API src

Found 4878 results.

Related terms

Entwicklung eines effizienten Tiefenluftfiltermaterials - HaLo-Filter Optimierung und Produktion, Teilvorhaben: Schrumpfoptimierte Mikrofasergarne für hochvoluminöse gekräuselte Filtermaterialien

CO2-freies Recycling von Nichteisen-Metallen, Teilvorhaben: Großtechnische Referenzdaten, Vorbereitung der Prozessumrüstung und Verfahrensnachweis im Produktionsmaßstab

Branchenabhängiger Energieverbrauch des verarbeitenden Gewerbes

<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>⁠. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>

Glas und Altglas

<p>Altglas kann unendlich oft wieder eingeschmolzen und zur Herstellung neuer Glasprodukte genutzt werden. Solch eine erneute stoffliche Nutzung ist umweltverträglich und kann viel Energie (ca. 10 Prozent) und viele Rohstoffe einsparen, wenn die verschiedenen Glasprodukte wie Flaschen und Fenstergläser an ihrem Lebensende dem richtigen Entsorgungsweg zugeführt werden.</p><p>Massenprodukt Glas</p><p>In Deutschland stellten Glashersteller 2024 rund 6,661 Millionen Tonnen (Mio. t) Glas her. Aus 3,788 Mio. t davon wurde Behälterglas gefertigt, aus 1,794 Mio. t Flachglas. Aus rund 292.500 Tonnen (t) entstanden spezielle Gläser für Haushalte, Forschung und Wirtschaft. Der folgende Text beschreibt die Sammlung und Verwertung dieser Gläser. Zusätzlich gibt es Produzenten von Mineralwollen, die rund 786.000 t Glas- und Steinwolle herstellen, die als Dämmmaterial eingesetzt wurden (siehe Abb. „Glasproduktion im Jahr 2024 und die Anteile der einzelnen Glasbranchen“).</p><p>Glas: gut recycelbar!</p><p>Glas lässt sich unendlich oft wieder verwenden. Es kann beliebig oft in den Schmelzprozess zurückgeführt und zu neuen Produkten verarbeitet werden. Da recyceltes Glas bei niedrigeren Temperaturen als die zur Glasherstellung erforderlichen Rohstoffe schmilzt, sinkt der Energiebedarf, wenn Glasscherben zugesetzt werden. Über den Daumen lässt sich sagen, dass der Energiebedarf um etwa 0,2 bis 0,3 % sinkt, wird ein Prozent Altglas dem Schmelzofen hinzugefügt. Einschmelzen von Altglas schützt so das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ und spart Rohstoffe wie Quarzsand, Soda und Kalk ein. Das trägt ebenfalls zur Verringerung der dem Herstellungsprozess anrechenbaren Umweltbelastungen bei. Weiterhin braucht eingeschmolzenes Altglas nicht deponiert zu werden.</p><p>Glashersteller setzen Scherben, die als Ausschuss bei der Produktion anfallen, wieder ein. Der Einsatz von Altglas hängt aber von den herstellungsspezifischen Anforderungen an den Reinheitsgrad der Scherben ab. So kann gefärbtes Glas nicht zur Herstellung von Weißglas genutzt werden und Keramikscherben oder Steine stören den Produktionsprozess.</p><p>Im Jahr 2015 haben Behälterglashersteller in Glaswannen durchschnittlich 60 % Scherben eingesetzt, bei Grünglas sogar bis zu 90 %.</p><p>Altglassammlung mit Tradition</p><p>Für Behälterglas wurde bereits im Jahr 1974 ein flächendeckendes Sammelsystem eingerichtet. Meist werden Bringcontainersysteme zur getrennten Erfassung von Weiß-, Braun- und Grünglas eingesetzt. Über 250.000 solcher Altglascontainer sind bundesweit im Einsatz.</p><p>Die Aufbereitung des gesammelten Behälterglases erfolgt zwar weitestgehend vollautomatisch. Die Farbsortierung erfordert jedoch aus technischen und ökonomischen Gründen eine nach Farben getrennte Sammlung der Glasbehälter. So ist die Sortenreinheit der gesammelten Glasmengen eine Voraussetzung für die Rückführung von Behälterglasscherben in den Schmelzprozess zur Herstellung neuer Flaschen und Gläser.</p><p>Im Jahr 2006 erreichte die Behälterglasverwertung eine Quote von 83,6 %. Bis zu diesem Jahr hat die Gesellschaft für Glasrecycling und Abfallvermeidung mbH (GGA) die entsprechenden Daten zur Verfügung gestellt. Nach dem kartellrechtlichen Verbot dieser Organisation fehlen verlässliche Daten über das Aufkommen von Behälterglasscherben. Zahlen müssen nunmehr aus den entsprechenden Abfallstatistiken sowie den jährlichen Erhebungen zum Aufkommen und zur Verwertung von Verpackungsabfällen in Deutschland (siehe auch <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/verpackungsabfaelle">„Verpackungsabfälle“</a>) entnommen werden. Diese Veröffentlichung weist für das Jahr 2022 eine Verwertungsquote von 84,6 % für auf den Markt gebrachte Behältergläser aus (siehe Abb. „Verwertung von Glas aus gebrauchten Verpackungen“).&nbsp;</p><p>Generell ist eine Vorsortierung beim Verbraucher unbedingt erforderlich. Fensterglas, Autoglas, Kristallglas und feuerfeste Gläser wie Laborglas, Ceran®, Pyrex® lassen sich bei der Altglasaufbereitung nur schwer aussortieren und können zu hohen Produktionsausfällen oder zur Anreicherung von Schwermetallen im Behälterglaskreislauf führen, zum Beispiel durch Bleikristallglasscherben. Deshalb dürfen diese Gläser nicht in Altglasbehältern entsorgt werden.</p><p>Stoffliche Verwertung von Behälterglas</p><p>In der Behälterglasindustrie stellt Altglas mittlerweile die wichtigste Rohstoffkomponente dar. Eine Tonne Altglas darf jedoch nicht mehr als 25 g an Keramik, Steinen und Porzellan (KSP-Fraktion) enthalten und maximal 5 g an Nichteisenmetallen wie Aluminium. Zudem sind Grenzwerte für Eisenmetalle und für organische Bestandteile wie Kunststoffe und Papier zu unterschreiten.</p><p>Besonders wichtig ist die Farbreinheit der Altglasscherben. Um weißes Behälterglas herzustellen, ist bei einer Altglasscherbenzugabe von 50 % eine Farbreinheit von 99,7 % erforderlich. Der Fehlfarbenanteil im Braunglas darf die 8 %-Marke nicht überschreiten. Lediglich grünes Glas lässt einen Fehlfarbenanteil von bis zu 15 % zu.</p><p>Stoffliche Verwertung von Flachglas</p><p>Für Flachglasprodukte wie Fensterglas und andere Baugläser gelten besondere Qualitätsanforderungen wie Farbreinheit und Blasenfreiheit. Die Flachglasindustrie setzt daher überwiegend sortenreine Glasscherben aus weiterverarbeitenden Betrieben und Eigenscherben ein. In den letzten Jahren wurden die Sammelsysteme zur Erfassung möglichst sortenreiner und fremdstoffarmer Flachglasprodukte im weiterverarbeitenden Gewerbe ausgebaut. Altglas, das nicht den vorgegebenen Anforderungen an den Reinheitsgrad entspricht, muss aufbereitet werden. Hierfür stehen in Deutschland derzeit zehn Aufbereitungsanlagen zur Verfügung.</p><p>Altglasfraktionen, die sich aus Qualitätsgründen nicht für die Herstellung neuer Flachgläser eignen, können in geringem Umfang bei der Herstellung von Behälterglas eingesetzt werden, aber auch bei der Herstellung von Dämmwolle, Schmirgelpapier, Schaumglas und Glasbausteinen.</p><p>Autoscheiben werden geschreddert</p><p>Demontagebetriebe für Altfahrzeuge müssen grundsätzlich Front-, Heck- und Seitenscheiben sowie Glasdächer von Altfahrzeugen ausbauen und dem Recycling zuführen. Das schreibt die Altfahrzeugverordnung vor (siehe <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/altfahrzeugverwertung-fahrzeugverbleib">"Altfahrzeugverwertung und Fahrzeugverbleib"</a>). Im Jahr 2023 nahmen die deutschen Altfahrzeug-Demontagebetriebe 253.195 Altfahrzeuge zur Behandlung an. Sie enthielten im Schnitt etwa 35 kg Fahrzeugglas je Altfahrzeug, insgesamt rund 8.900 t. Aufgrund behördlicher Ausnahmen von der Demontagepflicht haben die Altfahrzeugverwerter nach Angaben des <a href="https://www-genesis.destatis.de/genesis/online?operation=table&amp;code=32111-0004&amp;bypass=true&amp;levelindex=1&amp;levelid=1698847590512#abreadcrumb">Statistischen Bundesamtes</a> (öffentlich verfügbare Werte auf 100 t gerundet) davon nur etwa 7 % – also 578 t – demontiert. Der überwiegende Anteil der Fahrzeugscheiben und Glasdächer gelangt mit den Altfahrzeugen in Schredderanlagen. Die dabei anfallenden nichtmetallischen mineralischen Rückstände wurden im Jahr 2023 überwiegend verwertet, etwa als Bergversatz oder im Deponiebau, und teilweise beseitigt.</p><p>Über die Ersatzverglasung, also den Anfall von Fahrzeugglas durch Scheibenwechsel, liegt eine grobe Schätzung für das Jahr 2020 vor: In Markenwerkstätten wurden in Deutschland schätzungsweise rund 1,7 Millionen Verbundglasscheiben ersetzt. Geht man von einem durchschnittlichen Gewicht einer Windschutzscheibe von knapp 10 kg aus, so bedeutet dies einen Anfall von etwa 16.000 t an Verbundsicherheitsglas (VSG). Hinzu kommt noch eine unbekannte Menge aus der Ersatzverglasung aus weiteren Werkstätten. Etwa 90 % der Altgläser aus der Ersatzverglasung werden einer Verwertung zugeführt.</p>

CO 2 Klimabilanz 1990 bis 2021

Energie- und CO2-Bilanzierung 2021 Die Stadt Aachen erstellt seit 2010 jährlich eine Energie- und CO2-Bilanz (Daten und Berechnungen von 1990 bis 2021 liegen vor). Als Basisjahr wurde das Jahr 1990 (gemäß Kyoto-Protokoll 1997) ausgewählt. Die Bilanz wird mit dem vom Klimabündnis (Climate Alliance) empfohlenen Berechnungstool ECORegion auf Basis tatsächlicher Verbräuche sowie zusätzlicher statistischer Daten ermittelt. Die Endenergiebilanz umfasst zunächst den Energiebedarf der Verbraucher innerhalb der Stadtgrenzen. Die Primärenergiebilanz (Methode LCA: Life Cycle Assessment) umfasst darüber hinaus den Energiebedarf zur Produktion, Umwandlung und Transport der Energieträger (Vorkettenanteile) und erstreckt sich somit über den Bilanzierungsraum der Stadt hinaus.

Analyse von Bietstrategien und deren Einfluss auf den Strompreis im EU-Binnenmarkt

Die Stromerzeuger bieten an der Strombörse einen Erzeugungspreis an, der die variablen Kosten des Kraftwerksbetriebs widerspiegelt. Anhand dieser Grenzkosten wird nach dem Merit-Order Prinzip schließlich der Strompreis ermittelt. Es ist jedoch zu hinterfragen, ob das Bieten nach Grenzkosten heute wie auch in einem zukünftig deutlich heterogener aufgestellten Kraftwerksportfolio, das an der Börse Handel treibt, weiterhin Bestand hat. So verändert die aktuelle Situation an den Energiemärkten durch die unvorhergesehenen starken Preisanstiege der Rohstoffe das gewohnte Handelsbild, denn bei einem gleichgebliebenen Kraftwerkspark sind die Beschaffungskosten bspw. für Gaskraftwerke überproportional gestiegen. Auch der europaweite Ausbau der erneuerbaren Energien kann Einfluss auf das Bietverhalten der Marktteilnehmer haben. Da die Grenzkosten der erneuerbaren Energien Anlagen nahezu null sind, kann deren zunehmender Handel an den Märkten zu großen Differenzen zwischen den Grenzkosten der bietenden Kraftwerke führen. Gleichzeitig können besonders die zu erwartenden Volatilitäten bei der Erzeugung aus erneuerbaren Energien zu sehr geringen Strompreisen führen und damit Refinanzierungen erschweren. Zusätzlich verbindet die europäische Marktkopplung unterschiedliche Erzeugungsparks miteinander und verändert damit ebenfalls die bestehenden Märkte und deren Handelseigenschaften. So kann es finanziell attraktiv erscheinen, einen Aufschlag auf die Grenzkosten oder eine strategisch platzierte Stromnachfrage zu nutzen. Im Rahmen des Vorhabens sollen daher die an der EPEX SPOT vorhandenen Gebotsdaten in den Preiskurven auf strategische Muster hin analysiert werden. Gefundene Strategien werden in einem zweiten Schritt in die Zukunft getestet. Dazu wird deren Einfluss auf den Strompreis und Investitionen in flexible Erzeugungstechnologien in Deutschland unter Berücksichtigung der in Zukunft stark unterschiedlichen nationalen Stromerzeugungssysteme in Europa untersucht.

Klimaforschungsplan KLIFOPLAN, Potentiale für eine weitergehende Elektrifizierung (PowEr)

Aus Gründen der Energieeffizienz, Ressourcenschonung und Treibhausgas-Minderung zeichnet sich ab, dass die Verkehrsarten möglichst elektrifiziert werden sollten. Sofern das nicht möglich ist, muss der Endenergiebedarf durch andere Kraftstoffe gedeckt werden, die langfristig treibhausgasneutral her- und bereitgestellt werden müssen. Batterien wurden in den letzten Jahren deutlich leistungsfähiger (gravimetrische und volumetrische Energiedichte) und werden auch absehbar noch besser und günstiger. Zukünftig sollten dadurch weitere Verkehrsmodi batterieelektrisch betrieben werden können und andere noch umfassender als bisher. Dies ermöglicht geringere Bedarfe an anderen Endenergieträgern und einen geringeren Energiebedarf. Im Vorhaben sollen die jetzigen und insbesondere zukünftigen Möglichkeiten der Batterie-Technik in Anwendungen des Verkehrs detailliert untersucht werden. Die verkehrsträgerseitigen Anforderungen der jeweiligen charakteristischen Segmente der Verkehrsarten (z.B. Fähren, Binnenschiffe, Zweiräder, Linienbusse) an die Energieversorgung müssen dazu detailliert aufgeschlüsselt werden, um diese anschließend ggf. wieder clustern zu können. Welche Arten von Energiespeichern werden dafür benötigt bzw. jetzt schon entwickelt, welche Kostenentwicklungen sind zu erwarten? Batterietechnisch sind alle Ansätze zu identifizieren, die in den nächsten 2 bis 3 Dekaden aus heutiger Sicht relevant werden könnten. Die Beurteilung erstreckt sich auch auf die Risiken der Technik und die Kritikalität von Rohstoffen. Für die auch zukünftig nicht realistisch elektrifizierbaren Verkehrsträger wäre zu untersuchen, welche Energieträger (PtG-H2, PtG-Methan, PtL) und Antriebe dann, unter Berücksichtigung der Energieeffizienz, Ressourcen und THG-Minderung, als geeignete Alternative erscheinen. Diese Arbeiten sind die Grundlage für eine Abschätzung des zukünftigen Endenergie- und Primärenergiebedarfs im Verkehr, was in drei Szenarien ermittelt werden soll.

Energieoptimierte Produktion mit grünen Digitalen Zwillingen

Nachhaltige Erzeugung von grünem Wasserstoff aus ammoniakhaltigen, wässrigen Reststoffströmen mithilfe effizienter Plasmatechnologie, Teilvorhaben: Entwicklung und Untersuchung keramischer Membrankontaktoren zur Extraktion von NH3(g) aus wässrigen Medien

Forschergruppe (FOR) 5438: Der urbane Einfluss auf dem mongolischen Plateau: Verflechtungen von Stadtwesen, Wirtschaft und Umwelt, Teilprojekt: Siedlungssystem und wirtschaftliche Tätigkeiten im Orchontal während des Mongolischen Reiches

Unter Ögödei (1229-1241), dem Nachfolger von Dschingis Khan, tritt das Mongolische Reich in eine Phase der Konsolidierung ein. Er lässt 1235 Karakorum als Hauptstadt ausbauen und siedelt Handwerker sowie Verwaltungsfachleute in der Stadt an. Gesandtschaften, Tribute und Beute erreichen die Stadt, von den prall gefüllten Schatzhäusern neben dem Herrscherpalast wird wiederholt berichtet. Die verfügbaren Daten aus schriftlichen Quellen und der Archäologie deuten darauf hin, dass die Stadt Karakorum, die Residenzen und die Siedlungen in einem Zeitraum von nur vier Jahren (1235-1238) errichtet wurden. Die Schaffung einer Stadtlandschaft aus dem Nichts in einer Region, in der keine Städte bestanden, ist eine Meisterleistung, die bis heute nicht als solche erkannt wurde. Das Tal muss sich in kürzester Zeit von einer Pastoralwirtschaft mit geringer Camp- und Bevölkerungsdichte in eine vom Reich organisierte Stadtlandschaft verwandelt haben, mit entsprechend radikalen Veränderungen in den Siedlungsmustern, der Flächennutzung und der Zusammensetzung der Bevölkerung. Der plötzliche Bedarf an zusätzlicher Energie und auch an anderen Ressourcen muss eine Herausforderung für Natur und Mensch gewesen sein. Nimmt man alle Indizien zusammen, so ist von einer starken urbanen Beeinflussung der Umwelt auszugehen. Ziel dieses Projektes ist die Untersuchung aller bekannten Siedlungen mit permanenter Architektur des Mongolenreiches im mittleren Orkhon-Tal. Diese Siedlungen sollen in ihrem Umfang vollständig erfasst, Siedlungspläne erstellt und ihre Struktur beschrieben werden. Pyrotechnische Anlagen sollen lokalisiert und, wenn möglich, ihre Funktion bestimmt werden. In enger Zusammenarbeit mit SP3 und SP4 werden im Rahmen dieses Projekts präzise magnetische und topographische Karten aller in Frage kommenden Standorte erstellt. Darüber hinaus werden für die Mongolei erstmals zwei Aktivitäten erfasst, die für die Verifizierung der Thesen der Forschergruppe zentral sind: Landwirtschaft und Eisenverhüttung. Durch die enge Zusammenarbeit mit SP5 wird eine Kenntnis der landwirtschaftlichen Praktiken am Standort Bayan Gol erreicht und darüber hinaus erstmals in der Mongolei eine Klassifizierung und Datierung der Flursysteme vorgenommen. Es werden mehrere Surveys durchgeführt, um die Eisenverhüttungsplätze in der Region zu lokalisieren. Wir gehen davon aus, dass vor allem Holz bzw. Holzkohle als Brennstoff verwendet wurde, so dass der sprunghaft gestiegene Bedarf in den Umweltarchiven erfasst werden kann. In Zusammenarbeit mit SP2 werden wir die Fußgängersurveys im Orkhon-Tal fortsetzen, mit besonderem Augenmerk auf das Gebiet im nordwestlichen Teil des Tals, wo wir eine neue Siedlung entdeckt haben. Zusammen mit Informationen aus früheren Erhebungen werden wir ein erstes Verständnis der Dichte des Siedlungsmusters, des Verhältnisses zwischen saisonalen und permanenten Standorten und des Netzes von Produktionsstätten für die Versorgung der Stadt und der Wohngebiete gewinnen.

1 2 3 4 5486 487 488