochemische Lebensdauermodelle auf Basis elektrochemischer und (mikro-) struktureller Analysen" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien - Elektrochemische Technologien.

Mikrostrukturcharakterisierung von Elektroden und Wirkzusammenhänge mit Elektrodenperformance und -alterung, MiCha - Mikrostrukturcharakterisierung von Elektroden und Wirkzusammenhänge mit Elektrodenperformance und -alterung

Das Projekt "Mikrostrukturcharakterisierung von Elektroden und Wirkzusammenhänge mit Elektrodenperformance und -alterung, MiCha - Mikrostrukturcharakterisierung von Elektroden und Wirkzusammenhänge mit Elektrodenperformance und -alterung" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Karlsruher Institut für Technologie (KIT), Institut für Angewandte Materialien - Elektrochemische Technologien.

Höhere Lebensdauer und Umwandlungseffizienz durch Hochleistungsmembranen für die saure Wasserelektrolyse mit Festelektrolytmembran, PowerMem - Höhere Lebensdauer und Umwandlungseffizienz durch Hochleistungsmembranen für die saure Wasserelektrolyse mit Festelektrolytmembran

Das Projekt "Höhere Lebensdauer und Umwandlungseffizienz durch Hochleistungsmembranen für die saure Wasserelektrolyse mit Festelektrolytmembran, PowerMem - Höhere Lebensdauer und Umwandlungseffizienz durch Hochleistungsmembranen für die saure Wasserelektrolyse mit Festelektrolytmembran" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Elektrische Energiesysteme, Fachgebiet Elektrische Energiespeichersysteme.

1 2 3 4