API src

Found 161 results.

Bericht: "Makroalgen – Seegras (Zostera): Bewertungssystem WRRL – Weser – Elbe (2006)"

„Der vorliegende Bericht stellt ein Bewertungssystem nach EU-Wasserrahmenrichtlinie für die Qualitätskomponente Makrophyten (Angiospermen und Makroalgen) in Küsten- und Übergangsgewässern vor. Dieses Bewertungssystem wurde exemplarisch für die Küsten- und Übergangsgewässer der Weser und die Küstengewässer der Elbe entwickelt. Gleichwohl hat es den Anspruch, auch für das Übergangsgewässer Elbe und die Wasserkörper gleichen Typs in den angrenzenden Flussgebietseinheiten (Ems, Eider) anwendbar zu sein. Das Bewertungssystem stützt sich auf die Auswertung von historischen und rezenten Quellen zur Verbreitung und Entwicklung von Seegras- und Makroalgenbeständen seit Beginn des 19. Jahrhunderts im deutschen Nordseeküstengebiet. Auf Grundlage dieser Quellen wurde zunächst eine Liste der potentiell im Gebiet vorkommenden Arten erstellt und eine Beschreibung der verschiedenen durch Makrophyten geprägten Biotoptypen vorgenommen. Das Artenspektrum umfasst 2 Seegrasarten und 152 Makroalgenarten, davon 61 Grün-, 65 Braun- und 56 Rotalgen. Das Vorkommen dieser Arten ist weitgehend auf lagestabile Substrate in der euphotischen Zone der Wasserkörper beschränkt. Entsprechend reagieren sie sensitiv auf eine Verschlechterung des Lichtklimas (Zunahme der Wassertrübung) und auf die Einwirkung hydrodynamischer Kräfte (Seegang, Strömung) oder anderer mechanischer Belastungen (z.B. Fischerei). Eine verringerte Gewässerqualität zeigt sich an den Makrophyten einerseits durch den Rückgang von Seegrasbeständen und mehrjährigen Rot- und Braunalgenarten, andererseits durch die massive Zunahme der Grünalgenentwicklung. Gestützt auf diese Erfahrung wurde das Bewertungssystem aufgebaut. Für die Entwicklung des Systems und die Definition der Klassengrenzen bei den einzelnen Qualitätsmerkmalen wurden bereits bestehende bzw. vorgeschlagene Bewertungssysteme verschiedener EU-Mitgliedstaaten ausgewertet. In diesem Zusammenhang werden auch die indexbasierten Bewertungsmethoden „Standorttypieindex“ (STI) und „ecological evaluation index“ (EEI) diskutiert. Beide Methoden werden für das Bearbeitungsgebiet als ungeeignet eingeschätzt. Das vorgestellte Bewertungssystem für Makrophyten stützt sich als kombinierte Methode auf die Klassifizierung mehrerer Qualitätsmerkmale der Angiospermen und Makroalgen. Dieses sind: Artenspektrum mariner Angiospermen; Ausdehnung der Seegrasbestände; Dichte der Seegrasbestände (Bedeckungsgrad); Anzahl von Rot- und Braunalgenarten; Anzahl mehrjähriger Arten; maximale Ausdehnung sommerlicher Grünalgenbestände (nur Eulitoral); Biomasse opportunistischer Grünalgen und Tiefenverbreitung mariner Makroalgen. Während für das Merkmal „Ausdehnung sommerlicher Grünalgenbestände“ bereits ein regelmäßiges Monitoringprogramm existiert, das auch den Anforderungen der WRRL genügt, müssen die Überwachungsuntersuchungen für die anderern Komponenten des Systems noch neu konzipiert bzw. aus bestehenden Designs weiterentwickelt werden. Basisuntersuchungen sind für den gesamten Bereich des euphotischen Sublitorals nötig. Es wird angeregt, das vorgestelle Bewertungsystem mit Hilfe von entsprechend ausgerichteter Forschung weiterzuentwickeln. Insbesondere wird vorgeschlagen – nach niederländischem Vorbild – eine potentielle Verbreitungskarte für Seegras im Eu- und Sublitoral auszuarbeiten.“

Schnellster Gletscher Grönlands

Der Jakobshavn Isbrae gilt als der sich am schnellsten bewegende Gletscher Grönlands. Seine Geschwindigkeit ist nun drastisch gestiegen, so das Ergebnis von Wissenschaftlern der University of Washington und des Deutschen Zentrums für Luft- und Raumfahrt (DLR). Räumlich und zeitlich hochaufgelöste Daten der deutschen Radarsatelliten TerraSAR-X und TanDEM-X ermöglichten besonders präzise Berechnungen. Die neue Studie wurde am 3. Februar 2014 in der Fachzeitschrift "The Cryosphere" veröffentlicht. Die Datenauswertung zeigt, dass die Fließgeschwindigkeiten des Jakobshavn Gletschers 2012 und 2013 im Jahresdurchschnitt fast dreimal höher sind als vor zwanzig Jahren. Während der Sommerperiode übertrifft sich der Gletscher hier um mehr als das Vierfache. Die Höchstgeschwindigkeit maßen die Wissenschaftler im Sommer 2012: 17 Kilometer pro Jahr. Dies entspricht einer Geschwindigkeit von mehr als 46 Meter pro Tag – ein Rekord für Ausflussgletscher nicht nur in Grönland, sondern auch in der Antarktis. Die zunehmende Geschwindigkeit bedeutet auch einen zunehmenden Verlust der so genannten Gletschermächtigkeit. Das in den Ozean abgehende Volumen des Jakobshavn Isbrae ist bereits so beträchtlich, dass es die Meerespiegelhöhe beeinflusst: ein Anstieg von rund einem Millimeter in den Jahren 2000 bis 2010.

Rekordrückgang der Eisschilde: Wissenschaftler kartieren erstmals die Höhenveränderungen der Gletscher auf Grönland und in der Antarktis

Wissenschaftler des Alfred-Wegener-Institutes, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), haben mit Hilfe des ESA-Satelliten CryoSat-2 erstmals flächendeckende Karten der Eisschilde auf Grönland und in der Antarktis erstellt und dabei nachweisen können, dass die Eispanzer beider Regionen derzeit in einem Rekordtempo schrumpfen. Insgesamt verlieren die Eisschilde pro Jahr rund 500 Kubikkilometer Eis. Diese Menge entspricht einer Eisschicht, die rund 600 Meter dick ist und sich über das gesamte Stadtgebiet Hamburgs erstreckt. Die Karten und Ergebnisse dieser Studie erschienen am 20. August 2014 in The Cryosphere, dem frei zugänglichen Onlinemagazin der European Geoscience Union (EGU).

Ozean und Kryosphäre im Klimawandel

Das Poster im Format DIN A0 veranschaulicht die Ursachen und Wirkungen von Treibhausgasemissionen und Erderwärmung auf die Ozeane und die Kryosphäre (gefrorener Teil der Erde, zum Beispiel polare Eisschilde, Meereis, ⁠ Permafrost ⁠). Die dargestellten Inhalte basieren auf dem Sonderbericht des Weltklimarates (⁠ IPCC ⁠) zu Ozean und Kryosphäre vom September 2019. Veröffentlicht in Poster.

Snowmelt Paramaters, 1987-2016, High Mountain Asia

Abstract

Amphibious passive seismic recordings on and around Muostakh Island (Laptev Sea, Russia) in August/September 2013 - Datasets

Abstract

Global SnowPack - MODIS - Daily

This product shows globally the daily snow cover extent (SCE). The snow cover extent is the result of the Global SnowPack processor's interpolation steps and all data gaps have been filled. Snow cover extent is updated daily and processed in near real time (3 days lag). In addition to the near real-time product (NRT_SCE), the entire annual data set is processed again after the end of a calendar year in order to close data gaps etc. and the result is made available as a quality-tested SCE product. There is also a quality layer for each day (SCE_Accuracy), which reflects the quality of the snow determination based on the time interval to the next "cloud-free" day, the time of year and the topographical/geographical location. The “Global SnowPack” is derived from daily, operational MODIS snow cover product for each day since February 2000. Data gaps due to polar night and cloud cover are filled in several processing steps, which provides a unique global data set characterized by its high accuracy, spatial resolution of 500 meters and continuous future expansion. It consists of the two main elements daily snow cover extent (SCE) and seasonal snow cover duration (SCD; full and for early and late season). Both parameters have been designated by the WMO as essential climate variables, the accurate determination of which is important in order to be able to record the effects of climate change. Changes in the largest part of the cryosphere in terms of area have drastic effects on people and the environment. For more information please also refer to: Dietz, A.J., Kuenzer, C., Conrad, C., 2013. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing 34, 3879–3902. https://doi.org/10.1080/01431161.2013.767480 Dietz, A.J., Kuenzer, C., Dech, S., 2015. Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sensing Letters 6, 844–853. https://doi.org/10.1080/2150704X.2015.1084551 Dietz, A.J., Wohner, C., Kuenzer, C., 2012. European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sensing 4. https://doi.org/10.3390/rs4082432 Dietz, J.A., Conrad, C., Kuenzer, C., Gesell, G., Dech, S., 2014. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing 6. https://doi.org/10.3390/rs61212752 Rößler, S., Witt, M.S., Ikonen, J., Brown, I.A., Dietz, A.J., 2021. Remote Sensing of Snow Cover Variability and Its Influence on the Runoff of Sápmi’s Rivers. Geosciences 11, 130. https://doi.org/10.3390/geosciences11030130

Global SnowPack - MODIS - Mean

This product shows the mean snow cover duration (SCDmean), which is updated each year and consists of the arithmetic mean for the entire time series since the hydrological year 2001. The hydrological year begins in the meteorological autumn (October 1 of the previous year in the northern hemisphere or March 1 of the reference year in the southern hemisphere) and ends with the meteorological summer (northern hemisphere: August 31 of the reference year; southern hemisphere: February 28/29 of the following year). Analogous to the annual products for snow cover duration, the entire year as well as the early season (until mid-winter) and the late season (from mid-winter) are taken into account here. The “Global SnowPack” is derived from daily, operational MODIS snow cover product for each day since February 2000. Data gaps due to polar night and cloud cover are filled in several processing steps, which provides a unique global data set characterized by its high accuracy, spatial resolution of 500 meters and continuous future expansion. It consists of the two main elements daily snow cover extent (SCE) and seasonal snow cover duration (SCD; full and for early and late season). Both parameters have been designated by the WMO as essential climate variables, the accurate determination of which is important in order to be able to record the effects of climate change. Changes in the largest part of the cryosphere in terms of area have drastic effects on people and the environment. For more information please also refer to: Dietz, A.J., Kuenzer, C., Conrad, C., 2013. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing 34, 3879–3902. https://doi.org/10.1080/01431161.2013.767480 Dietz, A.J., Kuenzer, C., Dech, S., 2015. Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sensing Letters 6, 844–853. https://doi.org/10.1080/2150704X.2015.1084551 Dietz, A.J., Wohner, C., Kuenzer, C., 2012. European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sensing 4. https://doi.org/10.3390/rs4082432 Dietz, J.A., Conrad, C., Kuenzer, C., Gesell, G., Dech, S., 2014. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing 6. https://doi.org/10.3390/rs61212752 Rößler, S., Witt, M.S., Ikonen, J., Brown, I.A., Dietz, A.J., 2021. Remote Sensing of Snow Cover Variability and Its Influence on the Runoff of Sápmi’s Rivers. Geosciences 11, 130. https://doi.org/10.3390/geosciences11030130

Global SnowPack - MODIS - Yearly

This product shows the snow cover duration for a hydrological year. Its beginning differs from the calendar year, since some of the precipitation that falls in late autumn and winter falls as snow and only drains away when the snow melts in the following spring or summer. The meteorological seasons are used for subdivision and the hydrological year begins in autumn and ends in summer. The snow cover duration is made available for three time periods: the snow cover duration for the entire hydrological year (SCD), the early snow cover duration (SCDE), which extends from autumn to midwinter (), and the late snow cover duration (SCDL), which in turn extends over the period from mid-winter to the end of summer. For the northern hemisphere SCD lasts from September 1st to August 31st, for the southern hemisphere it lasts from March 1st to February 28th/29th. The SCDE lasts from September 1st to January 14th in the northern hemisphere and from March 1st to July 14th in the southern hemisphere. The SCDL lasts from January 15th to August 31st in the northern hemisphere and from July 15th to February 28th/29th in the southern hemisphere. The “Global SnowPack” is derived from daily, operational MODIS snow cover product for each day since February 2000. Data gaps due to polar night and cloud cover are filled in several processing steps, which provides a unique global data set characterized by its high accuracy, spatial resolution of 500 meters and continuous future expansion. It consists of the two main elements daily snow cover extent (SCE) and seasonal snow cover duration (SCD; full and for early and late season). Both parameters have been designated by the WMO as essential climate variables, the accurate determination of which is important in order to be able to record the effects of climate change. Changes in the largest part of the cryosphere in terms of area have drastic effects on people and the environment. For more information please also refer to: Dietz, A.J., Kuenzer, C., Conrad, C., 2013. Snow-cover variability in central Asia between 2000 and 2011 derived from improved MODIS daily snow-cover products. International Journal of Remote Sensing 34, 3879–3902. https://doi.org/10.1080/01431161.2013.767480 Dietz, A.J., Kuenzer, C., Dech, S., 2015. Global SnowPack: a new set of snow cover parameters for studying status and dynamics of the planetary snow cover extent. Remote Sensing Letters 6, 844–853. https://doi.org/10.1080/2150704X.2015.1084551 Dietz, A.J., Wohner, C., Kuenzer, C., 2012. European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products. Remote Sensing 4. https://doi.org/10.3390/rs4082432 Dietz, J.A., Conrad, C., Kuenzer, C., Gesell, G., Dech, S., 2014. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing 6. https://doi.org/10.3390/rs61212752 Rößler, S., Witt, M.S., Ikonen, J., Brown, I.A., Dietz, A.J., 2021. Remote Sensing of Snow Cover Variability and Its Influence on the Runoff of Sápmi’s Rivers. Geosciences 11, 130. https://doi.org/10.3390/geosciences11030130

Bericht: "Umsetzung WRRL: Ems-Dollart Ästuar (2007)"

„Die Wasserrahmen-Richtlinie (WRRL) schafft einen Ordnungsrahmen für den Schutz der Binnenoberflächengewässer, der Übergangsgewässer, der Küstengewässer und des Grundwassers. Im Rahmen der Umsetzung der Richtlinie ist es zunächst notwendig, den aktuellen Zustand der Gewässer anhand eines Zielsystems zu beurteilen und damit den Handlungsbedarf im Hinblick auf dasZiel der WRRL aufzuzeigen. Dieser erste Schritt erfordert die Entwicklung geeigneter Bewertungsverfahren für die von der WRRL vorgegebenen Qualitätskomponenten. Das Gebiet des Übergangsgewässers der Fluss-Gebiets-Einheit (FGE) Ems wird über die Grenzgewässerkommission gemeinsam von deutscher und niederländischer Seite verwaltet. Entsprechend wird hier auch gemeinsam an der Umsetzung der WRRL gearbeitet und die Berichtspflichten gegenüber der EG werden gemeinsam wahrgenommen. Im Zuge der Arbeiten sind in den letzten Jahren mehrere Berichte zur speziellen Situation im Ems-Dollart-Bereich erstellt worden (ADOLPH et al. 2005, Ständige Grenzgewässerkommission 2005, ADOLPH & PETRI 2006). Zeitgleich zu der Entwicklung von Bewertungsansätzen stand die Erarbeitung von Monitoringstrategien an, die ebenso in bilateraler Abstimmung zwischen den Niederlanden und Deutschland stattfand. Um einen aktuellen Überblick über die Vielzahl weiterer Berichte und Ansätze als Grundlage für die zukünftige Bearbeitung zu erhalten, wird im vorliegenden Bericht unter Berücksichtigung der deutsch-niederländischen Kooperation der Stand der Bearbeitung zu den Qualitätskomponenten Makrophyten (Brack- und Salzmarschen, Seegras, Makroalgen), Phytoplankton, Fische und Makrozoobenthos zusammenfassend dargestellt. Folgende Aspekte werden im vorliegenden Bericht zusammenfassend aufbereitet: • Kurzdarstellung über mögliche Vorgehensweisen zur allgemeinen Bestimmung des ökologischen Potenzials in erheblich veränderten Gewässern (Top-down-, Bottom-up-Methode) • Informationen bzw. aktueller Entwicklungsstand der Bewertungsverfahren für die in Übergangsgewässern relevanten biologischen Qualitätskomponenten • Informationen zum Monitoring für die verschiedenen Qualitätskomponenten (allgemein und hinsichtlich des Ems-Dollart-Ästuars) • Kurzhinweise zum Stand der Interkalibration (komponentenspezifisch) • Stand zur Festlegung bzw. Bewertung des ökologischen Potenzials auf der Ebene der biologischen Qualitätskomponenten fokussiert auf das Ems-Dollart-Ästuar Weiterhin wird zu jeder Qualitätskomponente ein kurzer Ausblick auf fortführende Arbeiten gegeben. Mit der Erarbeitung des Berichts wurde das Büro BioConsult Schuchardt & Scholle GbR im Oktober 2007 vom NLWKN Brake-Oldenburg beauftragt.“

1 2 3 4 515 16 17