API src

Found 213 results.

Related terms

Markt für Magnesium

technologyComment of magnesium production, electrolysis (RoW, IL): Electrochemical processes to make magnesium are based on salts containing chloride which can be found naturally or are transformed from other raw materials like serpentine, magnesite, bischofite or carnallite. The magnesium chloride salts are dried with various processes in order to receive anhydrous MgCl2. The raw material for magnesium production in this activity is an anhydrous carnallite (MgCl2-KCl). In the process, KCl represents the electrolyte. In the course of the MgCl2 decomposition, the KCl content increases until the (spent) electrolyte is partly pumped out and replaced with new carnallite. Finally, two by-products are produced: liquefied chlorine (Cl2) and KCl-rich salt (70% KCl). Magnesium oxide (MgO) is formed as an impurity during dehydration. Concerning the CO2/CO equilibrium in the calcination process, there are numerous reactions that take place in the chlorination chambers and the carbon can be consumed by reaction with MgO, air, water, sulfates and other impurities. Theoretically, the predominant reactions are those in which carbon dioxide is formed. Thus, it is assumed that the carbon is entirely converted to CO2. The CO2 emissions from graphite anode consumption are expected to contribute less than 1 % of the overall emissions and are neglected in the module. In practice, the off gases are not released to the atmosphere as is, as they are treated in wet alkali scrubbers. That is that some of the CO2 (be it from the reaction or from the ambient dilution air) is converted to calcium carbonate. The input of petroleum coke contributes less than 1 % to the overall GWP results and is excluded from this datasets for reasons of confidentiality. technologyComment of magnesium production, pidgeon process (CN): The Pidgeon process includes the following process steps: calcination, grinding & mixing, briquetting, reducion and refining. Coal as energy source is only used in for the calcination process. For other process steps, coke oven, semi coke oven, producer or natural gas are used. The use of these fuels is calculated according to the weighted average in terms of annual magnesium output per fuel. The production of producer (coal) gas is included in this module. A main influencing factor for the emissions from fuel combustion is the composition of the fuel itself. Due to the different origins of the fuel gases used in the Pidgeon process, the composition of the gases varies considerably. For semi coke and coke oven gas, a large variation in gas composition can be observed. As the data base for these compositions is restricted to few measurements, no statistical average can be determined.

Feststellung des Unterbleibens einer Umweltverträglichkeitsprüfung (UVP) für das Vorhaben Errichtung und Betrieb einer Wasserstoffelektrolyseanlage in 03044 Cottbus OT Schmellwitz; Reg.-Nr.: 40.011.00/24/4.1.12GE/T12

Die Firma Lausitz Energie Kraftwerke AG, Leagplatz 1 in 03050 Cottbus beantragt die Genehmigung nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG), auf dem Grundstück Walther-Rathenau-Straße 38 in 03044 Cottbus in der Gemarkung Schmellwitz, Flur 70, Flurstück 170/3 eine Wasserstoffelektrolyseanlage zu errichten und zu betreiben. Das Vorhaben umfasst im Wesentlichen eine Elektrolyseanlage zur Produktion von maximal 210 Nm³/h Wasserstoff mit einer Leistung von 1 MW auf dem Betriebsgelände der Cottbusverkehr GmbH. Die Wasserstoffproduktion erfolgt mit der Proton Exchange Membrane (PEM)-Technologie, einem elektrochemischen Verfahren, bei dem durch Einsatz von elektrischem Strom Wasser in seine Bestandteile Wasserstoff und Sauerstoff zerlegt wird. Die Wasserstoffproduktion erfolgt komplett im containerbasierten System H-TEC SYSTEMS ME450, wobei alle Komponenten des Elektrolyseurs im oder am Container untergebracht sind. Einzig der Prozesstransformator wird in unmittelbarer Umgebung außerhalb des Containers errichtet. Der Betrieb der Anlage wird für 8 760 Stunden im Jahr bei einer bedarfsabhängigen Produktion beantragt. Die Anlage besteht im Wesentlichen aus folgenden Komponenten: - Elektrolyse-Stack (PEM-Technologie) - Wasseraufbereitung (Demineralizer) - Kühlsystem - Gasaufbereitung (De-Oxo, Entfeuchtung) - Transformator mit Gleichrichter - Sonstigen Nebenanlagen (insbesondere Pumpen, Hilfsantriebe, Steuerungs- und Leittechnik) Geplant ist eine zukünftige Abgabe des Wasserstoffs an Nutz- und Kraftfahrzeuge. Dazu soll in direkter Nachbarschaft des Elektrolyseurs durch die Cottbusverkehr GmbH eine Wasserstoff-Tankstelle errichtet werden. Die Tankstelle einschließlich der Nebenanlagen sind nicht Teil des vorliegenden Genehmigungsverfahrens und werden in einem gesonderten Verfahren durch die Cottbusverkehr GmbH beantragt. Es handelt sich dabei um eine Anlage der Nummer 4.1.12 GE des Anhangs 1 der Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) sowie um ein Vorhaben nach Nummer 4.2 A der Anlage 1 des Gesetzes über die Umweltverträglichkeitsprüfung (UVPG). Nach § 7 Absatz 1 UVPG war für das beantragte Vorhaben eine allgemeine Vorprüfung durchzuführen. Die Feststellung erfolgte nach Beginn des Genehmigungsverfahrens auf der Grundlage der vom Vorhabensträger vorgelegten Unterlagen sowie eigener Informationen. Im Ergebnis dieser Vorprüfung wurde festgestellt, dass für das oben genannte Vorhaben keine UVP-Pflicht besteht.

Radon-Messgeräte

Radon-Messgeräte Bei Radon -Messgeräten gibt es zwei Grundtypen: Passive Radon -Detektoren brauchen zum Messen keinen Strom, elektronische Messgeräte dagegen nutzen Strom. Passive Geräte werden in der Regel ein Mal verwendet, sind günstig und klein. Sie eignen sich gut, um nach längerer Messung und anschließender Auswertung im Labor einen Durchschnittswert zu liefern. Elektronische Geräte eignen sich auch für Momentaufnahmen. Sie können mehrfach genutzt werden und zeigen die Ergebnisse in der Regel gleich an. Je nach Messzweck gibt das BfS Hinweise, was zu beachten ist. Arten von Messgeräten Einsatzgebiete Qualitätskriterien von Messgeräten Tipps & Hinweise zur Anwendung von Radon-Messgeräten Häufige Fragen zu Messergebnissen Passive und elektronische Radon-Messgeräte (Beispiele) Das radioaktive Gas Radon ( Radon-222 ) kann man nicht sehen, riechen oder schmecken – und nur schwer nachweisen. Gut nachweisen und messen lässt sich jedoch die beim radioaktiven Zerfall von Radon und seinen Folgeprodukten Polonium, Wismut und Blei entstehende Strahlung. Spezielle Messgeräte registrieren diese Strahlung zum Beispiel in Wohn- und Arbeitsräumen und ermitteln aus den Daten dann die Konzentration von Radon vor Ort. Arten von Messgeräten Um die Strahlung zu messen, die von Radon und seinen Folgeprodukten ausgeht, lassen sich passive Detektoren sowie elektronische Messgeräte nutzen. Passive Radon-Messgeräte Elektronische Radon-Messgeräte Passive Radon-Messgeräte Passive Radon-Messgeräte (Beispiele) Passive Detektoren sind kleine Plastikbehälter, die keinen Strom benötigen, weder Licht noch Geräusche aussenden, sondern lediglich ausgelegt werden. Das Messergebnis wird nach Ende des Messzeitraumes im Labor ermittelt. Passive Radon -Messgeräte sind besonders geeignet, um per Langzeitmessung herauszufinden, wie hoch die Radon -Konzentration in einem Raum über einen längeren Zeitraum im Durchschnitt ist. Aufbau und Funktionsweise Passive Radon -Messgeräte bestehen typischerweise aus einer speziellen Plastikfolie (Detektorfolie), die in einem Schutzgehäuse liegt. In dieses auch Diffusionskammer genannte Schutzgehäuse kann Radon aus der Umgebungsluft eindringen. Anders als Radon können Staub und Aerosole sowie Radon -Folgeprodukte nicht in die Diffusionskammer gelangen. Innerhalb der Diffusionskammer stößt jedes der dort eingedrungenen Radon -Atome bei seinem radioaktiven Zerfall ein Alpha-Teilchen aus, das beim Auftreffen auf die Detektorfolie eine winzige, nur einige Nanometer kleine Spur hinterlässt. Die beim radioaktiven Zerfall des Radons in der Diffusionskammer entstehenden Radon -Folgeprodukte erzeugen bei ihrem weiteren eigenem Zerfall ebenfalls solche Spuren. Geräte, die Messwerte mithilfe von Spuren auf Detektorfolie ermitteln, werden fachsprachlich auch als "Festkörperspurdetektor" bezeichnet. Messzeitraum Eine Messung mit einem passiven Radon -Messgerät verläuft in der Regel über einen längeren Zeitraum, der von mehreren Wochen und Monaten bis hin zu einem Jahr reichen kann. Auswertung Nach Abschluss der Messung wird die Detektorfolie in einem Labor aus der Diffusionskammer entnommen und alle Spuren gezählt, die sich im Laufe der Zeit auf der Detektorfolie angesammelt haben. Je mehr Spuren auf der Detektorfolie zu finden sind, desto mehr Radon gab es im Messzeitraum am Ort der Messung. Um die winzig kleinen Spuren auf der Folie sehen zu können, werden sie im Labor mit Hilfe eines chemischen oder elektrochemischen Verfahrens größer geätzt: Sie sind dann immer noch sehr klein im Mikrometer-Bereich, aber nun im Mikroskop sichtbar und zählbar. Das Ergebnis ist immer die Summe aller Spuren von Zerfällen im gesamten Messzeitraum. Diese Summierung wird fachsprachlich auch als "integrierend" bezeichnet. Im Auswertesystem des Labors ist mithilfe einer Kalibrierung hinterlegt, welche mittlere Radon -Konzentration sich im vorgegebenen Messzeitraum aus der Gesamtmenge der Spuren ergibt (Durchschnittswert). Ob es Schwankungen der Radon -Konzentration im Verlauf der Messungen gab, ist aus dem Messergebnis nicht ersichtlich. Varianten Elektretdetektor (Beispiel) Neben den hier beschriebenen Festkörperspurdetektoren (FKSD) werden in der Praxis auch Elektretdetektoren eingesetzt, jedoch deutlich seltener. In diesen auch "Elektrete" oder "Elektret-Ionisationskammer" genannten Detektoren wird eine elektrisch geladene Detektorscheibe aus Teflon genutzt, deren Spannung sich mit jedem radioaktiven Zerfall in der Diffusionskammer minimal verringert. Nach Abschluss des Messzeitraums werden hier keine Spuren ausgezählt, sondern ein Spannungsabfall gemessen. Elektronische Radon-Messgeräte Elektronische Radon-Messgeräte (Beispiele) Elektronische Radon -Messgeräte benötigen für die Messungen eine Stromzufuhr. Das Messergebnis lässt sich direkt im Display oder mit einem an das Messgerät angeschlossenen Computer ablesen. Elektronische Radon -Messgeräte sind besonders geeignet, um per Kurzzeitmessung herauszufinden, wie hoch die Radon -Konzentrationen in einem Raum aktuell ist ("Momentaufnahme") und wie sie sich zum Beispiel durch Schutzmaßnahmen oder im Tages-, Monats- oder Jahresverlauf verändert. Aufbau und Funktionsweise Im Schutzgehäuse elektronischer Radon -Messgeräte sind ein elektronischer Detektor nebst Messelektronik sowie eine Kammer platziert. In diese Kammer kann Radon aus der Umgebungsluft eindringen. Umgebungsluft kann auch angesaugt und aktiv in die Kammer gepumpt werden. Die Umgebungsluft enthält immer auch Radon , da Radon überall in der Umwelt vorkommt. Anders als Radon können Staub und Aerosole sowie Radon -Folgeprodukte nicht in die Kammer gelangen. Der elektronische Detektor in der Kammer erfasst die ionisierende Strahlung, die bei jedem Zerfall von Radon und seinen Folgeprodukten entsteht. Dafür nutzen elektronische Detektoren verschiedene physikalische Effekte: Beim photoelektrischen Effekt setzt die ionisierende Strahlung elektrisch geladene Teilchen im Messgerät frei, die der Detektor verstärkt und registriert. Dies geschieht zum Beispiel in elektronischen Radon -Messgeräten mit Ionisationskammern. Bei Halbleitermaterialien wie Silizium erzeugt die ionisierende Strahlung freie Ladungen. Das im Detektor eingebaute elektrische Feld lenkt diese Ladungen zu den Metallkontakten und erzeugt einen messbaren Stromimpuls. Dies geschieht zum Beispiel in mit Halbleiterdetektoren bestückten elektronischen Radon -Messgeräten. Beim Lumineszenz-Effekt regt die ionisierende Strahlung bestimmte Materialien (Szintillatoren) zum Leuchten an. Der Detektor verstärkt und registriert die so in der Diffusionskammer entstehenden optischen Effekte (Lichtblitze). Dies geschieht zum Beispiel in mit Szintillationsdetektoren wie zum Beispiel einer Lucas-Zelle ausgerüsteten elektronischen Radon -Messgeräten. Messzeitraum Elektronische Radon -Messgeräte ermöglichen "Momentaufnahmen" in Form einer Messung über einen eher kurzen Zeitraum. Längerfristige Messungen sind ebenfalls möglich. Auswertung Die mithilfe der Detektoren erfassten Effekte werden in elektronischen Radon -Messgeräten aufgezeichnet, umgerechnet und direkt als ermittelte Radon -Konzentration im Display des Messgerätes angezeigt und/oder in einer Datei gespeichert. Mithilfe mehrerer kurzer Messungen lassen sich mit elektronischen Radon -Messgeräten auch zeitliche Verläufe der Radon -Konzentration ermitteln, die Rückschlüsse auf Tagesverläufe oder Wirkungen von zum Beispiel Gegenmaßnahmen wie Lüften ermöglichen. Je kürzer die Messung, desto größer ist allerdings auch die Messunsicherheit. Die Messgenauigkeit hängt jedoch nicht nur von der Messdauer, sondern auch vom eingebauten Detektor ab. Anwendungsmöglichkeiten (modellabhängig) Elektronische Radon -Messgeräte können mit einer Ansaugpumpe betrieben werden, um speziell Luft aus bestimmten Bereichen zu messen, die Radon -Eintrittspfade sein können (zum Beispiel Rohrdurchführungen in der Bodenplatte eines Hauses) oder mit Hilfe einer Messsonde in der Erde die Radon -Konzentration in der Bodenluft zu bestimmen. Auch Langzeitmessungen sind grundsätzlich möglich. Dabei ist zu beachten, dass die Stromversorgung des Gerätes über den gesamten Zeitraum sichergestellt ist, um ein belastbares Messergebnis zu erhalten. Bei einer Langzeitmessung sollte daher von Batteriebetrieb abgesehen und stattdessen im Netzbetrieb gemessen werden. Das Messsignal elektronischer Radon -Messgeräte kann auch zur Steuerung von beispielsweise Lüftungseinrichtungen genutzt werden. Neben der reinen Zählung von Zerfällen zur Ermittlung der Radon -Konzentration ist – abhängig vom eingebauten Detektor – auch eine Analyse der Zerfallsenergie möglich. Dies ermöglicht "sortierte" Messungen, die zwischen dem Vorkommen von Radon ( Radon-222 ) und dem Radon -Isotop Thoron ( Radon -220) und deren Folgeprodukten unterscheiden. Handelsübliche Geiger-Zähler (Geiger-Müller-Zählrohre) sind übrigens nicht gut geeignet, um Radon -Konzentrationen zu ermitteln, da sie nicht nur speziell die von Radon und/oder Radon -Folgeprodukten ausgehende Strahlung messen, wie es die auf Radon spezialisierten Messgeräte machen. Einsatzgebiete Nicht jedes der auf dem Markt erhältlichen Radon -Messgeräte ist für jeden Anwendungsfall geeignet. Manche Messungen setzen zudem umfangreiches Fachwissen voraus. Dazu gehören Messungen zur Ermittlung von Radon in der Bodenluft, zur Bestimmung von Radon in Wasser oder zur Freisetzung von Radon aus Baumaterial. Diese Messungen sind üblicherweise Spezialist*innen vorbehalten. Vergleichsweise einfach ist dagegen die Messung von Radon in der Raumluft. Je nach Messzweck empfiehlt das BfS hierfür unterschiedliche Messverfahren. Aus Gründen der Wettbewerbsneutralität kann das BfS jedoch keine speziellen Produkte und/oder Anbietende empfehlen. Für interessierte Verbraucherinnen und Verbraucher ist es in jedem Fall ratsam, vor Erwerb eines Messgeräts zu überlegen, welche Messzwecke und Betriebsanforderungen ihren persönlichen Bedürfnissen entsprechen. Messzwecke und Messverfahren Qualitätskriterien von Messgeräten Um die Qualität der Messergebnisse sicherzustellen, sollten Messgeräte jeglicher Art nur erworben werden, wenn sie Qualitätsanforderungen erfüllen, und nur betrieben werden, wenn sie regelmäßig auf ihre Funktionstauglichkeit überprüft werden. Das gilt auch für Radon -Messgeräte. Für diese empfiehlt das BfS: Passive Radon-Messgeräte Elektronische Radon-Messgeräte Passive Radon-Messgeräte Qualitätskriterien für passive Radon-Messgeräte Passive Radon-Messgeräte (Beispiele) Passive Radon -Messgeräte werden einmalig verwendet. Gekauft wird die eigentliche Messung, für die ein passives Radon -Messgerät zur Verfügung gestellt wird, das nach der Messung zur Auswertung zum anbietenden Mess-Labor zurückgeschickt wird. Verbraucher*innen sollten darauf achten, dass die Mess-Anbietenden Qualitätssicherung betreiben, indem beispielsweise das Auswertelabor an Vergleichsprüfungen teilnimmt oder es für solche Messungen etwa bei der Deutschen Akkreditierungsstelle akkreditiert ist. Tipp: Bieten Messlabore Radon -Messungen am Arbeitsplatz an, müssen sie sich beim BfS als "anerkannte Stelle gemäß § 155 Strahlenschutzverordnung " anerkennen lassen. Damit wird die Qualität der Anbieter sichergestellt. Welche Anbieter über diese Anerkennung des BfS verfügen, zeigt zum Beispiel www.bfs.de/radon-messen. Das BfS empfiehlt, diesen Qualitätsanspruch allgemein auf Radonmessungen anzuwenden. Elektronische Radon-Messgeräte Qualitätskriterien für elektronische Radon-Messgeräte Kalibriermarke eines Radonmessgeräts Elektronische Radon -Messgeräte können mehrfach und dauerhaft verwendet werden. Verbraucher*innen sollten beim Kauf eines solchen Gerätes darauf achten, dass es kalibriert ist, das heißt, dass überprüft wurde, ob und in welchem Maße der angezeigte Wert vom tatsächlichen Wert abweicht. Um sicherzustellen, dass der Messwert über die gesamte Lebensdauer des Messgerätes korrekt angezeigt wird, sollte das Messgerät alle 2 Jahre bei einem Kalibrierlabor rekalibriert werden. Ebenso sollte regelmäßig der so genannte Nulleffekt überprüft werden: Was zeigt das Gerät an, wenn (fast) kein Radon da ist – zum Beispiel an der frischen Luft? Tipps & Hinweise zur Anwendung von Radon-Messgeräten Woran erkenne ich ein gutes Radon-Messgerät? Gute passive Radon -Messgeräte sind zum Beispiel daran zu erkennen, dass sie gute Ergebnisse in Vergleichs- und Eignungsprüfungen erzielt haben, das heißt, dass ihre dort erzielten Messergebnisse nur wenig vom Vergleichswert abwichen. Gute elektronische Radon -Messgeräte zeichnen sich insbesondere dadurch aus, dass sie für den beabsichtigten Einsatz zum Beispiel durch ausreichende Messempfindlichkeit (Mindestnachweisgrenze) und ausreichenden Messbereich, aber auch durch passende Energieversorgung (Netzteil bei kürzeren und/oder stationären, Batterie bei längeren und/oder mobilen Messungen) und Datenspeicherkapazitäten optimal geeignet sind. Zudem sollten sie für die am Messort vorherrschende Temperatur und Luftfeuchte ausgelegt sein. Achten Sie auf Herstellerangaben zur Kalibrierung des Gerätes. Woran erkenne ich gute Anbieter*innen für Radon-Messungen? Gute Anbieter*innen von Radon -Messungen sind zum Beispiel daran zu erkennen, dass sie eine Radon -Weiterbildung vorweisen können, mit kalibrierten Geräten arbeiten (wenn sie elektronische Geräte einsetzen), zur Aufstellung und Handhabung passiver Radon -Messgeräte verständliche Vorgaben bereitstellen, das Vorgehen zur Bestimmung der Radon -Konzentration schriftlich dokumentieren, ggf. akkreditiert sind für das eingesetzte Messverfahren (beispielsweise bei der Deutschen Akkreditierungsstelle ), vom BfS anerkannt sind, wenn sie die gesetzlich vorgeschriebenen Pflichtmessungen an Arbeitsplätzen anbieten. Worauf muss ich bei der Benutzung von Radon-Messgeräten achten? Lesen Sie die Bedienungsanleitung und beachten Sie die Hinweise des Herstellers, bevor Sie ein Radon -Messgerät auspacken, aufstellen und in Betrieb nehmen. Wählen Sie einen Aufstellort für das Radon -Messgerät aus, der ungestört ist, so dass Sie ihn auch mit aufgestelltem Messgerät weiter in gewohnter Weise nutzen können, an dem das Radon -Messgerät permanent mit der Raumluft Kontakt hat, der nicht beispielsweise an Heizung oder Fenster liegt, um den Einfluss von Luftströmungen und Außenluft auf die Messergebnisse zu vermeiden, der repräsentativ ist für die Nutzung des Raumes. Solche ungestörten Aufstellflächen finden sich zum Beispiel auf einem Wohnzimmerschrank oder auf einem Regal. Decken Sie das Radon -Messgerät nicht ab, und stellen Sie es nicht in einem geschlossenen Schrank auf. Sollten Sie elektrische Radon -Messgeräte verwenden, stellen Sie die Stromversorgung über den gesamten Messzeitraum sicher. Das Radon -Messgerät sollte über den gesamten Messzeitraum möglichst nicht bewegt werden. Ein vorsichtiges kurzes Verschieben des Messgerätes, wie es beispielsweise beim Staubwischen nötig ist, ist aber möglich. Idealerweise sollte jeder Innenraum mit einem eigenen Messgerät ausgestattet werden. Ist das nicht möglich, sollten als wichtigste Räume die Haupt-Aufenthaltsräume wie beispielsweise Wohnzimmer, Schlafzimmer, Kinderzimmer, Hobbykeller und Küche ausgewählt werden. Verkehrsflächen wie zum Beispiel Flure, Eingangsbereiche oder auch Sanitärräume sind nicht als Aufenthaltsräume zu betrachten. In Untergeschossen von Gebäuden finden sich typischerweise die höchsten Radon -Konzentrationen. Woran erkenne ich, ob mein Radon-Messgerät korrekt funktioniert? Ob ein Messgerät funktionstüchtig ist und korrekte Messergebnisse liefert, ist für Laien in der Regel nur schwer zu erkennen. Bei passiven Radon -Messgeräten sollte in jedem Fall das Schutzgehäuse (Diffusionskammer) unversehrt sein. Bei elektronischen Radon -Messgeräten liefert ein Test an der frischen Luft einen Anhaltspunkt: Zeigt das Gerät bei einem Einsatz im Freien nicht die zu erwartenden geringen Werte im Rahmen der durchschnittlichen Radon-Konzentration in Deutschland in Höhe von etwa 3 bis 31 Becquerel pro Kubikmeter an, sondern liefert stattdessen Werte von über 100 Becquerel pro Kubikmeter, könnte dies auf eine Kontamination des Gerätes hinweisen. Mögliche Hinweise auf Fehlfunktionen sind i. d. R. in der Bedienungsanleitung zu finden. Kann ich alleine Radon messen oder beauftrage ich besser einen Spezialisten? Passive Radon -Messgeräte können Verbraucherinnen und Verbraucher allein aufstellen, wenn sie dabei die mitgelieferte Anleitung beachten. Nach Ende des Messzeitraumes senden sie die Messgeräte wie in der mitgelieferten Anleitung beschrieben zurück an das Auswerte-Labor des Mess-Anbieters. Einfache elektronische Radon -Messgeräte für zum Beispiel Langzeitmessungen können Verbraucherinnen und Verbraucher ebenfalls allein aufstellen und Messwerte ermitteln, wenn sie dabei die mitgelieferte Anleitung beachten. Um speziellere elektronische Radon -Messgeräte für besondere Messzwecke einzusetzen, sollten Verbraucherinnen und Verbraucher besser Fachleute hinzuziehen. Wer kann mir ggf. bei einer Radon-Messung helfen? Fachleute mit Weiterbildungen im Bereich Radon sind beispielsweise Radon -Fachpersonen, Radon -Messdienstleister*innen oder Radon -Sachverständige. Auch die für den Schutz vor Radon zuständigen Landesbehörden haben Informationsangebote und Radon -Fachstellen eingerichtet. Radon -Messgeräte können direkt beim Hersteller erworben werden. Bieten Messlabore gesetzlich vorgeschriebene Pflichtmessungen von Radon an Arbeitsplätzen an, müssen sie sich beim BfS als "anerkannte Stelle gemäß § 155 Strahlenschutzverordnung" anerkennen lassen. Damit wird die Qualität der Messungen sichergestellt. Diese vom BfS anerkannten Anbieter können auch Geräte für Messungen in Privaträumen bereitstellen. Radon-Messergebnisse ablesen und interpretieren Messungen mit Radon -Messgeräten haben als Ergebnis entweder die Radon - Exposition (in Becquerel mal Stunde pro Kubikmeter) oder die Radon - Aktivitätskonzentration (in Becquerel pro Kubikmeter), die oft auch verkürzt als " Radon -Konzentration" bezeichnet wird. Mit der Radon -Konzentration wird die Radon-Situation in Innenräumen bewertet: Liegt sie über dem im Strahlenschutzgesetz festgelegten Referenzwert von 300 Becquerel pro Kubikmeter Raumluft für Aufenthaltsräume und Arbeitsplätze, sind Maßnahmen zur Reduzierung zu prüfen. Zeigt ein Messgerät als Ergebnis die Radon - Exposition an, muss dieses Ergebnis durch die Messdauer in Stunden geteilt werden, um die Radon -Konzentration zu errechnen. Häufige Fragen zu Messergebnissen Medien zum Thema Broschüren und Video downloaden : zum Download: Radon - ein kaum wahrgenommenes Risiko (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 3 MB Broschüre Radon - ein kaum wahrgenommenes Risiko downloaden : zum Download: Radon in Innenräumen (PDF, Datei ist barrierefrei⁄barrierearm) … PDF 853 KB Broschüre Radon in Innenräumen Video Radon Zu viel Radon im Haus kann Lungenkrebs verursachen. Aber woher weiß ich, ob ich betroffen bin? Wie kann ich es messen? Was kann ich gegen zu viel Radon tun? mehr anzeigen Stand: 20.12.2024 Ionisierende Strahlung Häufige Fragen Was ist Radon? Wie breitet sich Radon aus und wie gelangt es in Häuser? Welche Radon-Konzentrationen treten in Häusern auf? Alle Fragen

12 Abfall/Abwasser >> Abwasserbehandlung / Abwassereinleitung

Der Projekttyp beinhaltet kommunale Kläranlagen zur Reinigung des häuslichen und kommunalen Schmutzwassers und gewerbliche und industrielle Abwasserbehandlungsanlagen vor der Einleitung in die Vorfluter. Bei Mischeinleitung wird auch mit der Kanalisation abgeleitetes Niederschlagswasser behandelt. Die einzuhaltenden Rest-Stoffgehalte sind in der Abwasserverordnung festgelegt. Die Abwasserreinigung erfolgt mehrphasig und kann aus mehreren hintereinander geschalteten Stufen aufgebaut sein. Entsprechend den Verfahrensprozessen sind die Anlagebestandteile zugeordnet. 1. Mechanische Reinigung: - Grobreinigung; Abscheidung von Sand und Faserstoffen (Sandfang, Rechen, Siebe); - Fettabscheidung mittels Flotation und Abschöpfen; - Vorklärbecken (Absetzbecken). 2. Biologische Reinigung: - natürliche Verfahren: Absetzmulden, -erdbecken, Rieselverfahren, Bodenfiltration, Oxidationsteiche, -gräben, Abwasserteiche, Verregnung, Pflanzenanlagen; - künstliche Verfahren: Belebtschlammverfahren in -becken- oder Bioreaktoren, Tropfkörperverfahren, ggf. hintereinandergeschaltet (anaerober und aerober Abbau der biologisch abbaubaren - Stoffe durch Mikroorganismen, aerobe Verfahren ggf. mit Belüftungsanlagen); - mehrstufige kombinierte künstliche und/oder natürliche Verfahren; - chemische Reinigung mit Hilfe von Fäll- u. Flockmitteln; - Nachklärbecken (Absetzbecken für Belebtschlammflocken, Schlammrückführung), Filtration, Auslauf; - Schönungsteiche; 3. Weitergehende Reinigung, insbesondere in Industriekläranlagen zum Abbau nicht biologisch abbaubarer Stoffe: - physikalische Filtration; - chemische Fällung und Flockung, Neutralisation (für Säuren und Laugen), Filtration (für Schwebstoffe); - biologische oder chemische Nährstoffeliminierung; - Nassoxidation für schwer abbaubare organische Stoffe; - Ionenaustausch und Umkehrosmose zum Stickstoffabbau und zur Entsalzung; - thermische Verfahren (Strippen, Verdunsten, Verdampfen, Verbrennen, Kristallisation, Extrahieren); - Rückgewinnung von Nutzstoffen (Phosphat, Metalle, z. B. elektrochemische Verfahren für Metalle, Mikrosiebe); - Desinfektion (UV, Ozon, Chlor); 4. Schlamm- und Gasbehandlung: - Faulung in Faultürmen, aerobe oder anaerobe Schlammstabilisierung (durch Mineralisation organischer in anorganische Bestandteile); - Schlammentwässerung (Eindickung, Konditionierung, Schlammsilos, Schlammplätze, -zwischenlager, maschinelle Entwässerung (Zentrifugen, Dekanter, Separatoren, Vakuumfilter, Filterpressen), chemische Entwässerung, thermische Entwässerung, Trocknung, Kompostierung, Ausbringung, Veraschung u. a.; - Gasbehälter, Verwendung anfallender Faulgase aus der aeroben Schlammstabilisierung zur Wärmegewinnung oder Stromerzeugung, ggf. auch von Abwärme aus Schlammverbrennungsanlagen; - Blockheizkraftwerke. Zu den Anlagebestandteilen gehören des Weiteren - vorgeschaltete Bestandteile des Kanalisationssystems, ggf. mit Regenrückhaltebecken und Notüberlaufbecken (bei Reinigung); - ein befestigtes Betriebsgelände, Straßen, Maschinenhäuser, Gebläsestationen, Labor, Garagen, Betriebsgebäude mit Aufenthaltsräumen, Werkstätten, (Heizöl-)Lager und gärtnerisch gestaltete Grünflächen. Zu den möglichen baubedingten Vorhabensbestandteilen zählen u. a. Zufahrten, Baustraßen, Baustelle bzw. Baufeld, Materiallagerplätze, Maschinenabstellplätze, Erdentnahmestellen, Bodendeponien, Baumaschinen und Baubetrieb, Baustellenverkehr und Baustellenbeleuchtung.

Einsatz von Sauerstoff-toleranten Hydrogenasen für die lichtgetriebene Wasserstoffproduktion

Das Projekt "Einsatz von Sauerstoff-toleranten Hydrogenasen für die lichtgetriebene Wasserstoffproduktion" wird vom Umweltbundesamt gefördert und von Universität Berlin (Humboldt-Univ.), Institut für Biologie, Professur für Mikrobiologie durchgeführt. Die effiziente Kopplung der Photosynthese mit der H2-Produktion in einem einzigen Organismus stellt eine große wissenschaftliche Herausforderung dar, deren Bewältigung substanziell zu der Lösung der heutigen Energieprobleme beitragen kann. Im Zentrum dieses Projektes steht die Kopplung Sauerstoff-toleranter Hydrogenasen aus Ralstonia species mit dem cyanobakteriellen Photosystem. Es werden zwei verschiedene Richtungen verfolgt. Erstens, die direkte Verknüpfung der Elektronentransportwege des Photosystems und Hydrogenase über Fusionsproteine und zweitens, der Transfer der Elektronen vom Photosystem auf Hydrogenase mittels natürlicher Elektronenüberträger. Parallel erfolgt die eingehende Charakterisierung der Hydrogenase-Photosystem-Fusionsproteine mittels spektroskopischer (AG Heberle, AG Dau) sowie elektrochemischer Methoden (AG Heberle, AG Rögner). Hydrogenasen aus Ralstonia eutropha werden für die Kopplungsexperimente zunächst als Modellkatalysatoren verwendet. In Zusammenarbeit mit der AG Lubitz sollen die strukturellen Vorraussetzungen der Sauerstofftoleranz auf molekularer Ebene aufgeklärt werden. Die Erkenntnisse aus diesem Projekt werden die Grundlage bilden für die Etablierung eines zellulären Modellsystems, das aus Licht und Wasser Wasserstoff produziert. Außerdem dienen die Untersuchungen dem gezielten Engineering von hocheffizienten, H2-bildenden Hydrogenasen mit großer O2-Toleranz.

Teilprojekt C

Das Projekt "Teilprojekt C" wird vom Umweltbundesamt gefördert und von ESy-Labs GmbH durchgeführt. Aus der Zeit der linearen Synthese und der Herstellung hochchlorierten Pestizide sind große Mengen an mehrfachchlorierten Rückständen in großen Deponien verbaut. Die größte Herausforderung und gleichzeitig wichtigster Aspekt bei der Verringerung von Umweltgefahren ist die HCH-Problematik. Mittels EVALINA soll eine skalierbare Elektrosynthese etabliert werden, welche die energie- und damit CO2-instensive Hochtemperaturverbrennung ersetzen kann. Da aufgrund der Verfahrenstechnik in thermischen Abfallbehandlungsanlagen die Bildung von Dioxinen aus Chlorrückständen und organischen Bestandteilen im Rauchgas nicht verhindert werden kann, würden HCH-Rückstände nur in andere hochtoxische Verbindungen umgewandelt werden. Das Entsorgungsproblem würde somit nur verlagert. Das hier im Fokus stehende elektrochemische Verfahren hat hingegen den Vorteil, dass das Kohlenstoffgerüst stofflich als nicht fossile Quelle für Benzol genutzt werden kann. Durch Variation der Elektrolysebedingungen sollen auch weitere Produkte zugänglich sein. Weiterhin wird das Chlor auf ein anderes Substrat übertragen oder direkt als vielseitig verwendbares Chlorgas erhalten. So kann es zur kompletten Valorisierung des HCH-Rückstandes kommen, ohne dabei andere gefährliche Rückstände zu bilden. Innerhalb von EVALINA ist eine Hochskalierung der HCH-Elektrolyse und Implementierung als mobile Pilotanlage angedacht, um die Elektrolyse an den Ort des HCH-Vorkommens zu bringen und so das Upcycling von HCH zu Wertprodukten zu ermöglichen.

Teilprojekt A

Das Projekt "Teilprojekt A" wird vom Umweltbundesamt gefördert und von Johannes Gutenberg-Universität Mainz, Department Chemie durchgeführt. Aus der Zeit der linearen Synthese und der Herstellung hochchlorierten Pestizide sind große Mengen an mehrfachchlorierten Rückständen in großen Deponien verbaut. Die größte Herausforderung und gleichzeitig wichtigster Aspekt bei der Verringerung von Umweltgefahren ist die HCH-Problematik. Mittels EVALINA soll eine skalierbare Elektrosynthese etabliert werden, welche die energie- und damit CO2-instensive Hochtemperaturverbrennung ersetzen kann. Da aufgrund der Verfahrenstechnik in thermischen Abfallbehandlungsanlagen die Bildung von Dioxinen aus Chlorrückständen und organischen Bestandteilen im Rauchgas nicht verhindert werden kann, würden HCH-Rückstände nur in andere hochtoxische Verbindungen umgewandelt werden. Das Entsorgungsproblem würde somit nur verlagert. Das hier im Fokus stehende elektrochemische Verfahren hat hingegen den Vorteil, dass das Kohlenstoffgerüst stofflich als nicht fossile Quelle für Benzol genutzt werden kann. Durch Variation der Elektrolysebedingungen sollen auch weitere Produkte zugänglich sein. Weiterhin wird das Chlor auf ein anderes Substrat übertragen oder direkt als vielseitig verwendbares Chlorgas erhalten. So kann es zur kompletten Valorisierung des HCH-Rückstandes kommen, ohne dabei andere gefährliche Rückstände zu bilden. Innerhalb von EVALINA ist eine Hochskalierung der HCH-Elektrolyse und Implementierung als mobile Pilotanlage angedacht, um die Elektrolyse an den Ort des HCH-Vorkommens zu bringen und so das Upcycling von HCH zu Wertprodukten zu ermöglichen.

Economic comparison of decontamination and direct melting with a view to recycling scrap

Das Projekt "Economic comparison of decontamination and direct melting with a view to recycling scrap" wird vom Umweltbundesamt gefördert und von GNS Gesellschaft für Nuklear-Service mbH durchgeführt. Objective: the decommissioning of nuclear facilities either requires the final disposal of large quantities of contaminated scrap metal or the decontamination to a degree which allows its further use in nuclear or other areas. Decontamination technology is well developed and in most cases based on the application of highly corrosive agents or electrochemical processes. Recently, direct melting has been added to these procedures as it allows for the separation of Cs and Sr from the base material. However, the volatile contamination agents have to be retained by appropriate filter systems. The objective of this work is to carry out an economic study of decontamination, direct melting and super-compaction, with a view to recycling of scrap, in order to establish a state-of-the-art cost structure for the decommissioning of nuclear installations. This economic comparison is based on actual clean-up or decommissioning work executed by the contractor under industrial conditions. This study takes into account the nuclear installations in Germany. General information: 1. Review studies. 1.1. Inventory of contaminated metal scrap until 1994. 1.2. Review of existing decontamination methods. 1.3. Review of licensing conditions for recycling of decontaminated metal scrap. 2. Assessment of the investment and running cost of the three following procedures: - decontamination of scrap metal followed by melting and release, - direct melting of scrap metal, followed by release, - super-compaction followed by disposal as radioactive waste.

Teilprojekt: Einsatz der ZfP

Das Projekt "Teilprojekt: Einsatz der ZfP" wird vom Umweltbundesamt gefördert und von Universität des Saarlandes, Fachrichtung 8.4 Materialwissenschaft und Werkstofftechnik, Professur für Zerstörungsfreie Materialprüfung und Qualitätssicherung durchgeführt. Ziel des Vorhabens ist die Entwicklung einer Verfahrensweise zur Bewertung der Resteinsatzdauer von im Betrieb gealterten metallischen Komponenten in Kernkraftwerken. Dabei wird berücksichtigt, dass sich bei Bauteilen die örtlichen Werkstoffeigenschaften aufgrund der im Betrieb auftretenden mechanischen und thermischen Beanspruchungen deutlich verändern können, insbesondere wenn Korrosionseinflüsse hinzukommen. Mit Hilfe der erstellten Analysewerkzeuge können die Fragen bezüglich Lebensdauer und Integrität im Hinblick auf örtliche und anlagenspezifische Belange umfassender beantwortet werden. Im Teilantrag des LZfPQ sollen Verfahren der ZfP zur Charakterisierung des Werkstoffs, sowie zur Schädigungsentwicklung unter einsatztypischen Beanspruchungen bereitgestellt und in die Prüfanordnungen (WPT, MPA) integriert werden. Hierauf aufbauend wird PHYBAL erweitert und so für komplexe Bauteile zugänglich gemacht. B1 dient dem Werkstoffverständnis und der daraus formulierten Verfahrensweise für gealterte metallische Strukturen der Kernenergie. Dazu werden X6CrNiNb1810 Proben künstlich gealtert und mittels elektrischer, elektromagnetischer und -chemischer Verfahren im Ausgangszustand und unter bzw. nach zyklischer Beanspruchung charakterisiert. Die elektrochemischen Verfahren ermöglichen hierbei die Detektion von ermüdungsbedingten mikrostrukturellen Oberflächenveränderungen. Diese Messdaten werden mit vorliegenden Werkstoffdaten fusioniert und als Datenbasis für die Erweiterungen von PHYBAL genutzt. Hierbei soll zudem eine Verbindung zu bestehenden Lebensdauerberechnungsverfahren hergestellt werden. Zur Verifizierung des Verfahrens an Bauteilen wird dieses in B2 an Kerbproben validiert. Dabei stehen die in B1 analysierte und auf der Werkstoffmikrostruktur basierte Werkstoffantwort und deren Übertragbarkeit auf komplexe Geometrien im Mittelpunkt. Ziel ist die Erweiterung von PHYBAL auf Medieneinflüsse, so dass dies in numerische Simulationsverfahren übertragen werden kann.

Teilprojekt 4

Das Projekt "Teilprojekt 4" wird vom Umweltbundesamt gefördert und von SEBA Hydrometrie GmbH & Co. KG durchgeführt. Bisherige Konzepte zur Bestimmung des Phosphatgehalts in Gewässern oder Abwässern nutzen eine standardisierte kolorimetrische bzw. nasschemische Methode. Unter Zugabe von Molybdat (meist Ammoniummolybdat) und anschließender Umsetzung des hierbei gebildeten Phosphomolybdatkomplexes bildet sich durch starke Reduktionsmittel wie Ascorbinsäure oder Hydrazin eine blaue Lösung (810 nm, 'Molybdänblau'), deren Farbintensität sich je nach Konzentration des vorhandenen, in Lösung befindlichen Phosphats intensiviert. Dieser Nachweis besitzt jedoch den gravierenden Nachteil, dass die jeweiligen notwendigen Reagenzien mitgeführt und zum richtigen Zeitpunkt im richtigen Maße zugegeben werden müssen, um überhaupt eine korrekte Bestimmung zu ermöglichen. Die im Zuge dieser Arbeit entwickelte Methode ermöglicht es erstmalig in einem kompakten Sensorsystem komplett auf externe Zugabe von Reagenzien zu verzichten. Stattdessen werden alle notwendigen Substanzen mithilfe elektrochemischer Methoden bereitgestellt. Der Fokus des Projekts liegt auf der Entwicklung eines hochsensitiven, selektiven und Reagenzien freien elektrochemischen Sensors, zur Quantifizierung des vorzüglich in Abwässern vorhandenen Phosphats. Dabei soll eine wesentlich geringere Baugröße von circa 15-20 cm (inklusive Elektronik und Auswertelogik) gegenüber den wesentlich größeren kommerziell verfügbaren, nasschemischen Detektionssystemen erreicht werden. Als zweites großes Ziel, neben der Entwicklung des Phosphatsensors, ist die Entwicklung einer Multiparametersonde in der der zu entwickelnde Sensor mit eingebunden werden soll. Im Rahmen der Sonden-Entwicklung ist es geplant ein 'SMART-Sensor' Konzept umzusetzen. So ist es geplant, diese Sonde zusätzlich mit weiteren Sensoren wie zum Beispiel Temperaturfühler, pH-Meter oder auch Leitfähigkeitssensor flexibel auszurüsten. Die autark arbeitende Sonde soll alle Messwerte automatisch übermitteln.

1 2 3 4 520 21 22