Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität Projektleitung: Dr.-Ing. Gernot Schmid, Seibersdorf Labor GmbH Beginn: 18.03.2021 Ende: 11.11.2025 Finanzierung: 449.025 Euro Hintergrund Elektromobilität gilt als Schlüssel für eine klimafreundliche Mobilität. Elektroantriebe arbeiten weitgehend schadstoffemissionsfrei. Betriebsbedingt entstehen allerdings Magnetfelder, die von dem elektrifizierten Antriebsstrang eines Elektrofahrzeugs ausgehen und auf Fahrer*in und Passagier*innen einwirken. Expositionen ( d.h. Situationen, in denen Personen solchen Feldern ausgesetzt sind) in relevanten Größenordnungen können dabei nicht von Vornherein ausgeschlossen werden. Gründe sind der geringe Abstand der Sitze zu den Komponenten, die Magnetfelder erzeugen, und die hohen Stromstärken in leistungsstarken Fahrzeugen. Darüber hinaus können bei rein batterieelektrischen Fahrzeugen (BEV) und bei Plug-In-Hybriden (PHEV) Expositionen bei Fahrzeugstillstand während des Ladevorgangs auftreten. Magnetfeldquellen sind dann zum Beispiel die Ladeeinrichtung selbst, das Ladekabel im Fall konduktiven Ladens, als Gleichrichter arbeitende Leistungselektronik sowie die Leitungen im Fahrzeug und die Fahrzeugbatterie. Magnetfeldquellen nur in Elektroautos und Hybriden Zielsetzung In dem Vorhaben wurde die Exposition von Personen gegenüber elektromagnetischen Feldern der Elektromobilität bestimmt. Einbezogen wurden Expositionsbeiträge durch den Fahrzeugfahrbetrieb und durch Batterieladevorgänge bei Fahrzeugstillstand. Die Studie ist aussagekräftig für Elektroautos und Elektro-Zweiräder ( d.h. ein- und zweispurige Personenkraftfahrzeuge). Als Fahrräder eingestufte Elektrofahrzeuge ( sog. E-Bikes) waren ausgenommen. Die Ergebnisse können mit Werten einer im Jahr 2009 abgeschlossenen Studie des BfS und mit in der Literatur veröffentlichten Werten verglichen werden. Zudem geben die Ergebnisse Hinweise für die Standardisierung. Durchführung Untersucht wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle und zusätzlich auch leistungsstarke E-Auto-Modelle von verschiedenen Herstellern. Dazu wurden Magnetfeldmessungen an mehreren Stellen im Fahrgastraum der Elektroautos und an den Sitzpositionen der Elektro-Zweiräder ( d.h. Elektroroller bzw. -motorräder) durchgeführt, während sich die Fahrzeuge auf einem Rollenprüfstand und in vorab festgelegten Betriebszuständen befanden. Die Betriebszustände umfassten das Beschleunigen, das Bremsen sowie das Fahren mit konstanten Geschwindigkeiten gegen verschiedene Lastmomente, um Luftwiderstände, Streckensteigungen und -gefälle zu simulieren. Anschließend wurden Magnetfeldmessdaten während eines Worldwide Harmonized Light Vehicle Test Cycle (WLTC) aufgezeichnet. Dabei handelt es sich um einen ca. 30-minütigen genormten Fahrzyklus, der ursprünglich für vergleichbare Abgas- und Verbrauchsmessungen festgelegt wurde. Daten für Zweiräder wurden während eines World Motorcycle Test Cycle (WMTC) aufgezeichnet. Die auf dem Prüfstand ermittelten Daten wurden mit Messungen bei Fahrten auf einer abgesperrten, ebenen Teststrecke und bei einer etwa 90-minütigen Fahrt im öffentlichen Straßenverkehr validiert. Anschließend wurden die im Zeitbereich aufgezeichneten Messdaten entsprechend der spektralen Zusammensetzung analysiert und bewertet. Situationen, die basierend auf den Messungen die höchsten Expositionen erwarten ließen, wurden zusätzlich dosimetrisch analysiert. Die betreffenden Expositionssituationen wurden dazu in einer Simulationssoftware nachgebildet. Ziel war die rechentechnische Bestimmung, der im Körper einer exponierten Person hervorgerufenen elektrischen Feldstärken. Hierfür musste vorab die lokale Verteilung der Magnetfeldstärken in der Fahrgastzelle bzw. im Bereich der Sitze der Elektro-Zweiräder bekannt sein. Stellvertretend für die exponierten Personen wurden hochaufgelöste, digitale Menschmodelle eingesetzt, die anatomisch möglichst korrekt waren und Gewebetypen mit verschiedenen elektrischen Eigenschaften unterschieden. Die Untersuchungen zum Aufladen bei Fahrzeugstillstand berücksichtigten Positionen in und außerhalb der Fahrzeuge. Ebenso wurden die Untersuchungen an Normal- und Schnellladepunkten durchgeführt. Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Ergebnisse Die Studie stellt nach Kenntnis des BfS die bislang detaillierteste Untersuchung zu Magnetfeldexpositionen in Elektrofahrzeugen dar. Die Messungen wurden in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugen unter realen Bedingungen im öffentlichen Straßenverkehr sowie auf Teststrecken und Prüfständen durchgeführt. Erstmals wurden auch Zweiräder einbezogen. Die Fahrzeughersteller waren nicht an den Untersuchungen beteiligt. Die Magnetfeldexposition innerhalb der Fahrzeuge war räumlich sehr ungleichmäßig. Hohe Werte traten im Fahrberieb vorrangig im Bereich der Beine auf, während der Oberkörper und der Kopf deutlich weniger exponiert waren. Die Exposition variierte je nach Fahrmanöver: Beim Beschleunigen und Bremsen waren die Werte höher als bei konstantem Fahren. Die maximale Motorleistung der Fahrzeuge hing nicht systematisch mit der Magnetfeldexposition zusammen. Langzeit-Effektivwerte aus Messungen während Fahrten im realen Straßenverkehr zeigten höhere Werte als die Daten, die während genormter Fahrzyklen auf einem Fahrzeugprüfstand ermittelt wurden. Alle Magnetfeldexpositionen wurde mit den Referenzwerten der EU -Ratsempfehlung und den ICNIRP -2010-Leitlinien verglichen. Bei sanfter Fahrweise lagen die Ausschöpfungen der EU -Referenzwerte meist im niedrigen zweistelligen Prozentbereich. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der EU -Referenzwerte. Bei Anwendung der moderneren ICNIRP -2010-Leitlinien ergab sich nur in einem Fall eine Überschreitung. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper induzierte elektrische Felder festgestellt. Die während des Ladens innerhalb der Fahrzeuge gemessenen magnetischen Flussdichten waren überwiegend niedriger als die während des Fahrens gemessenen Werte. Gleichstrom-Laden ( DC -Laden) führte, trotz höherer Ladeleistungen, zu geringeren Expositionen als Wechselstrom-Laden ( AC -Laden). Magnetische Flussdichten oberhalb der ICNIRP -Referenzwerte traten nur in unmittelbarer Nähe des Ladekabelsteckers bzw. der Fahrzeugbuchse ( bzw. beim induktiven Laden nahe dem Straßenniveau) unmittelbar neben dem Fahrzeug auf. Neben dem Antriebssystem erzeugen weitere Fahrzeugkomponenten Magnetfelder, z.B. die Sitzheizungen, Fensterheber oder Fahrzeugeinschaltung. In einigen Fällen waren diese Expositionen höher als die durch das Antriebssystem verursachten Felder. In vielen Fahrzeugen traten die höchsten Werte beim Einschalten oder Starten auf. Die mittleren Langzeitwerte in Elektroautos (0,5 bis 2,5 Mikrotesla/ µT ) entsprachen weitgehend denen in etablierten elektrisch angetriebenen Verkehrsmitteln wie Straßenbahnen oder U-Bahnen (2 bis 3 µT ). In doppelstöckigen Zügen wurden auf der oberen Fahrgastebene Werte bis zu 13 µT gemessen, also potenziell höhere Expositionen als in Elektroautos. Stand: 24.11.2025
Strahlenschutz-Studie: Untersuchte E‑Autos halten zum Schutz der Gesundheit empfohlene Höchstwerte ein Umfangreiche Magnetfeld -Messungen in und an elektrischen Pkw und Krafträdern Ausgabejahr 2025 Datum 09.04.2025 Quelle: Halfpoint/stock.adobe.com In einer Strahlenschutz -Studie haben alle untersuchten Elektroautos die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. Außerdem ist man in reinen Elektroautos nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Das zeigen aufwendige Messungen und Computersimulationen im Auftrag des Bundesamtes für Strahlenschutz ( BfS ) und des Bundesumweltministeriums ( BMUV ). Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. "Zwar wurden in einigen Fällen – lokal und zeitlich begrenzt – vergleichsweise starke Magnetfelder festgestellt. Die empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in den untersuchten Szenarien aber eingehalten, sodass nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitlich relevanten Wirkungen zu erwarten sind" , unterstreicht BfS -Präsidentin Inge Paulini. "Die Studienergebnisse sind eine gute Nachricht für Verbraucherinnen und Verbraucher, die bereits ein Elektroauto fahren oder über einen Umstieg nachdenken." Die Studie wurde von einem Projektteam aus Mitarbeitenden der Seibersdorf Labor GmbH , des Forschungszentrums für Elektromagnetische Umweltverträglichkeit (femu) der Uniklinik RWTH Aachen und des Technik Zentrums des ADAC e.V. durchgeführt. Fahrzeughersteller waren an der Untersuchung nicht beteiligt. Magnetfelder treten in allen Kraftfahrzeugen auf Magnetfeldquellen nur in Elektroautos und Hybriden Magnetfelder entstehen, wenn elektrische Ströme fließen. In modernen Kraftfahrzeugen gibt es daher viele Quellen magnetischer Felder. Dazu gehören zum Beispiel Klimaanlagen, Lüfter, elektrische Fensterheber oder Sitzheizungen. Bei Elektrofahrzeugen kommen vor allem eine größere und leistungsstärkere Batterie, die Hochvoltverkabelung und der Inverter (Wechselrichter) für den Antriebsstrom sowie der elektrische Antrieb selbst hinzu. Die Untersuchung nahm alle in den Autos auftretenden Magnetfelder in den Blick und ordnete sie – wo möglich – der jeweiligen Ursache zu. Höchste Werte meist im Fußbereich Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Die Auswertung der Messungen und Simulationen zeigte, dass die empfohlenen Höchstwerte für im Körper hervorgerufene Felder in allen erfassten Szenarien eingehalten wurden. Im Detail ergab sich allerdings ein differenziertes Bild: Die gemessenen Magnetfeldwerte variierten zwischen den untersuchten Fahrzeugen, räumlich innerhalb der einzelnen Fahrzeuge sowie abhängig vom Betriebszustand deutlich. So traten die stärksten Magnetfelder in erster Linie im Fußbereich vor den Sitzen auf, während die Magnetfelder im Kopf- und Rumpfbereich meist niedrig waren. Motorleistung ist kein Indikator für Magnetfeldstärke Zwischen der Motorisierung und den Magnetfeldern im Innenraum der Elektrofahrzeuge zeigte sich kein eindeutiger Zusammenhang. Größeren Einfluss als die Leistungsstärke des Motors hatte die Fahrweise. Bei einer sportlichen Fahrweise mit starken Beschleunigungs- und Bremsvorgängen waren kurzzeitig deutlich stärkere Magnetfelder zu verzeichnen als bei einem moderaten Fahrstil. Kurzzeitige Spitzenwerte von unter einer Sekunde Dauer traten unter anderem beim Betätigen des Bremspedals, beim automatischen Zuschalten von Motorkomponenten wie auch – unabhängig von der Antriebsart – beim Einschalten der Fahrzeuge auf. Der höchste lokale Einzelwert wurde beim Einschalten eines Hybridfahrzeugs ermittelt. Spitzenwerte senken BfS-Präsidentin Dr. Inge Paulini Quelle: Holger Kohl/ Bildkraftwerk "Die großen Unterschiede zwischen den Fahrzeugmodellen zeigen, dass Magnetfelder in Elektroautos nicht übermäßig stark und auch nicht stärker ausgeprägt sein müssen als in herkömmlichen Pkw" , sagt Paulini. "Die Hersteller haben es in der Hand, mit einem intelligenten Fahrzeugdesign lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten. Je besser es zum Beispiel gelingt, starke Magnetfeld-Quellen mit Abstand von den Fahrzeuginsassen zu verbauen, desto niedriger sind die Felder, denen die Insassen bei den verschiedenen Fahrzuständen ausgesetzt sind. Solche technischen Möglichkeiten sollten bei der Entwicklung von Fahrzeugen von Anfang an mitgedacht werden." Über die Studie Die Studie stellt nach Kenntnisstand des BfS die bislang umfangreichste und detaillierteste Untersuchung zum Auftreten von Magnetfeldern in Elektrofahrzeugen dar. Die erhobenen Daten beruhen auf systematischen Feldstärkemessungen in aktuellen, für den deutschen Straßenverkehr zugelassenen Fahrzeugmodellen auf Rollenprüfständen, auf einer abgesperrten Test- und Versuchsstrecke und im realen Straßenverkehr. Insgesamt wurden elf rein elektrisch angetriebene Pkw, zwei Hybridfahrzeuge sowie ein Fahrzeug mit Verbrennungsmotor untersucht. Mit einem E-Roller, zwei Leichtkrafträdern und einem Elektro-Motorrad wurden erstmals auch elektrische Zweiräder berücksichtigt. Ähnlich wie bei den Pkw traten die stärksten Magnetfelder im Bereich der Füße und der Unterschenkel auf. Die zum Schutz der Gesundheit empfohlenen Höchstwerte für im Körper hervorgerufene Felder wurden in allen untersuchten Szenarien eingehalten. Folglich ist das Auftreten nachgewiesenermaßen gesundheitsrelevanter Feldwirkungen in den untersuchten Fahrzeugen als insgesamt sehr unwahrscheinlich einzuschätzen. Messverfahren Durch die Anwendung ausgefeilter Messtechnik ließen sich in der Studie auch kurzzeitige Magnetfeld -Spitzen von unter 0,2 Sekunden Dauer zuverlässig erfassen und bewerten. Die aktuell gültigen Messvorschriften lassen solche kurzzeitigen Schwankungen, die bei der Aktivierung von elektrischen Fahrzeugkomponenten auftreten können, außer Acht. Die Untersuchung zeigte jedoch, dass sie in relevantem Umfang vorkommen. Eine entsprechende Erweiterung der Messnormen erscheint aus Sicht des BfS deshalb geboten. Der Studienbericht "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität. Ergebnisbericht – Teil 1" ist im Digitalen Online Repositorium und Informations-System DORIS unter der URN https://nbn-resolving.org/urn:nbn:de:0221-2025031250843 abrufbar. Weitere Informationen über den Strahlenschutz bei der Elektromobilität gibt es unter https://www.bfs.de/e-mobilitaet . Stand: 09.04.2025
Hinweise zum Abstand von Wohngebäuden zu Freileitungen und Erdkabeln Es gibt kein deutschlandweit gültiges Gesetz, das einen Mindestabstand von Hochspannungsleitungen zu Wohngebäuden vorschreibt. Seit dem Jahr 2013 gibt es ein Überspannungsverbot von Gebäuden und Gebäudeteilen, die zum dauerhaften Aufenthalt von Menschen bestimmt sind. Mindestabstände zu Hochspannungsleitungen sind aus Sicht des Strahlenschutzes nicht notwendig. Relevant ist die Einhaltung der Grenzwerte. Diese werden in Deutschland nach aktuellem Kenntnisstand an allen Orten des dauerhaften Aufenthalts eingehalten und sogar deutlich unterschritten. Es gibt kein deutschlandweit gültiges Gesetz, das einen Mindestabstand von Hochspannungsleitungen zu Wohngebäuden vorschreibt. Es gibt jedoch seit dem Jahr 2013 ein Überspannungsverbot von Gebäuden und Gebäudeteilen, die zum dauerhaften Aufenthalt von Menschen bestimmt sind. Dies betrifft den Neubau von Freileitungstrassen mit Wechselstrom, die eine Frequenz von 50 Hertz ( Hz ) und eine Nennspannung von 220 Kilovolt ( kV ) oder mehr aufweisen. Es gibt jedoch Ausnahmen, für die eine Stichtagsregelung gilt. Nicht betroffen von dem Überspannungsverbot sind bestehende Freileitungstrassen sowie entsprechende Planfeststellungsbeschlüsse, Planfeststellungs- und Plangenehmigungsverfahren, die bis zum 22. August 2013 eingereicht wurden ( § 4 Abs. 3 26. BImSchV ). Leitungen zur Höchstspannungs-Wechselstrom-Übertragung ( HWÜ ), die in den allermeisten Fällen zum Transport von elektrischer Energie in Deutschland verwendet werden, können im Falle eines Neubaus als Freileitung oder im Rahmen von Pilotprojekten als Erdkabel errichtet werden ( § 4 Bundesbedarfsplangesetz, BBPlG ). Demgegenüber sind bei der Höchstspannungs-Gleichstrom-Übertragung ( HGÜ ) bei einem Abstand zu Wohngebäuden von weniger als 400 Metern im Geltungsbereich eines Bebauungsplans oder im unbeplanten Innenbereich bzw. weniger als 200 Metern im Außenbereich Erdkabelleitungen vorgesehen und Freileitungen – mit wenigen Ausnahmen – verboten ( § 3 Abs. 4 BBPlG ). Manche Bundesländer legen bei neuen Hochspannungsleitungen Mindestabstände fest. Diese Regelungen dienen nicht dem Gesundheitsschutz. Das heißt sie sind nicht mit nachgewiesenen gesundheitsrelevanten Wirkungen begründet. Vielmehr geht es darum, Ziele der Raumordnung zu erreichen und Raumnutzungskonflikte zwischen Hochspannungsleitungen und Wohnbebauung zu verhindern. Teilweise werden die Mindestabstände auch mit dem Orts- und Landschaftsbild begründet. Grenzwerte schützen Mindestabstände zu Hochspannungsleitungen sind aus Sicht des Strahlenschutzes nicht notwendig. Dies gilt auch für verschiedene Faustformeln ("Ein Meter Abstand je kV Spannung"). Relevant ist die Einhaltung der Grenzwerte. Nach aktuellem Stand der Forschung schützt die Einhaltung der Grenzwerte Erwachsene und Kinder selbst bei einer geringen Entfernung vom Wohngebäude zur Hochspannungsleitung vor allen nachgewiesenen gesundheitlichen Wirkungen . Mit jedem Meter Abstand zu den Hochspannungsleitungen werden die dazugehörigen elektrischen und magnetischen Felder sehr schnell deutlich schwächer. Auch im Haushalt erzeugen Leitungen und Geräte elektrische und magnetische Felder. Diese können üblicherweise einen deutlich größeren Anteil an der Gesamtexposition ( d. h. der Art und Weise, wie Menschen elektrischen und magnetischen Feldern ausgesetzt sind) eines Menschen haben. Das gilt umso mehr, je weiter die Hochspannungsleitungen von den Häusern entfernt sind. Die Bundesnetzagentur oder die nach Landesrecht zuständigen Behörden genehmigen neue Hochspannungsleitungen und kontrollieren, dass die Grenzwerte eingehalten werden. Minimierung der Felder Die gesetzlichen Grenzwerte für die elektrischen und magnetischen Felder müssen an allen Orten des dauerhaften Aufenthalts nicht nur eingehalten werden, es besteht darüber hinaus noch ein Minimierungsgebot: Bei der Errichtung neuer oder der wesentlichen Änderung bestehender Hochspannungsleitungen müssen die nach dem Stand der Technik bestehenden Möglichkeiten ausgeschöpft werden, um die von der jeweiligen Anlage ausgehenden Felder zu minimieren. Was bei Messungen zu beachten ist Da die Grenzwerte in Deutschland an allen Orten des dauerhaften Aufenthalts eingehalten werden müssen, ist davon auszugehen, dass eine Messung vor Ort nur Werte deutlich unterhalb der gesetzlichen Grenzwerte liefert. Unterhalb der Grenzwerte treten nach derzeitigem Kenntnisstand keine gesundheitsgefährdenden Wirkungen auf. Wenn man trotzdem wissen möchte, wie stark die niederfrequenten Felder an einem bestimmten Ort sind, kann dies über eine Messung gezeigt werden. Diese sollte stets von Fachleuten durchgeführt werden und mindestens 24 Stunden dauern, um auch Schwankungen im Tagesverlauf zu erfassen. Für die fachgerechte Messung gibt es mehrere Möglichkeiten: Die zuständige untere Immissionsschutzbehörde des Landkreises bzw. der kreisfreien Stadt ist eine passende Anlaufstelle. Sie ist meistens Teil des Umweltamtes. Ebenso der Leitungsbetreiber, der vielleicht bereits entsprechende Messungen durchgeführt hat. Eine Kontaktaufnahme zu Technischen Universitäten oder Hochschulen könnte sich ebenfalls lohnen. Nicht zuletzt gibt es freie Anbieter am Markt. Bei diesen sollte stets auf eine geeignete Qualifikation geachtet werden. So ist zum Beispiel die Bezeichnung "Baubiologe" nicht gesetzlich geschützt, da sich jeder so nennen kann. Skeptisch sollten Auftraggeber auch werden, wenn ein Anbieter andere Grenzwerte als die gesetzlichen Werte der 26. Bundesimmissionsschutzverordnung ( 26. BImSchV ) als Maßstab heranzieht und darauf aufbauend zum Teil sehr kostspielige Abschirmmaßnahmen empfiehlt. Stand: 17.12.2025
Eine Reihe von Stressoren wie elektromagnetische Felder, Hitze, Hypoxie oder auch Belastungen durch Umweltchemikalien belasten Zellen und Organismen. Typischerweise loesen die Stressoren die Synthese von Stressproteinen aus. Wir haben im Berichtszeitraum damit begonnen, ein stressinduzierbares Protein (HSP 70) in verschiedenen Zelltypen zu quantifizieren (ELISA). Ferner wurde ein Testsystem zur Quantifizierung gentoxischer Wirkungen der Stressoren erfolgreich erprobt.
Das Ziel dieses Forschungsvorhabens besteht in der Entwicklung effizienter Algorithmen zur numerischen Berechnung von langsam veränderlichen elektromagnetischen Feldern im menschlichen Körper unter Verwendung realitätsnaher Körpermodelle. Elektromagnetische Feldexpositionen des menschlichen Körper liegen im Alltag durch eine Vielzahl elektrischer Geräte und Maschinen am Arbeitsplatz oder im Haushalt und in der Nähe von Hochspannungsleitungen vor. Dieser sogenannte Elektrosmog ist seit geraumer Zeit besonders unter gesundheits- und arbeitsmedizinischen Aspekten von wissenschaftlichem Interesse. Aus diesem Grund ist die Vorhersage von Stärke und Verteilung langsam veränderlicher elektromagnetischer Feldverteilungen im menschlichen Körper ein Thema aktueller Forschungsbemühungen.
Die Daten stellen die Standorte von genehmigungspflichtigen Mobilfunkanlagen bzw. Funkmasten in der Stadt Krefeld dar. Jeder Datensatz enthält die Standortbescheinigungsnummer der Bundesnetzagentur. Funkanlagen müssen die Anforderungen zum Schutz von Personen in elektromagnetischen Feldern von Funkanlagen nach BEMFV erfüllen, sofern ihre Sendeleistung über bestimmten Grenzwerten liegen. Stadtintern werden noch weitere Daten zu Mobilfunkanlagen geführt, z. B. der Zustand der Anlage (Geplant, In Betrieb, etc.) oder der Standorttyp (Mast, Dach-Standort, etc.). Die öffentlichen Daten beinhalten als Attribut lediglich die Standortbescheinigungsnummer.
Informationen und Daten zum Schutz vor Geräuschen, Erschütterungen, Licht und elektromagnetischen Feldern.
Strahlung ist eine Energieform, die sich als elektromagnetische Welle- oder als Teilchenstrom durch Raum und Materie ausbreitet. Die Strahlungsarten werden in 2 große Gruppen unterteilt, die sich durch ihre Energie unterscheiden. Strahlung, die bei der Durchdringung von Stoffen an Atomen und Molekülen Ionisationsvorgänge auslöst, wird als ionisierende Strahlung bezeichnet. Dazu gehören z.B. die Röntgen- und die Gammastrahlung. Als nichtionisierende Strahlung wird die Strahlung bezeichnet, bei der die Energie der Strahlung nicht ausreicht, Atome und Moleküle zu ionisieren. Dazu gehören z.B. Radio- und Mikrowellen, elektromagnetische Felder und das Licht. Ionisierende Strahlung ist sowohl Teil der Natur (Natürliche Radioaktivität) und somit Bestandteil der menschlichen Umwelt als auch das Resultat menschlicher Tätigkeit (Künstliche Radioaktivität).
Risikowahrnehmung der Öffentlichkeit zur Mobilfunktechnologie Diskussionen über mögliche gesundheitliche Risiken durch hochfrequente elektromagnetische Felder, zum Beispiel in der Umgebung von Rundfunk- und Fernsehsendern, finden bereits seit Jahrzehnten statt. Der rasante Ausbau der Mobilfunknetze seit der Jahrtausendwende und widersprüchliche Berichte darüber führten zu Diskussionen über die möglichen Gefahren der Mobilfunktechnologie. Nutzung und Akzeptanz der Mobilfunktechnologie Die Mobilfunktechnologie ist gekennzeichnet durch eine hohe Akzeptanz in großen Teilen der Bevölkerung. Einige Bevölkerungsgruppen nutzen das Mobiltelefon inzwischen bereits deutlich mehr als das Festnetztelefon bzw. besitzen gar keinen Festnetzanschluss mehr. Einer Befragung zufolge, die das Bundesamt für Strahlenschutz ( BfS ) in Auftrag gegeben hat, nutzten im Jahr 2013 80 Prozent der Deutschen über 14 Jahre ein Mobiltelefon. Die Telefonie steht dabei nicht mehr im Vordergrund, es wird mehr im Internet gesurft, gechattet und auch gespielt. Das tatsächliche Ausmaß der Smartphone - und Handynutzung ist dabei von Person zu Person und in verschiedenen Altersgruppen sehr unterschiedlich. Ausführliche Informationen hierzu sind in den Berichten über die Umfragen zu Mobilfunk 2003 bis 2006, 2009 und 2013 zu finden. Smartphones und inzwischen stark eingeschränkt klassische Handys sind in der Bevölkerung zu wichtigen Alltagsgegenständen geworden, mit denen Familienleben, Arbeit und Freizeit organisiert werden. Im Jahre 2020/2021 wurde eine weitere Umfrage zum Thema Mobilfunk und insbesondere den 5G-Ausbau durchgeführt. Der Abschlussbericht zu dieser Studie ist in DORIS verfügbar. Diskussionen um die möglichen Risiken des Mobilfunks Bei der Diskussion um mögliche gesundheitsbeeinträchtigende Wirkungen der hochfrequenten elektromagnetischen Felder des Mobilfunks spielen mögliche Auswirkungen auf Kinder und Jugendliche eine besondere Rolle. Sie könnten auf Umwelteinflüsse empfindlicher reagieren als Erwachsene und deshalb aus Gründen der Vorsorge besonders berücksichtigt werden. In Debatten wird eine Vielzahl tatsächlicher oder vermuteter Wirkungen diskutiert. Fundierte Informationen, Vermutungen und feststehende Überzeugungen treffen hier aufeinander. Extreme Positionen dramatisieren entweder ein mögliches Risiko oder verneinen es vollständig. Auch die Meinungen über gesundheitliche Wirkungen der elektromagnetischen Felder des Mobilfunks sind sehr unterschiedlich. Neben den gesundheitlichen Risiken geht es zum Beispiel um die Grundlagen der deutschen Immissionsschutz-Grenzwerte oder das komplexe Feld des Ineinandergreifens von Politik, Mobilfunkbetreibern und Strahlenschutzgremien. Kenntnisse der Bevölkerung in Wissenschaft und Technik Verschiedene Untersuchungen haben gezeigt, dass sich die Bevölkerung über die verschiedenen Teilbereiche des Themas "Mobilfunk" schlecht informiert fühlt. So hat sie zum Beispiel wenig Verständnis für die Diskussionen unter Wissenschaftlern über Qualität und Bedeutung einzelner Studien zu biologischen Wirkungen hochfrequenter Felder und interpretiert diese oft als bewusstes Zurückhalten wichtiger Ergebnisse. Die bestehenden wissenschaftlichen Unsicherheiten über die biologischen Wirkungen der elektromagnetischen Felder des Mobilfunks werden oft als Beweis für deren Schädlichkeit interpretiert. Um Mobilfunk richtig zu verstehen, braucht man viele physikalische und technische Vorkenntnisse. Beim sachlichen Dialog zwischen Fachleuten und der Öffentlichkeit kommt es entsprechend zu Missverständnissen, weil die Bevölkerung diese Kenntnisse oft nicht hat. Hinzu kommt, dass die häufig emotional geprägte Argumentation der Bevölkerung einer rein sachlichen Kommunikation von Vertretern von Behörden, Kommunen oder Mobilfunknetzbetreibern gegenübersteht. Diese sachliche Kommunikation von Seiten der Experten blendet Emotionen aus und die Experten können sich oftmals nicht in die Argumente der besorgten Bevölkerung hineinversetzen. Auch die Frage, ob Vorsorgemaßnahmen erforderlich sind und wenn ja, welche Maßnahmen sinnvoll und notwendig sind, wird in der Bevölkerung, der Politik, in den Behörden, in den Medien und von verschiedenen Interessengruppen unterschiedlich diskutiert. Dazu kommt die Verunsicherung der Bevölkerung, inwieweit Medienberichte richtig sind und die Frage, welchen Aussagen über wissenschaftliche Erkenntnisse man Glauben schenken kann. Das BfS hat daher in einem Forschungsvorhaben Leitfäden für die Beurteilung von Medienberichten sowie von wissenschaftlichen Publikationen in Form von Fragenkatalogen erstellen lassen. Proteste in der Bevölkerung In den vergangenen Jahren kam es immer wieder zu Protesten gegen einzelne Sendeanlagen . Anlässe waren unter anderem die Errichtung von Sendeanlagen für den digitalen Behördenfunk BOS und die Einführung des Mobilfunkstandards LTE (Long-Term Evolution, auch als 4G-Standard bekannt). Bei der Einführung des 5G-Standards kam es wie in der Vergangenheit zuvor erneut zu Protesten. Von Seiten der Kritiker wird als ein wichtiges Argument gegen die Sendeanlagen eine starke und dauerhafte Exposition durch die elektromagnetischen Felder der Anlagen angeführt. Dieser Dauerexposition fühlen sich Teile der Bevölkerung "ausgesetzt". Man könne ihr nicht entkommen. Wohingegen sich jeder einzelne selbst entscheiden könne, ob er ein Smartphone oder Handy benutzt und die damit verbundene Strahlenbelastung in Kauf nimmt. Zudem wurde das Vorgehen der Mobilfunkbetreiber bei der Errichtung neuer Mobilfunkanlagen häufig kritisiert. Zudem kritisiert die Bevölkerung oft die Errichtung neuer Mobilfunkantennen. Vor allem am Anfang des Ausbaus fühlten sich viele, als würden die Antennen heimlich und ohne ihre Mitbestimmung aufgestellt. Zielgruppengerechte Informationen nötig Um Informationen über den Mobilfunk zielgruppengerecht bereitstellen zu können, hatte das BfS mehrere Studien in Auftrag gegeben. Die Studien beschäftigten sich mit der Frage, wie die Bevölkerung den Mobilfunk wahrnimmt und welches Informationsbedürfnis sie hat. Es zeigte sich zum Beispiel, dass sich verschiedene Zielgruppen über ihre jeweils spezifische Einstellung zum Mobilfunk hinaus auch durch weitere Merkmale unterscheiden – wie zum Beispiel ihr Informationsverhalten, die Persönlichkeitsstruktur, ihre generelle Einstellung zu Risiken, Vertrauen in den Staat und soziodemografische Merkmale wie zum Beispiel das Alter. Die Ergebnisse dieser Studien und die dazu gehörigen Bewertungen des BfS finden Sie im Forschungsbericht Zielgruppenanalyse zur differenzierten Information und im Abschlussbericht des Deutschen Mobilfunkforschungsprogramms ( DMF ). Zur näheren Beschreibung der Wahrnehmung und Sorgen der Bevölkerung im Zusammenhang mit dem Mobilfunk gab das BfS in den Jahren 2003 bis 2006 sowie in den Jahren 2009 und 2013 repräsentative Umfragen in Auftrag. Hier wurden verschiedene Faktoren untersucht, die für den Umgang mit dem Thema Mobilfunk in der Öffentlichkeit eine Rolle spielen. Ebenso wurde deren Entwicklung über die Zeit beobachtet. Die Abschlussberichte geben einen detaillierten Einblick in die Befragungsergebnisse . Elektrosensibilität Personen, die gesundheitliche Beschwerden auf das Vorhandensein elektrischer und magnetischer Felder zurückführen, bezeichnen sich zum Teil selbst als "elektrosensibel". Das Phänomen der Elektrosensibilität gibt es schon seit vielen Jahren, wobei die Beschwerden von den Betroffenen zunächst auf die niederfrequenten Felder des Haushaltsstroms zurückgeführt wurden. Seit dem starken Ausbau der Mobilfunknetze zu Beginn der Jahrtausendwende benennen sie auch die hochfrequenten elektromagnetischen Felder als mögliche Ursachen. Zukünftige Forschung Es ist davon auszugehen, dass es auch in Zukunft Konfliktpotential bei der Errichtung von Sendeanlagen geben wird. Aufgrund der Erweiterung bzw. des Ausbaus des Mobilfunknetzes für 5G entstanden wieder Konflikte. Nach wie vor bestehen Diskrepanzen zwischen den von Teilen der Bevölkerung befürchteten Risiken und den Ergebnissen der wissenschaftlichen Forschung. Daher werden die Themen der Risikowahrnehmung und der Risikokommunikation im Zusammenhang mit dem Mobilfunk weiterhin Gegenstand der Forschung sein. Ein weiterer Forschungsschwerpunkt im Zusammenhang mit der Risikowahrnehmung und Risikokommunikation ist der Ausbau der Stromnetze . Die Forschungsergebnisse sind Grundlage für die Weiterentwicklung praktischer Konzepte, die bei der Optimierung der Risikokommunikation des BfS im Sinne einer umfassenden und objektiven Information der Öffentlichkeit umgesetzt werden können. Dieser Artikel wurde sprachlich mit KI überarbeitet. Stand: 30.07.2025
Zu den Aufgaben des Referats Luftreinhaltung/ Atomrechtliche Aufgaben gehören: im Bereich Luftreinhaltung > die Bearbeitung von planerischen und grundsätzlichen Fragen der Luftreinhaltung, > die Zuständigkeit für - die Verordnung über Luftqualitätsstandards und Emissionshöchstmengen (39. BImSchV), - die Verordnung über Emissionsgrenzwerte für Verbrennungsmotoren (28. BImSchV), - das Hamburgisches Gesetz zur Umsetzung der europäischen Schwefel-Richtlinie 2005/33/EG, > die Steuerung der Luftqualitätsüberwachung (Luftmessnetz), > die Bewertung der Luftqualität, > die Aufstellung und Fortschreibung von Luftreinhalteplänen, > die Entwicklung und Begleitung von Luftreinhaltemaßnahmen, > die Bewertung von Luftreinhaltungsaspekten im Rahmen der Bauleitplanung, > die Mitwirkung an Rechtsetzungsverfahren, > die Vertretung Hamburger Interessen in Bund-Länder-Gremien, im Bereich Atomrechtlicher Aufgaben > die Wahrnehmung atomrechtlicher Aufgaben für das Land Hamburg in der Zusammenarbeit zwischen Bund und Ländern, > die Risikovorsorge und Gefahrenabwehr beim legalen und illegalen Umgang mit Kernbrennstoffen, > die Bearbeitung von Grundsatzfragen beim Schutz der Bevölkerung vor der schädlichen Einwirkung ionisierender Strahlung, > die Optimierung der nuklearen Katastrophenschutzvorsorge für die hamburgische Bevölkerung, im Bereich Emissionskataster > das Führung des Emissionskatasters Luft und die Erteilung von Auskünften, > die Organisation und Durchführung der Datenerhebungen in Hamburg für das Emissionskataster sowie für das nationale und das europäische PRTR (Pollutant Release and Transfer Register, Schadstofffreisetzungs- und -verbringungsregister), > die Erfüllung weiterer nationaler und europäischer Berichtspflichten, > das Verfassen von Stellungnahmen zur Bauleitplanung > die Aufbereitung und Bereitstellung der Informationen für diese Aufgaben in GIS-Systemen, sowie der Immissionsschutz vor elektromagnetischen Feldern bei Anlagen der Energie- und Kommunikationstechnik.
| Origin | Count |
|---|---|
| Bund | 944 |
| Kommune | 1 |
| Land | 109 |
| Wissenschaft | 6 |
| Zivilgesellschaft | 8 |
| Type | Count |
|---|---|
| Chemische Verbindung | 1 |
| Daten und Messstellen | 1 |
| Ereignis | 2 |
| Förderprogramm | 572 |
| Gesetzestext | 8 |
| Text | 247 |
| Umweltprüfung | 7 |
| unbekannt | 225 |
| License | Count |
|---|---|
| geschlossen | 314 |
| offen | 682 |
| unbekannt | 66 |
| Language | Count |
|---|---|
| Deutsch | 1023 |
| Englisch | 277 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Bild | 11 |
| Datei | 2 |
| Dokument | 164 |
| Keine | 506 |
| Multimedia | 13 |
| Unbekannt | 8 |
| Webdienst | 1 |
| Webseite | 397 |
| Topic | Count |
|---|---|
| Boden | 414 |
| Lebewesen und Lebensräume | 761 |
| Luft | 449 |
| Mensch und Umwelt | 1062 |
| Wasser | 320 |
| Weitere | 997 |