<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder <a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a> in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a> bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>
Ziel ist es, die zukuenftigen Einsatzmoeglichkeiten und Einsatzgebiete der Hochtemperaturbrennstoffzelle im Energieversorgungssystem der Bundesrepublik Deutschland sowie ihren Beitrag zu effizienten, ressourcen- und umweltschonenden Energieversorgung zu beschreiben.
Bedeutung des Projekts für die Praxis: Der fortschreitende Klimawandel macht es unabdingbar, möglichst rasch konkrete und wirk-same Maßnahmen einzuleiten, um weitergehende Folgen für Mensch und Natur zu verhin-dern. Dabei sind alle Branchen gefordert, entsprechende Konzepte zu erarbeiten und auch rasch umzusetzen. Für die Land- und Forstwirtschaft heißt das kompakt zusammengefasst 'Raus aus dem Öl'. Der Energieverbrauch der Landwirtschaft ist mit 22 PJ vergleichsweise gering und entspricht auch nur etwa 10 % der derzeit bereits eingesetzten Bioenergie. Umso mehr stellt sich die Frage, warum sich nicht die Land- und Forstwirtschaft selbst die nötigen Treibstoffe und synthetisches Erdgas aus Holz bzw. aus biogenen Reststoffen und Abfällen produziert? Wesentliche Kernkomponenten der dafür erforderlichen Technologien wurden in Österreich entwickelt und sind nun - auch weitgehend industriell erprobt - großtechnisch verfügbar. Die erforderlichen Ressourcen in Bezug auf Holz und biogene Rest- und Abfallstoffe sollten vorhanden sein, wenn man davon ausgeht, dass die Wärme- und Stromerzeugung aus Biomasse künftig keine großen Wachstumsmärkte darstellen. Einerseits, da der Wärmebedarf in künftigen Gebäuden abnehmen und andererseits Strom aus anderen erneuerbaren Quellen kostengünstiger herstellbar sein wird. Für die Umstellung der kompletten Landwirtschaft auf Bioenergie wären etwa 1-2 Millionen Tonnen Biomasse bzw. biogenen Reststoffe und Abfälle erforderlich. Der dadurch von der Land- und Forstwirtschaft erzielbare Beitrag zur Reduktion des CO2-Ausstosses wäre beispielgebend für andere Branchen und auch die damit verbundene Reduktion des CO2 Footprints der Produkte könnte mittelfristig auch Wettbewerbsvorteile ergeben. Die Land- und Forstwirtschaft könnte damit ein erster Wirtschaftszweig mit voll-ständiger Energieversorgung aus erneuerbarer Energie sein. Mit einer derartigen Umstellung wird weiters die Abhängigkeit von zugekauften Treibstoffen (fossil als auch erneuerbar) minimiert und damit die Krisensicherheit erhöht. Aktuelle Ausgaben für den Diesel in der Land- und Forstwirtschaft liegen bei ca. 300 Millionen Euro bei Gesamtausgaben für die Energie in diesem Sektor von 500 Millionen Euro. Würde die Produktion der Treibstoffe und des Erdgases unter Einhaltung bestimmter Mindestgrößen für die Produktionsanlagen regional verteilt in Österreich erfolgen, würde zusätzlich eine maxi-male Wertschöpfung in den Regionen erzielt werden.
Dieses Verbundvorhaben adressiert den wachsenden Bedarf nach einer CO2-neutralen Fertigung insbesondere in den für Deutschland wirtschaftlich wichtigen Sektoren Maschinenbau, Metallerzeugung und -bearbeitung und der Herstellung von Kraftwagen und Kraftwagenteilen. Dieses Vorhaben leistet einen erheblichen Beitrag dazu, in dem es den Energiebedarf und die kältemittelinduzierten CO2-Emissionen zur Maschinenkühlung deutlich verringert. Dazu sollen besonders kompakte, leistungsoptimierte Kälteaggregate mit einem CO2-neutralen, natürlichen Kältemittel entwickelt werden und die bauliche und digitale Integration des Kälteaggregats in das Gesamtsystem einer Werkzeugmaschine und deren Fertigungsplanung mit deutlich optimierter vorausschauender Regelung und Wartungsfreundlichkeit umgesetzt werden
Korrosion ist ein wesentlicher Aspekt im Umgang mit Gebrauchs- und Investitionsgütern. Die Kosten, die in den Industrieländern durch Korrosion entstehen, betragen drei bis vier Prozent des BIP, ohne Korrosionsschutzsysteme wäre diese erheblich höher. Korrosionsschutz ist differenziert in organische und metallische Schichten. Dominierende im Bereich des kathodischen Schutzes mit metallischen Schichten sind Zink/-legierungsschichten. Die Hochtemperatur- (HT-)verzinkung ist ein Verfahren, dass im Temperaturbereich von 530 - 560 Grad C für Schrauben im Schleuderverfahren und für Stückgut bei 560 - 630 Grad C im Tauchverfahren betrieben wird. Nachteilig dabei ist der hohe Energiebedarf durch die Prozesstemperatur. Im Projekt wird eine Lösung erarbeitet, mit der die Eigenschaften der HTV bei reduzierter Temp. erreicht wird. Basis bildet das von ZINQ entwickelte Legierungssystem microZINQ®. Dies zeigt, dass durch Optimierung der Schmelzenzusammensetzung positive Effekte auf die Effizienz des Überzuges und des Verzinkungsprozesses erzielt werden können.
Die Abscheidung von Kohlendioxid (Carbon Capture) wird für viele energieintensive und schwer dekarbonisierbare Prozesse wesentlich sein, um zukünftige CO2-Ziele einhalten zu können. Es gibt unterschiedliche Verfahren zur CO2-Abscheidung, wobei die Aminwäsche (Absorption) am weitesten verbreitet ist und in großem Maßstab kommerziell eingesetzt wird. Den Vorteilen der hohen Beladungskapazität und Selektivität stehen bei diesem Verfahren die Nachteile eines hohen Energiebedarfs, hoher Investitionskosten und verfahrensbedingter Aminemissionen gegenüber. Eine äußerst attraktive Alternative stellen adsorptive Trennverfahren mit festen Adsorbentien dar, mit dem Potential für geringeren Energiebedarf, einer Vermeidung von Aminschlupf durch die feste Bindung an den Träger und sehr guter Skalierbarkeit des Verfahrens. Als Adsorbentien für die CO2-Abtrennung werden heute praktisch ausschließlich Granulate oder Pellets betrachtet, da keine Alternativen in großem Maßstab verfügbar sind. Zur Behandlung von sehr großen Volumenströmen sind strukturierte Packungen, z.B. Wabenkörper, aufgrund Ihres deutlich günstigeren Verhältnisses von Druckverlust zu spezifischer Oberfläche von wesentlichem Vorteil im Vergleich zu Festbettschüttungen. Strukturierte Adsorbentien zur CO2-Abtrennung sind derzeit nicht in industriellem Maßstab verfügbar. Die Entwicklung und Fertigung ist kapitalintensiv und erfordert sehr spezielles Know-how auf dem Gebiet der Materialwissenschaften. Ziel des Forschungsvorhabens ist es, einen auf aminfunktionalisierten Wabenkörpern basierenden Adsorptionsprozess zur effizienten Abscheidung von CO2 aus Prozess- oder Rauchgasen zu entwickeln und anhand ausgewählter Anwendungsbeispiele zu demonstrieren.
a) Zielstellung, fachliche Begründung: Geothermie kann einen wichtigen Beitrag bei der Dekarbonisierung der deutschen Energieversorgung leisten. Die Optionen zur Wärmespeicherung im Untergrund und die hohe Effizienz der geothermischen Wärmeversorgung in der direkten Nutzung und bei der Aufwertung durch Wärmepumpen machen sie zu einer tragenden Säulen der Wärmewende. Darüber hinaus kann über die geothermische Nutzung des Untergrund der absehbar steigende Energiebedarf für Kühlungsanwendungen bedient werden. Diese Beiträge gilt es, aufbauend auf bisherigen Untersuchungen, verlässlicher zu quantifizieren und gerade die Ressourceneffizienz, die Sektorenkopplungseigenschaften sowie die Wirtschaftlichkeit in vergleichenden Zusammenhang mit anderen Wärmequellen zu stellen. Zur Bewertung der Ressourcenverfügbarkeit ist das erschließbare Potenzial der geothermischen Wärme- und Kältebereitstellung und -speicherung genauer zu bestimmen. b) Output: Im Vorhaben werden oberflächennahe und tiefe Geothermie wegen der Überschneidung der Nutzbarkeitsbereiche bei der Wärmespeicherung, bei Aufwertungsoptionen und dem Vorliegen von Potenzialen für eine leitungsgebundene Wärmenachfrage gemeinsam adressiert. Um eine belastbare Datenbasis zu erhalten, werden eine Vielzahl von Daten zu den Eigenschaften der untertägigen Ressourcen zusammengestellt und ergänzt. Mit dem erzielten Ergebnis wird eine Bewertung des wirtschaftlichen Potentials der Geothermie auf dem Gebiet der Bundesrepublik Deutschland möglich sein.
| Origin | Count |
|---|---|
| Bund | 4728 |
| Kommune | 3 |
| Land | 144 |
| Wissenschaft | 3 |
| Zivilgesellschaft | 11 |
| Type | Count |
|---|---|
| Daten und Messstellen | 3 |
| Ereignis | 13 |
| Förderprogramm | 3278 |
| Text | 1471 |
| Umweltprüfung | 13 |
| unbekannt | 105 |
| License | Count |
|---|---|
| geschlossen | 435 |
| offen | 3260 |
| unbekannt | 1188 |
| Language | Count |
|---|---|
| Deutsch | 4680 |
| Englisch | 550 |
| Resource type | Count |
|---|---|
| Archiv | 1186 |
| Bild | 4 |
| Datei | 1209 |
| Dokument | 1368 |
| Keine | 2286 |
| Unbekannt | 10 |
| Webseite | 1259 |
| Topic | Count |
|---|---|
| Boden | 3195 |
| Lebewesen und Lebensräume | 2595 |
| Luft | 2447 |
| Mensch und Umwelt | 4883 |
| Wasser | 2170 |
| Weitere | 4786 |