Organic matter (OM) composition and dynamic in subsoils is thought to be significantly different from those in surface soils. This has been suggested by increasing apparent 14C ages of bulk soil OM with depth suggesting that the amount of fresh, more easily degradable components is declining. Compositional changes have been inferred from declining ä13C values and C/N ratios indicative for stronger OM transformation. Beside these bulk OM data more specific results on OM composition and preservation mechanisms are very limited but modelling studies and results from incubation experiments suggest the presence and mineralization of younger, 'reactive carbon pool in subsoils. Less refractory OM components may be protected against degradation by interaction with soil mineral particles and within aggregates as suggested by the very limited number of more specific OM analysis e.g., identification of organic compound in soil fractions. The objective of this project is to characterize the composition, transformation, stabilization and bioavailability of OM in subsurface horizons on the molecular level: 1) major sources and compositional changes with depth will be identified by analysis of different lipid compound classes in surface and subsoil horizons, 2) the origin and stabilization of 'reactive OM will be revealed by lipid distributions and 14C values of soil fractions and of selected plant-specific lipids, and 3) organic substrates metabolized by microbial communities in subsoils are identified by distributional and 14C analysis of microbial membrane lipids. Besides detailed analyses of three soil profiles at the subsoil observatory site (Grinderwald), information on regional variability will be gained from analyses of soil profiles at sites with different parent material.
Egypt passed a revolution and changed its political system, but many problems are still lacking a solution. Especially in the field of water the North African country has to face many challenges. Most urgent are strategies to manage the limited water resources. About 80% of the available water resources are consumed for agriculture and the rest are for domestic and industrial activities. The management of these resources is inefficient and a huge amount of fresh water is discarded. The shortage of water supply will definitely influence the economic and cultural development of Egypt. In 2010, Egypt was ranked number 8 out of 165 nations reviewed in the so-called Water Security Risk Index published by Maplecroft. The ranking of each country in the index depends mainly on four key factors, i.e. access to improved drinking water and sanitation, the availability of renewable water and the reliance on external supplies, the relationship between available water and supply demands, and the water dependency of each countrys economy. Based on this study, the situation of water in Egypt was identified as extremely risky. A number of programs and developed strategies aiming to efficiently manage the usage of water resources have been carried out in the last few years by the Egyptian Government. But all these activities, however, require the availability of trained and well-educated individuals in water technology fields. Unfortunately, the number of water science graduates are decreasing and also there are few teaching and training courses for water science offered in Egypt. However, there is still a demand for several well-structured and international programs to fill the gap and provide the Egyptian fresh graduates with the adequate and up-to-date theoretical and practical knowledge available for water technology. IWaTec is designed to fill parts of this gap.
Aus Weizen (T. aestivum, T. durum) und Roggen synthetisierte primäre Triticale können zur Erweiterung der genetischen Basis eines Zuchtprogrammes mit sekundären Triticale genutzt werden. Jede Kreuzung zwischen Triticale kann zu cytologischen Störungen in den Nachkommen und somit zu stark verminderter Leistung führen. Solche Störungen sind besonders gravierend in Kreuzungen zwischen primären und sekundären Triticale sowie zwischen Eltern unterschiedlicher Ploidiestufen. Ziel der Untersuchung ist es der Frage nachzugehen, mit welcher Zuchtstrategie primäre Triticale für die Erweiterung der genetischen Basis genutzt werden können. Dazu werden die Zuchtstrategien Linienentwicklung nach der Einkornramschmethode (=Single Seed Descent) und der Einsatz von Doppelhaploiden (DH) miteinander verglichen. Aus reziproken Kreuzungen sekundärer Triticale untereinander sowie mit oktoploiden und hexaploiden primären Triticale wurden zum einen DH-Linien erstellt, zum anderen erfolgte die Weiterführung der spaltenden Generationen nach der SSD-Methode über fortgesetzte Selbstung. In mehrortigen Leistungsprüfungen sollen DHs und SSDs bezüglich ihrer Leistung verglichen werden.
In this project we experimentally explore the transport of engineered inorganic nanoparticles (EINP) through soils. This is done for original EINPs and some pre-aged form. Transport of NPs in soil is expected to be different from that of reactive solutes, in that hydrodynamic drag, inertial and shear forces as well as the affinity to water-gas interfaces are expected to be more relevant. Hence, the mobility of EINPs in soil is highly sensitive to the morphology of the porous structure and the dynamics of water saturation.This project provides the pore network structure for natural soils using X-ray micro-tomography to allow for an up-scaling of pore-scale interactions explored by project partners to the scale of soil horizons. The pore structure is represented by a network model suitable for pore scale simulations including the dynamics of water-gas interfaces.Pore network simulations will be compared to column experiments for conservative tracers as well as for unaltered and pre-aged EINPs (obtained from INTERFACE). This includes steady state flow scenarios for saturated (ponding) and unsaturated conditions as well as for transient flow to explore the impact of moving water-gas interfaces. The final goal is to arrive at a consistent interpretation of experimental findings and numerical simulations to develop a module for modelling EINP transfer through soil as a function of particle properties, soil structural characteristics and external forcing in terms of flux boundary conditions.
Ziel: Umweltkenntnis - Umweltverstaendnis - Umwelthandlung. Fragen: - Wie erreichen wir alle Generationen? - Warum Umweltschutz (Schutz von Natur plus Menschenwerk)? - Wie koennen wir die Handlungsorientierung im Sinne von Natur- und Landschaftsschutz auch in Zukunft absichern? Hypothesen: Handelnde Natur- und Umweltschuetzer sind das Ergebnis der Einsichten in Schadbilder und deren Ursachen. Nur Umweltkenntnis fuehrt zu Umweltverstaendnis als Voraussetzung fuer handelnden Umweltschutz. Aufgaben: - Umweltbildung und -erziehung aller Generationen, insbesondere aber der jungen Generation; - Ueberzeugung aller Generationen, dass der Schutz 'der Welt um uns herum' notwendig ist und dass sich moeglichst viele Einwohner am Landschafts- und Naturschutz beteiligen. Ergebnisse: - Die Umwelterziehung in den Schulen wird durch die Umweltaufgabenhefte in der Hand der Schueler von vielen Eltern gefordert und von Lehrern gefoerdert; - Lehrer aller Klassen nutzen die Lehrpfadwanderungen zur Umweltbildung/-erziehung; - Vier Schulen beteiligen sich an der Lehrpfadgestaltung; - Jaehrlich zuverlaessige Teilnahme von Kommune, Bevoelkerung und Schuelern an Kroetenschutz- und Saeuberungsaktionen im LSG 'Friedewald und Moritzburger Teichgebiet'. Motto: Schutz von Natur und Menschenwerk bringt uns heute Daseins Sinn und Lebensfreude, denn wenn wir Gegenwart schonen, sichern wir die Zukunft kommender Generationen.
Unsere Motivation liegt in der Tatsache, dass die dynamische Verbindung zwischen dem marinen Oberflächenfilm (engl. sea-surface microlayer, SML) und der darunterliegenden oberflächennahen Wasserschicht über Konvektion zu heterogenen Eigenschaften der SML führt. Dies wiederum steuert das Ausmaß der bio-photochemischen Reaktionen und des Gasaustausches zwischen dem Ozean und der Atmosphäre. Die Konvektion wird durch Verdunstung angetrieben, die die SML abkühlt und es salzhaltiger macht. Infolgedessen wird die SML dichter, sinkt ab und wird durch das darunterliegende Wasser ersetzt. Die auftriebsgetriebene Konvektion wurde jedoch bei der Erforschung der SML und des Gasaustausches als dynamisches Bindeglied zwischen der Atmosphäre und dem Ozean vernachlässigt. Unser Hauptziel ist es, ein mechanistisches Verständnis der Dynamik zwischen der SML und der oberflächennahen Wasserschicht zu beschreiben. Ein mechanistisches Verständnis der Konvektion ist wichtig, da das Ausmaß der bio-photochemischen Reaktionen und Austauschprozessen von Spurengasen, Energie und Impuls letztlich durch Austauschprozesse zwischen der SML und der oberflächennahen Wasserschicht und schließlich mit tieferen Schichten bestimmt wird. Wir werden einen experimentellen Aufbau mit mehreren profilierenden Mikroelektroden und einem optischen Schlierensystem entwickeln, um die Konvektion unter verschiedenen externen Antrieben zu untersuchen. Wir werden den Effekt der horizontalen Strömung aufgrund von Gradienten der Oberflächenspannung (d.h. Marangoni-Effekt) untersuchen. Wir werden auch an dem gemeinsamen Mesokosmen-Experiment BASS teilnehmen, um den Einfluss biogener Tenside auf den konvektiven Transportmechanismus zwischen der SML und der oberflächennahen Wasserschicht zu untersuchen. Im gemeinsamen Feldexperiment BASS werden wir der Frage nachgehen, inwieweit Variationen der klein-skaligen Konvektion durch die Variabilität sub-mesoskaligen (1 km-10 km) und hydrodynamischen Prozessen nahe der Meeresoberfläche beeinflusst werden. Wir werden zwei Forschungskatamarane und eine Flotte von Treibbojen einsetzen, die mit Leitfähigkeits- und Temperatursensoren ausgestattet sind, um Dichteanomalien zwischen der SML und oberflächennahen Wasserschicht zu untersuchen. Wir werden externe ozeanische und atmosphärische Einflüsse beobachten, um die Dichteanomalien zu beschreiben. Schließlich werden wir die gewonnenen Erkenntnisse aus den Laborexperimenten, der Mesokosmos-Studie und der Feldstudie nutzen, um einen mathematischen Rahmen zur Beschreibung von Temperatur- und Salzgehaltsprofilen und deren Schwankungen unter dem Einfluss definierter ozeanischer und atmosphärischer Einflüsse zu entwickeln.
Community forestry has not met the great public expectations on a significant contribution to sustainable forestry yet. Recent research in the management and policy of community forestry describes a complex process of multi level social choice which determines the outcomes. Our hypothesis is that the key factors determining the outcomes of community forestry are the interests and power of the external stake holders. This hypothesis will be tested in a comparative quantitative and qualitative analysis. In seven countries comprising developed and developing countries 84 cases will be used for comparison. The comparative analysis will be carried out by one PhD student financed by the project. He will do the field work in close cooperation with PhD students who are already conducting their PhD analysis the different countries. The comparative analysis is aimed to explore key drivers of community forestry which are not yet identified in literature.
The nature of the microbial communities inhabiting the deeper soil horizons is largely unknown. It is also not clear why subsurface microorganisms do not make faster use of organic compounds under field conditions. The answer could be provided by a reciprocal soil transfer experiment studying the response of transferred soils to fluctuations in microclimate, organic inputs, and soil biota. The subproject P9 will be responsible for the establishment of reciprocal transfer experiments offering a strong link between subgroups interested in organic matter quality, transport of organic substances, as well as functions of the soil microbial community. A single, high molecular weight substrate (13C labelled cellulose) will be applied at two different levels in the pre-experiment to understand the dose-dependent reaction of soil microorganisms in transferred surface and sub-soils. Uniformly 13C labelled beech roots - representing complex substrates - will be used for the main reciprocal soil transfer experiment. We hypothesize that transferring soil cores between subsoil and surface soil as well as addition of labelled cellulose or roots will allow us to evaluate the relative impact of surface/subsurface habitat conditions and resource availability on abundance, function, and diversity of the soil microbial community. The second objective of the subproject is to understand whether minerals buried within different soil compartments (topsoil vs. subsoil) in the field contribute to creation of hot spots of microbial abundance and activity within a period of two to five years. We hypothesize that soil microorganisms colonize organo-mineral complexes depending on their nutritional composition and substrate availability. The existence of micro-habitat specific microbial communities could be important for short term carbon storage (1 to 6 years). The third objective is to understand the biogeography and function of soil microorganisms in different subsoils. Parent material as well as mineral composition might control niche differentiation during soil development. Depending on size and interconnectedness of niches, colonization and survival of soil microbial communities might be different in soils derived from loess, sand, terra fusca, or sandstone. From the methodological point of view, our specific interest is to place community composition into context with soil microbial functions in subsoils. Our subgroup will be responsible for determining the abundance, diversity, und function of soil microorganisms (13C microbial biomass, 13C PLFA, enzyme activities, DNA extraction followed by quantitative PCR). Quantitative PCR will be used to estimate total abundances of bacteria, archaea and fungi as well as abundances of specific groups of bacteria at high taxonomic levels. We will apply taxa specific bacterial primers because classes or phyla might be differentiated into ecological categories on the basis of their life strategies.
The aim of P2 within the Research Unit 'The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)' is to contribute to the understanding of the different sources and stabilization processes of subsoil organic matter. This will be achieved by the analysis of the soil organic matter composition in topsoil versus subsoil by 13C NMR spectroscopy in bulk soils as well as organo-mineral associations. This will be done on a number of soil profiles differing in parent material and mineralogy and therefore also in the relevance of organo-mineral associations for subsoil C stabilization. In addition, a specific sampling approach will allow to differentiate three zones associated with the dominating effect of (1) leaching of DOC (the 'bulk soil' between trees), (2) root litter decomposition (the 'root-affected zone'), and (3) direct rhizodeposition of root exudates (the 'rhizosphere' sensu strictu). The contribution of above-ground versus below-ground litter is differentiated by the analysis of cutin and suberin biomarkers. Organic matter derived from microbial sources will be identified by the microbial signature of polysaccharides in the subsoil through the analysis of neutral sugars and amino sugars. Organo-mineral associations will be further characterized by N2-BET analyses to delineate the coverage of the mineral phase with organic matter. With these analyses and our specific analytical expertise at the submicron scale (nanoSIMS) we will participate in selected joint experiments of the research unit.
This project focuses on the long-term stability (or otherwise) of vegetation, based on a series of multi-proxy records in southern South America. We will build a network of sites suitable for high-resolution reconstructions of changes in vegetation since the Last Glacial Maximum, and use these to test a null hypothesis that changes in vegetation over the past 14,000 years are driven by internal dynamics rather than external forcing factors. The extent to which the null hypothesis can be falsified will reveal the degree to which we can expect to be able to predict how vegetation is affected by external events, including future climate change. The southern fringes of the South American landmass provide a rare opportunity to examine the development of moorland vegetation with sparse tree cover in a wet, cool temperate climate of the Southern Hemisphere. We present a record of changes in vegetation over the past 17,000 years, from a lake in extreme southern Chile (Isla Santa Inés, Magallanes region, 53°38.97S; 72°25.24W; Fontana, Bennett 2012: The Holocene), where human influence on vegetation is negligible. The western archipelago of Tierra del Fuego remained treeless for most of the Lateglacial period. Nothofagus may have survived the last glacial maximum at the eastern edge of the Magellan glaciers from where it spread southwestwards and established in the region at around 10,500 cal. yr BP. Nothofagus antarctica was likely the earlier colonizing tree in the western islands, followed shortly after by Nothofagus betuloides. At 9000 cal. yr BP moorland communities expanded at the expense of Nothofagus woodland. Simultaneously, Nothofagus species shifted to dominance of the evergreen Nothofagus betuloides and the Magellanic rain forest established in the region. Rapid and drastic vegetation changes occurred at 5200 cal. yr BP, after the Mt Burney MB2 eruption, including the expansion and establishment of Pilgerodendron uviferum and the development of mixed Nothofagus-Pilgerodendron-Drimys woodland. Scattered populations of Nothofagus, as they occur today in westernmost Tierra del Fuego may be a good analogue for Nothofagus populations during the Lateglacial in eastern sites. Climate, dispersal barriers and/or fire disturbance may have played a role controlling the postglacial spread of Nothofagus. Climate change during the Lateglacial and early Holocene was a prerequisite for the expansion of Nothofagus populations and may have controlled it at many sites in Tierra del Fuego. The delayed arrival at the site, with respect to the Holocene warming, may be due to dispersal barriers and/or fire disturbance at eastern sites, reducing the size of the source populations. The retreat of Nothofagus woodland after 9000 cal. yr BP may be due to competitive interactions with bog communities. Volcanic disturbance had a positive influence on the expansion of Pilgerodendron uviferum and facilitated the development of mixed Nothofagus-Pilgerodendron-Drimys woodland.
Origin | Count |
---|---|
Bund | 194 |
Land | 11 |
Type | Count |
---|---|
Förderprogramm | 194 |
unbekannt | 11 |
License | Count |
---|---|
geschlossen | 6 |
offen | 199 |
Language | Count |
---|---|
Deutsch | 145 |
Englisch | 81 |
Resource type | Count |
---|---|
Datei | 1 |
Keine | 166 |
Webdienst | 10 |
Webseite | 31 |
Topic | Count |
---|---|
Boden | 133 |
Lebewesen und Lebensräume | 181 |
Luft | 110 |
Mensch und Umwelt | 203 |
Wasser | 94 |
Weitere | 205 |