API src

Found 679 results.

Related terms

Photochemie von wichtigen reaktiven Stickstoffverbindungen in der Mesosphäre/unteren Thermosphäre und Stratosphäre

Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.

Entwicklung eines messtechnischen Geraetes zur 'Quasi-Online'-Stickstoffgasmessung fuer Abwasserbehandlungsanlagen

Minimierung von Methanemissionen bei der Lagerung von Wirtschaftsdüngern, Teilvorhaben 1: Anlagenauswahl, Emissionsmessungen und Bewertung

Unbehandelt gelagerte Gülle verursacht hohe Methanemissionen, höher als beispielsweise Gärreste aus der anaeroben Güllevergärung . Obwohl verstärkt Anreize geschaffen wurden, Wirtschaftsdünger einer anaeroben Vergärung zuzuführen und über diesen Weg die Emissionen zu senken, ist die Vergärung von Gülle nicht für alle Standorte ökonomisch realisierbar. Die fehlende Wirtschaftlichkeit der vorhandenen Förderungen zeigt sich in dem sehr verhaltenen Zubau in der Klasse der kleinen Anlagen ('75 kW'). Daher sind kostengünstige alternative Lösungen zu entwickeln. Das im Vorhaben zu untersuchende Konzept beinhaltet eine Fassung der entstehenden Emissionen und eine Oxidation des enthaltenen Methans. Die geringen und saisonal stark schwankenden Volumenströme mit teilweise niedrigen Methankonzentrationen stehen einer wirtschaftlichen energetischen Nutzung entgegen. Aus anderen Branchen sind verschiedene Technologien bekannt, die für die Behandlung von schwach methanhaltigen Gasen geeignet sind. Eine Übertragung dieser Technologien auf die Nachbehandlung von Abgasen aus der Güllelagerung erfordert jedoch detaillierte Daten bezüglich Menge und Qualität der Abgase und vor allem zum zeitlichen Verlauf dieser Größen. Das hier beschriebene Vorhaben hat zum Ziel, Emissionen aus Güllelagern unter Praxisbedingungen über mindestens einen kompletten Jahreszyklus zu ermitteln und mögliche Technologien für die Nachbehandlung der Abgase hinsichtlich der Kosten, der energetischen Effizienz, der Leistungsfähigkeit, der Emissionsminderung und den vorhandenen Betriebserfahrungen zu bewerten. Aufbauend darauf soll die Funktionalität geeigneter Technologien praktisch (biologischer Methanoxidationsfilter) und in Form einer Simulation (RTO) demonstriert werden.

Messung der Emissionen als landwirtschaftlicher Produktion nach dem Bundesimmissionsschutzgesetz als Messstelle

Messungen nach TA-Luft und TA-Laerm zur Beurteilung der Umweltrelevanz

Transformation von partikelförmigen Kraftfahrzeugemissionen und deren Vorläufern im Nahfeld der Quelle

Es soll die Verdünnung des Abgases von Kraftfahrzeugen im Straßenverkehr und besonders die dabei erfolgende Transformation der Aerosolpartikel unter atmosphärischen Bedingungen untersucht werden. Um dieses Ziel zu realisieren, wird ein Kofferanhänger mit den notwendigen Messgeräten ausgestattet und von den zu untersuchenden Fahrzeugen gezogen. Der Aerosoleinlass an diesem Anhänger wird variabel angebracht sein, um Messungen in verschiedenen Abständen vom Auspuffrohr zu ermöglichen. Ziel ist es, gemessene Unterschiede zwischen Immissions- und Emissionsmessungen zu quantifizieren und damit beobachtete Differenzen zwischen Messungen am Motorprüfstand und solchen an einem Standort an der Straße soweit wie möglich zu erklären. Weiterhin soll der Einfluss der äußeren Bedingungen, wie meteorologische Parameter (Temperatur, relative Feuchte, etc.) und der Geschwindigkeit des Fahrzeuges quantifiziert werden. Ein wichtiger Bestandteil ist dabei auch die Charakterisierung der Mischungs- und Verdünnungsprozesse zwischen Auspuff und Probennahme. Diese soll mit zeitlich hochaufgelösten Messungen von Temperatur, Geschwindigkeit und Feuchte der Luft realisiert werden. Zusätzlich zu diesen experimentellen Arbeiten soll, wenn sinnvoll, im weiteren Verlauf des Projektes die Transformation der Partikel mit einem Modell simuliert werden.

Retrofitfähiger Integrierter Methan Oxidations-Katalysator, Vorhaben: Entwicklung und Erprobung eines effektiven und nachhaltigen Emissionsreduktions-Katalysators

Schwarm gestützte Messungen von Luftqualität und Asphalttemperaturen in Städten mittels Fahrrädern zur Förderung nachhaltiger Mobilität, Teilvorhaben: Füllner & Partner GmbH

Prozessintegrierte Abgasbehandlung bei der Reifenherstellung durch Nutzung von Einsatzströmen als Sorbenzien, Teilvorhaben TU Clausthal: 'Steigerung der Adsorptionskapazität der Adsorbentien durch Entwicklung und Optimierung der Verfahrenstechnik'

Ziel des Verbundvorhabens PARNES ist die Entwicklung eines Verfahren zur Nutzung von Füllstoffen der Reifenherstellung als Adsorbentien in einem neuen Verfahren der Abluftreinigung. Damit wäre eine produktionsintegrierte Nutzung der beladenen Materialien unter Einsparung von Erdgas und Strom der bisher notwendigen thermischen Abluftreinigung möglich. Aufgaben des CUTEC sind die experimentelle Entwicklung der Adsorption, besonders der Maximierung der Adsorptionskapazität der Materialien durch Optimierung verfahrenstechnischer Bedingungen, die messtechnische Begleitung der Versuche an der im Projekt durch Mixing Group in Freudenberg aufzubauenden Pilotanlage sowie die Mitarbeit bei der abschließenden ökonomischen und ökologischen Bewertung der konzeptionellen Modellanlage. Geplant ist, im AP 1 eine vorhandene Laboranlage in Kooperation mit ENVIROTEC auf Bewegtbett umzubauen, verschiedene Adsorbentien von Mixing Group zu testen, Verfahrensparameter zu variieren, Zusammenhänge zur Erzielung einer maximalen Beladung zu ermitteln und Bedürfnisse an das Adsorbens an Mixing Group zu übermitteln. Außerdem sollen Proben an Mixing Group für die Desorptionsversuche geliefert werden. Im AP 3 sollen dann die Ergebnisse der Parameterstudien der Laboranlage im Technikumsmaßstab verifiziert und optimiert werden. Dazu wird ein vorhandener Flugstromadsorber an einen Heißgaserzeuger (RTO oder TNV) und eine Lösemittelstation angeschlossen. Die Ergebnisse werden in Kooperation mit ENVIROTEC ausgewertet. Sie sollen für die Konzeption der Freudenberger Pilotanlage genutzt werden. In AP 5 werden die Versuche an selbiger messtechnisch begleitet. Zu nutzen ist nun die Ausstattung zu Emissionsmessungen in industriellen Abgasen und das langjährige Know how. In AP 6 werden dann Rechnungen zur CO2-Bilanzierung und die Unterstützung der ökonomischen Betrachtungen mit der dynamischen Wirtschaftlichkeitsbetrachtungen durchgeführt.

Kombinierte Untersuchung von Feinstaub und Mobilität, Teilvorhaben: Technische Universität Carolo-Wilhelmina zu Braunschweig

Kombinierte Untersuchung von Feinstaub und Mobilität, Teilvorhaben: Füllner & Partner GmbH

1 2 3 4 566 67 68