<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>
An der Notwendigkeit eines verstärkten Einsatzes von Wärmedämmstoffen im Hochbau zur Reduzierung der CO2 -Emissionen besteht seit dem Klimaschutzgipfel von Rio de Janeiro 1992 kein Zweifel mehr. Deutschland verpflichtete sich dort, die CO2 -Emissionen bis zum Jahr 2005 um 30 Prozent gegenüber dem Vergleichsjahr 1987 zu verringern. Mit Einführung der Wärmeschutzverordnung WschVO 1994 wurde der Heizenergiebedarf um 30 Prozent, mit seit 2001 gültigen Energieeinsparverordnung EnEV um weitere 25-30 Prozent verringert. Die gestiegenen Anforderungen an den Wärmeschutz bewirkten ein Wachstum des deutschen Dämmstoffmarkts von 1992 bis 1997 um ca. 50 Prozent. Zeitgleich entwickelte sich bei den Verbrauchern ein Bedürfnis nach natürlichen, ökologischen und gesunden Baustoffen, das die Markteinführung einer Reihe von natürlichen, organischen Faserdämmstoffen (NOFD) zusätzlich begünstigte. Diese Dämmstoffe basieren aus der Rohstoffbasis von (Alt-) Papier, Schafwolle, Baumwolle, Holz, Kokos, Flachs, Hanf, etc. Im Gegensatz zu den herkömmlichen Dämmstoffen, wie z.B. Mineralwollen und Hartschäume, sind die Emissionen bei der Herstellung, Verarbeitung und in der Nutzungsphase der natürlichen Dämmstoffe noch nicht restlos geklärt. Ziel des Forschungsvorhabens war es daher, Informationsdefizite abzubauen und für die einzelnen Dämmstoffgruppen und Einbaumethoden eine exemplarische Datenbasis über Belastungen beim Einbau und in der Nutzungsphase zu schaffen. In den Untersuchungsumfang aufgenommen wurden Produkte, die über eine Zulassung des Deutschen Instituts für Bautechnik verfügen bzw. genormt sind. Für die gesamte Bandbreite der natürlichen, organischen Faserdämmstoffe wurden in der reellen Baupraxis die unterschiedlichen Einbringmethoden (offenes Aufblasen feucht und trocken, Sprühverfahren, Einblasen, manueller Einbau von Matten und Platten) in die verschiedenen Einbaustellen (Boden, Wand, Decke, Dach) erfasst.
Gegenstand des Verbundvorhabens FLEX-G 4.0 ist die Erarbeitung einer kostengünstigen Nachrüstlösung innovativer schaltbarer Folien, die möglichst einfach auf bereits installierte Fenster laminiert werden können und zur Senkung des Gesamtenergiedurchlassgrades (g-Wert) der Fenster und damit des Energiebedarfs des Gebäudes beitragen. Das Hauptziel des Projektes ist die Erforschung geeigneter Systemdesigns und Fertigungstechnologien für großflächige elektrochrome Folien als Halbzeug zur Verarbeitung auf der Baustelle sowie die Erforschung von robusten Verfahren für eine 'einfache' Vor-Ort Applikation dieser Folien auf Fenster und Fassaden in Bestandsgebäuden. Als integraler Bestandteil des Systemdesigns sollen Lösungen für die netzunabhängige Energieversorgung und geeignete Schaltparameter und Sensortechnologien für die kabellose, automatisierte Steuerung des Schaltzustands der Folien erforscht werden. Ein weiteres Ziel beinhaltet die Demonstration und experimentelle Quantifizierung des Energie-Einsparpotentials an zwei operativen Gebäuden im öffentlichen Sektor. Das Teilvorhaben von Enerthing hat das Ziel sowohl eine energieautarke Versorgungs- und Steuerungseinheit zur Schaltung electrochromer Folien als auch die Anbindung dieser Einheit an das Internet der Dinge, Gebäudesteuerung, etc. zu entwickeln.
Unter Ögödei (1229-1241), dem Nachfolger von Dschingis Khan, tritt das Mongolische Reich in eine Phase der Konsolidierung ein. Er lässt 1235 Karakorum als Hauptstadt ausbauen und siedelt Handwerker sowie Verwaltungsfachleute in der Stadt an. Gesandtschaften, Tribute und Beute erreichen die Stadt, von den prall gefüllten Schatzhäusern neben dem Herrscherpalast wird wiederholt berichtet. Die verfügbaren Daten aus schriftlichen Quellen und der Archäologie deuten darauf hin, dass die Stadt Karakorum, die Residenzen und die Siedlungen in einem Zeitraum von nur vier Jahren (1235-1238) errichtet wurden. Die Schaffung einer Stadtlandschaft aus dem Nichts in einer Region, in der keine Städte bestanden, ist eine Meisterleistung, die bis heute nicht als solche erkannt wurde. Das Tal muss sich in kürzester Zeit von einer Pastoralwirtschaft mit geringer Camp- und Bevölkerungsdichte in eine vom Reich organisierte Stadtlandschaft verwandelt haben, mit entsprechend radikalen Veränderungen in den Siedlungsmustern, der Flächennutzung und der Zusammensetzung der Bevölkerung. Der plötzliche Bedarf an zusätzlicher Energie und auch an anderen Ressourcen muss eine Herausforderung für Natur und Mensch gewesen sein. Nimmt man alle Indizien zusammen, so ist von einer starken urbanen Beeinflussung der Umwelt auszugehen. Ziel dieses Projektes ist die Untersuchung aller bekannten Siedlungen mit permanenter Architektur des Mongolenreiches im mittleren Orkhon-Tal. Diese Siedlungen sollen in ihrem Umfang vollständig erfasst, Siedlungspläne erstellt und ihre Struktur beschrieben werden. Pyrotechnische Anlagen sollen lokalisiert und, wenn möglich, ihre Funktion bestimmt werden. In enger Zusammenarbeit mit SP3 und SP4 werden im Rahmen dieses Projekts präzise magnetische und topographische Karten aller in Frage kommenden Standorte erstellt. Darüber hinaus werden für die Mongolei erstmals zwei Aktivitäten erfasst, die für die Verifizierung der Thesen der Forschergruppe zentral sind: Landwirtschaft und Eisenverhüttung. Durch die enge Zusammenarbeit mit SP5 wird eine Kenntnis der landwirtschaftlichen Praktiken am Standort Bayan Gol erreicht und darüber hinaus erstmals in der Mongolei eine Klassifizierung und Datierung der Flursysteme vorgenommen. Es werden mehrere Surveys durchgeführt, um die Eisenverhüttungsplätze in der Region zu lokalisieren. Wir gehen davon aus, dass vor allem Holz bzw. Holzkohle als Brennstoff verwendet wurde, so dass der sprunghaft gestiegene Bedarf in den Umweltarchiven erfasst werden kann. In Zusammenarbeit mit SP2 werden wir die Fußgängersurveys im Orkhon-Tal fortsetzen, mit besonderem Augenmerk auf das Gebiet im nordwestlichen Teil des Tals, wo wir eine neue Siedlung entdeckt haben. Zusammen mit Informationen aus früheren Erhebungen werden wir ein erstes Verständnis der Dichte des Siedlungsmusters, des Verhältnisses zwischen saisonalen und permanenten Standorten und des Netzes von Produktionsstätten für die Versorgung der Stadt und der Wohngebiete gewinnen.
Die Mitsubishi Chemical Advanced Materials GmbH stellt in Vreden (Nordrhein-Westfalen) thermoplastische Werkstoffe unter anderem für die Medizintechnik her. Sie ist eine Tochter des japanischen Konzerns „Mitsubishi Chemical Corporation“. Das Unternehmen stellt dabei unter anderem medizintechnische Produkte aus Polyethylen her. Beim bisher üblichen Herstellungsverfahren für diese Produkte kommt es in der Fertigung zu erheblichem Nachbearbeitungsbedarf und damit zu hohen Produktionsabfällen. In dem von der Mitsubishi Chemical Advanced Materials GmbH am Standort Vreden geplanten Hochtechnologiezentrum soll erstmalig in Deutschland die Produktion dieser medizintechnischen Teile mittels einer neu entwickelten Extrusionsanlage erfolgen. Diese innovative Verfahrenstechnik steigert die Ressourceneffizienz in der Produktion erheblich. Die aufwändige Nachbearbeitung entfällt. Weiterhin erlaubt das Verfahren erstmals die Verwertung von Produktionsabfällen, da diese direkt beim Hersteller anfallen. Schließlich zeichnet sich das neue Verfahren durch eine höhere Energieeffizienz aus, da eine Kühlung der Produktionsstücke bei der Extrusion entfällt. Der Energiebedarf sinkt von 6,7 Kilowattstunden pro Kilogramm Rohmaterial auf 4,4 Kilowattstunden pro Kilogramm Rohmaterial. Es kommt insgesamt zu einer Umweltentlastung von 400 Tonnen CO 2 pro Jahr.
Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren
Umweltbereich: Ressourcen
Fördernehmer: Mitsubsihi Chemical Advanced Materials GmbH
Bundesland: Nordrhein-Westfalen
Laufzeit: seit 2020
Status: Laufend
1
2
3
4
5
…
484
485
486