Nach der Vermeidung des Produktes ueberhaupt, ist die so oft wie moegliche Wiederverwendung die nachfolgend guenstigste Variante der Abfallvermeidung bzw. -verminderung. Durch die Existenz einer funktionsfaehigen Trennung lassen sich Teile nach der Zerlegung des Produktes differenziert den verschiedenen Wiederverwendungs- bzw. Wieder- und Weiterverwertungsmoeglichkeiten zufuehren. In diesem Zusammenhang werden normierte Gehaeuseteile interessant, die sich, innerhalb einer bestimmten Produktgruppe austauschbar, mehrfach verwenden lassen. Dies erfordert sowohl die Auseinandersetzung mit der desintegrierten Bauweise der Produkte, als auch mit entsprechender Oberflaechen- und Farbgestaltung. Die Auswahl betraf bewusst Produktgruppen mit geringem Individualisierungsgrad und einer nachvollziehbaren Tendenz zur Formkonvergenz. Anhand von fuenf Demonstrationsbeispielen (Mixgeraet, Exzenterschleifer, Pendelstichsaege, Heissluftgeblaese und Handstaubsauger) wurde untersucht, inwiefern Normierungen von Gehaeuseteilen sinnvoll erweiterbar bzw. ueberhaupt moeglich sind.
Die industrielle Nutzung des Grundstücks ist seit 1911 als Betriebsfläche zur Herstellung von nummerierten Spezial-Kontrolldruckerzeugnissen (Paragon Kassenblock AG) und Lager für Beleuchtungsköpern (R. Frister AG) dokumentiert. Von 1940 bis 1945 erfolgte die Produktion von Farben durch die Lackfabrik Dr. Werner. Von 1945 bis 1995 diente der Standort der Endmontage und Reparatur von Haushaltsgeräten (VEB Haushaltsgeräteservice später Haushaltsgeräte-Service GmbH). Danach (bis etwa 2006) wurden die Flächen an Unternehmen des Klein- und Mittelgewerbes vermietet. Aus der Nutzung des Grundstücks zur Herstellung und Verarbeitung von Lackfarben wurde ein unterirdisches Tanklager mit ca. 20 Einzelbehältern betrieben. Zur Herstellung der Produkte wurden auf der Fläche die aromatischen Kohlenwasserstoffe Benzol, Toluol und Xylol, Naphthalin, Petroleum, Schwerbenzin, Vergaserkraftstoffe, Terpentinöl sowie diverse alkoholische Verbindungen eingesetzt, gelagert und umgeschlagen. In Vorbereitung einer Erweiterung des Gebäudebestandes an der Freifläche zur Fuststraße erfolgte 1980 die Bergung des Tanklagers, wodurch es zu nachweisbaren Schadstoffaustritten kam. Es ist davon auszugehen, dass es auch durch den unsachgemäßen Umgang mit den für die Lackfarbenproduktion verwendeten Gefahrstoffen zu Schadstoffeinträgen in den Untergrund kam. Als Folge der Schadstoffeinträge in den Boden wurden durch die nachstehend beschriebenen Erkundungen massive Kontaminationen des Bodens durch BTEX (untergeordnet PAK und MKW) nachgewiesen. Die höchsten Belastungen wurden mit über 5.000 mg/kg BTEX bei 6 – 9 m unter Geländeoberkante (uGOK) unterhalb des ehem. Druckereigebäudes angetroffen. Die besondere Gefährdungssituation ergibt sich aus der Lage des Standortes innerhalb der Trinkwasserschutzzone II des Wasserwerks Wuhlheide . In einer frühen Phase der Altlastensanierung konzentrierten sich die In einer frühen Phase der Altlastensanierung konzentrierten sich die Erkundungen auf die Eingrenzung der Schadensherde für die Planung und Umsetzung von hydraulischen Sicherungsmaßnahmen zur Verhinderung der Verlagerung der Kontamination zu den Fassungen des Wasserwerks Wuhlheide (Abstromsicherung). Mit fortschreitender Bearbeitungsdauer zielten die Arbeiten zunehmend auf die Vorbereitungen zur Sanierung der Belastungen in den Eintragsbereichen/ Schadensherden. Zur Bewertung und Beobachtung der Grundwasserbeschaffenheit sowie der Steuerung der hydraulischen Sicherungs-/ Sanierungsmaßnahmen wurde zwischen 1995 und 2004 ein Netz von Messpegeln geschaffen, welches regelmäßig auf die standortspezifischen Parameter hin analysiert wurde. In 2005/2006 wurde das Messnetz auf der Basis der Ergebnisse einer teufenorientierten Beprobung des Grundwassers erweitert. Im Zuge der Baufeldfreimachung zur Bodensanierung ist baubedingt eine Reduzierung des Bestandes erfolgt. Derzeit liegt der Fokus des Grundwassermonitorings als Nachsorgemaßnahme auf der Überwachung der Grundwasserqualität an der Grundstücksgrenze im unmittelbaren Zustrom zu den Förderbrunnen des Wasserwerks Wuhlheide. Seit 1995 wurde zum Schutz der nahe gelegenen Förderbrunnen des Wasserwerks eine hydraulische Sicherungs-/ Sanierungsmaßnahme durchgeführt. Die Technologie der Reinigung des geförderten Grundwassers wurde im Zeitraum von 2002 bis 2006 entsprechend dem Stand der Technik, der Schadstoffzusammensetzung sowie anderen speziellen Problematiken mehrfach angepasst. Zur Optimierung des Schadstoffaustrags wurde die Brunnenanzahl erhöht und ein hydraulischer Kreislauf für eine bessere Durchspülung des Aquifers erzeugt. Im Ergebnis der durchgeführten Sanierungsuntersuchungen zeigte sich, dass allein durch hydraulische Maßnahmen keine ausreichende Schadstoffreduzierung erzielt werden konnte. Daher wurde die Beseitigung der Schadstoffquellen mittels Bodenaustausch festgelegt, die 2007/2008 begonnen und 2011 abgeschlossen wurde. Einen chronologischen Abriss der einzelnen Sanierungsetappen zeigt die folgende Abbildung. 1995 – 2002: Sicherungs-/Sanierungsmaßnahme durch Förderung aus 2 Sicherungsbrunnen an derabstromigen Grundstücksgrenze und später zusätzlich aus 2 Sanierungsbrunnen in den damals bekannten Hauptschadensbereichen. 06/2002 – 12/2006: Umstellung der Reinigungstechnologie auf einen biologischen Wirbelschichtreaktor als Hauptreinigungsstufe, in dem Aktivkohle als Trägermaterial für Biomasse umlaufartig oszilliert, mit Erhöhung der Förderrate. Abschließende Adsorption mittels Wasseraktivkohle. 01/2007 – 08/2008: Außerbetriebnahme eines Teils der Brunnen im Hauptschadensbereich infolge der vorbereitenden Arbeiten zur Bodensanierung. 09/2008 – 12/2008: Abschluss der hydraulischen Sanierung im Bereich der Bodensanierung. Reinigung des abgepumpten Grundwassers über einstufige Stripanlage mit Abluftadsorption mit nachgeschalteten Wasseraktivkohlefiltern. 2009 – 2012: Sukzessive Außerbetriebnahme der Förderbrunnen (hydraulische Sicherung) nach dem Erreichen des Sanierungszielwertes von 20 µg/L BTEX. Im Jahr 2007 wurde mit dem Beginn des Teilabrisses der vorhandenen Gebäudesubstanz sowie einem Industrieschornstein aus Betonfertigteilen (einschl. vorlaufender Entkernung und nachlaufender Tiefenenttrümmerung) die Bodensanierung eingeleitet. In einem 1. Bauabschnitt (2008 – 2009) wurde der Bodenaustausch in der gesättigten Zone auf einer Fläche von ca. 2.100 m² in dem zentralen Grundstücksbereich bis in eine Tiefe von 11 m uGOK mittels Rüttelsenkkästen (Wabenverfahren) durchgeführt. Der vorlaufende Bodenaushub zur Beseitigung gering belasteter Bodenhorizonte bis ca. 0,5 m oberhalb des anstehenden Grundwasseranschnittes wurde mit einer Trägerbohlwand gesichert. In einem Teilbereich der Sanierungsfläche wurde dem sauberen Boden ein sauerstoffhaltiges Substrat beigefügt, das durch die Schaffung eines oxidativen Milieus zu einer Verringerung der verbliebenen Restbelastungen durch mikrobielle Abbauprozesse im Grundwasser beitragen sollte. In einem 2. Bauabschnitt (2010) erfolgte der Bodenaustausch im nördlichen Randbereich des Standortes mittels Großlochbohrungen bis zu einer Tiefe von 9 m uGOK an 757 Bohransatzpunkten (DN 1200). Nachfolgend finden sich die mit der Bodensanierung angefallenen Entsorgungsmengen zusammengefasst: Zur weiteren Überwachung des Sanierungserfolgs und zum Schutz der nahe gelegenen Fassungen des Wasserwerks Wuhlheide ist die Fortsetzung des Grundwassermonitorings mit viertel- oder halbjährlichen Beprobungskampagnen als Nachsorgemaßnahme vorgesehen. Die Beobachtung von Verlagerungen aus verbliebenen lokalen Belastungsschwerpunkten erfolgt mittels Modellrechnungen (Stofftransportmodellierungen) und bei Bedarf durch Errichtung zusätzlicher Grundwassermessstellen. Die Gesamtkosten aller Maßnahmen belaufen sich bis Ende 2018 auf ca. 8,77 Mio. €. Bedingt durch die Lage des Standortes in der Trinkwasserschutzzone II des Wasserwerks Wuhlheide, die eine Neubebauung der sanierten Flächen derzeit ausschließt, ist die zukünftige Nutzung noch offen.
Elektrische und magnetische Felder Elektrische Energie wird über Leitungen transportiert und durch Geräte genutzt. Elektrische Felder entstehen um Geräte und Leitungen, sobald eine elektrische Spannung anliegt. Magnetfelder entstehen um Geräte und Leitungen, sobald ein elektrischer Strom fließt. Im Alltag erzeugen elektrische Geräte und Leitungen elektrische und magnetische Felder. Mit zunehmendem Abstand werden die Felder schnell schwächer. Wenn Strom fließt, erzeugen elektrische Geräte und Leitungen zwei Arten von Feldern: elektrische und magnetische Felder. Ein elektrisches Feld entsteht, sobald an einem Gerät oder einer Stromleitung eine Spannung anliegt. Die Spannung ist die Voraussetzung dafür, dass elektrischer Strom fließen kann, wenn ein Gerät eingeschaltet wird. Wenn Strom fließt, entsteht zusätzlich ein Magnetfeld . Daher sind elektrische Geräte und Leitungen, in denen Strom fließt, von elektrischen und magnetischen Feldern umgeben. Durch Ladungen hervorgerufenes elektrisches Feld Niederfrequente elektrische und magnetische Felder Für die Stromversorgung wird in der Regel Wechselstrom verwendet. In Deutschland hat er eine Frequenz von 50 Hertz ( Hz ). Dies bedeutet, dass der Strom 100 Mal pro Sekunde seine Richtung ändert. Auch die elektrischen und magnetischen Felder ändern ihre Richtung genauso oft wie der Strom. Die Frequenz von 50 Hertz liegt im unteren Bereich des elektromagnetischen Spektrums. Deshalb heißen diese Felder "niederfrequent". Durch Strom hervorgerufenes magnetisches Feld Feldstärken und Maßeinheiten Die Stärke des elektrischen Feldes steigt mit der Spannung, die an der Leitung anliegt. Maßeinheit für die Spannung ist das Volt ( V ). Die elektrische Feldstärke wird in Volt pro Meter ( V/m ) angegeben. Die Stärke des Magnetfeldes um eine elektrische Leitung hängt davon ab, wie stark der Strom ist, der fließt. Die Stromstärke wird in Ampere (A) und die Magnetfeldstärke in Ampere pro Meter ( A/m ) gemessen. Für den Strahlenschutz ist die magnetische Flussdichte relevant. Das Erzeugen elektrischer Ströme in leitfähigen Körpern hängt direkt mit dieser Größe zusammen. Sie ist rechnerisch mit der Magnetfeldstärke verknüpft. Die Maßeinheit ist Tesla ( T ) beziehungsweise Mikrotesla ( µT ). Ein Mikrotesla ist ein Millionstel Tesla (0,000001 T ). Begriffe und Maßeinheiten Elektrische Feldstärke Magnetisches Feld Feldstärke Flussdichte Maßeinheit Volt pro Meter ( V/m ) Kilovolt pro Meter (kV/m), 1 kV/m = 1.000 V/m Ampere pro Meter ( A/m ) 1 Tesla = 1 Voltsekunde pro Quadratmeter (1 T = 1 Vs/m 2 ) Mikrotesla ( µT ), 1 µT = 0,000001 T Elektrische und magnetische Felder im Alltag In der Nähe von elektrischen Haushaltsgeräten und Leitungen sind die elektrischen Feldstärken und magnetischen Flussdichten meist gering. Bei manchen Geräten sind höhere magnetische Flussdichten möglich, allerdings meist nur sehr nahe an den Geräteoberflächen (zum Beispiel Geräte mit einer sehr hohen Stromaufnahme wie Staubsauger oder Föne). Je weiter man sich entfernt, desto schwächer werden die elektrischen und magnetischen Felder . Die Exposition der Bevölkerung mit niederfrequenten Feldern ist daher normalerweise niedrig. Dies gilt auch für Personen, die in der Nähe einer Hochspannungsleitung wohnen. Abstand und Abschirmung Grundsätzlich verringern sich die Feldstärken mit der Entfernung von den Feldquellen. Elektrische Felder werden darüber hinaus zum Beispiel durch übliche Baustoffe für Gebäude bereits gut abgeschirmt. Im Gegensatz dazu lassen sich Magnetfelder nur mit relativ großem Aufwand abschirmen. Dieser Artikel wurde sprachlich mit KI überarbeitet. Stand: 28.02.2025
Das Ziel dieses Forschungsvorhabens besteht in der Entwicklung effizienter Algorithmen zur numerischen Berechnung von langsam veränderlichen elektromagnetischen Feldern im menschlichen Körper unter Verwendung realitätsnaher Körpermodelle. Elektromagnetische Feldexpositionen des menschlichen Körper liegen im Alltag durch eine Vielzahl elektrischer Geräte und Maschinen am Arbeitsplatz oder im Haushalt und in der Nähe von Hochspannungsleitungen vor. Dieser sogenannte Elektrosmog ist seit geraumer Zeit besonders unter gesundheits- und arbeitsmedizinischen Aspekten von wissenschaftlichem Interesse. Aus diesem Grund ist die Vorhersage von Stärke und Verteilung langsam veränderlicher elektromagnetischer Feldverteilungen im menschlichen Körper ein Thema aktueller Forschungsbemühungen.
1
2
3
4
5
…
33
34
35