API src

Found 4829 results.

Related terms

Weltweiter Ausbau von Energie aus Biomasse erfordert schwierige Abwägungen

Energie aus Pflanzen kann bis zu 20 Prozent des weltweiten Bedarfs an Strom und Wärme im Jahr 2050 decken, davon rund die Hälfte aus Biomasseplantagen – dies aber nur um den Preis einer deutlichen Ausweitung der Anbauflächen zu Lasten der Natur. Das ist Ergebnis einer Studie des Potsdam-Instituts für Klimafolgenforschung (PIK), „die erstmals das Potenzial und die Risiken der Energiegewinnung aus Biomasseplantagen in einer aufwändigen biogeochemischen Computersimulation ermittelt“, wie der Leitautor Tim Beringer erklärt. Die vom Menschen genutzte Landfläche würde sich je nach Szenario um zehn bis dreißig Prozent gegenüber dem heutigen Wert vergrößern, die nötige Bewässerung könnte sich im Extremfall verdoppeln.

Chem-Anorg\NaOH(Amalgam)-DE-2010

Natronlaugeherstellung (Amalgamverfahren); Natronlauge (NaOH) wird heute elektrochemisch dargestellt. In dieser Prozeßeinheit wird die Herstellung der Natronlauge durch Elektrolyse von Natriumchlorid (Chlor/Alkali-Elektrolyse) nach dem Amalgamverfahren bilanziert. Der Prozeß liefert neben Natronlauge stets Chlor (Cl2) und Wasserstoff (H2). Ausgangsstoff des Verfahrens ist Natriumchlorid (NaCl) in Wasser gelöst. Der Elektrolyt wird im Kreis geführt. Das Kernstück des Verfahrens ist die Quecksilberzelle, in der an einer Graphit- oder Titan-Elektrode aus der Kochsalzlösung reines gasförmiges Chlor abgezogen werden kann. An der flüssigen Quecksilberkathode bildet sich eine Natrium-Quecksilberverbindung (Amalgam), aus der im Amalgamzersetzer eine sehr reine 50 %ige Natronlauge gewonnen wird. Die Hauptnachteile des Verfahrens liegen in den Quecksilberemissionen und dem hohen Stromverbrauch. Der Vorteil gegenüber anderen Verfahren ist die hochreine Natronlauge. Prozeßsituierung Es stehen drei verschiedene Elektrolyseverfahren zur Herstellung von Natronlauge aus NaCl zur Verfügung: das Amalgamverfahren, das Diaphragmaverfahren und das Membranverfahren. Die weltweite Verteilung der Produktionskapazitäten auf die verschiedenen Verfahren kann für das Jahr 1990 der Tabelle 1 entnommen werden (Ullmann 1993). In der BRD entfielen 1985 ca. 63 % der gesamten Chlorproduktion auf das Amalgamverfahren, ca. 31 % auf das Diaphragmaverfahren und ca. 6 % auf sonstige Verfahren (HCl, Schmelzfluß) (#1). Das Membranverfahren stellt das derzeit modernste Verfahren dar. In der Bundesrepublik sind jedoch nur Versuchsanlagen bei der Hoechst AG und der Bayer AG in Betrieb (UBA 1991). Die Produktion an NaOH betrug 1990 in Europa ca. 8,67 Mio. Tonnen. Die Weltproduktion belief sich 1990 auf 38,43 Mio. Tonnen pro Jahr (#2). Die Kennziffern dieser Prozeßeinheit beziehen sich auf die Natronlaugeherstellung in Deutschland Ende der 80er Jahre. Tabelle 1 Produktionskapazitäten 1990 in Prozent (#2). Prozeß USA Kanada Westeuropa Japan Amalgam 18 15 65 0 Diaphragma 76 81 29 20 Membran 6 4 6 80 Allokation: Bei der Elektrolyse entstehen Cl und NaOH im molaren Verhältnis von 1 zu 1. Entsprechend diesem Verhältnis werden die Gesamtwerte der Elektrolyse (Massenbilanz, Energiebedarf, Emissionen, Wasser) zwischen Chlor und Natriumhydroxid zu gleichen Anteilen aufgeteilt. Rechnet man das molare Verhältnis auf Massen um, so enstehen pro Tonne NaOH (100 %ig) 0,887 Tonnen Cl2. Die Kennziffern werden für 100 %iges Natriumhydroxid berechnet. Das verkaufsfertige Produkt des Prozesses stellt 50 %ige Natronlauge (wässrige Lösung) dar. Um diesem Unterschied zwischen der Bilanzierung und dem tatsächlichen Produkt Rechnung zu tragen, wird der hier bilanzierten Prozeßeinheit der Natronlaugeherstellung eine fiktive Verdünnung der 100 %igen NaOH zu wässriger 50 %iger Natronlauge nachgeschaltet (Prozeßeinheit: Chem-Anorg\NaOH 50 %). Bei der Elektrolyse entstehen weiterhin 24,8 kg Wasserstoff (H2)/t NaOH. Es wird angenommen, daß der Wasserstoff energetisch verwertet wird (Verbrennung). Entsprechend wird für H2 eine Energiegutschrift berechnet (siehe „H2-Kessel-D“), die zu jeweils 50 % der Chlor- und der Natronlaugeherstellung gutgeschrieben wird. Genese der Kennziffern Massenbilanz: Zur Herstellung einer Tonne NaOH (und gleichzeitig 0,887 t Cl2) werden als Rohstoff 1516 kg Natriumchlorid benötigt. Um Verunreinigungen aus dem Elektrolyten vor der Elektrolyse zu entfernen werden 48 kg Fällungsmittel (NaOH, Na2CO3, BaCO3) eingesetzt. Die Verunreinigungen fallen als Abfall (134 kg, feucht) an. Bei der Reaktion enstehen als Nebenprodukt 24,8 kg Wasserstoff (Energiegutschrift bei GEMIS). [Aus #1 , umgerechnet auf 1 t NaOH]. Zur Genese der Kennziffern bei GEMIS werden nach der obigen Allokationsregel der Natronlauge 50 % der aufgeführten Mengen zugeteilt. Die restlichen 50 % entfallen auf die Herstellung von Chlor. Energiebedarf Der Energiebedarf für den Gesamtprozeß der Herstellung einer Tonne Natriumhydroxid und 0,887 Tonnen Chlor für die verschiedenen Verfahren kann nach (Ullmann 1993) der Tabelle 2 entnommen werden. Als Kennziffer für die hier betrachtete Prozeßeinheit (Amalgamverfahren) wurde gemäß der Allokationsregel 50 % des Mittelwerts der Werte aus Tabelle 2 - 1500 kWh/t NaOH - eingesetzt. Tabelle 2 Energiebedarf in kWh für die Herstellung von 1t NaOH und 0,887 t Cl2 Energie [kWh] Amalgam Diaphragma Membran elektr. Energie 2800-3200 2500-2600 2300-2500 Dampf(äquivalent) 0 700-900 90-180 Summe 2800-3200 3200-3500 2390-2680 Im Vergleich dazu wird der Gesamtenergiebedarf in #1 mit 3280 kWh/t NaOH + 0,887 t Cl2 elektrischer Energie - nach Allokation: 1640 kWh/t NaOH - angegeben (Werte wurden von der Chlorherstellung auf die Herstellung von NaOH umgerechnet). Da die Werte aus #2 besser nachvollziehbar sind, werden diese für GEMIS verwendet. Emissionen: Die Quecksilber(Hg)-Emissionswerte (Luft, Wasser und Deponie) wurden auf der Grundlage von Daten aus dem Jahr 1985 berechnet [#1, siehe Tabelle 3]. In der letzten Zeile der Tabelle sind die anteiligen Emissionswerte (50 % der Gesamtemissionen) pro Tonne für die Natronlaugenherstellung 1985 (2,2 Mio. t Amalgamchlor bzw. 2,48 Mio. t NaOH) aufgelistet. Tabelle 3 Hg-Gesamtemissionen bei der Chlorherstellung in Tonnen für das Jahr 1985. Wasser Luft Produkte Deponie Summe [t] 0,20 4,20 1,10 36,30 [g Hg/t NaOH] 0,04 0,85 0,22 7,32 Die Quecksilberemissionen auf den Deponien setzen sich aus dem Filterschlamm, verbrauchten Katalysatoren, Rückständen aus der Produktreinigung und abgewrackten Anlagenteilen zusammen (#1). Aufgrund von gesetztlichen Auflagen und technischen Neuerungen kann derzeit vermutlich von geringeren Emissionen ausgegangen werden. Dies wird durch die neueren Daten in #3, die auch für GEMIS verwendet werden, bestätigt. Dort werden für die Herstellung von 1 t NaOH (Anteil für NaOH an den Gesamtemissionen) Hg-Emissionen von 0,417 g (Luft) und 0,0248 g (Wasser) aufgeführt. Die Cl2-Emissionen werden in #3 mit 0,222 g/t NaOH beziffert. Weiterhin wird in #3 für das Abwasser eine Fracht von 0,510 g an gelösten anorganischen Stoffen pro Tonne NaOH angegeben. Wasser: Das für die Chlor- und Natronlaugenherstellung benötigte Wasser setzt sich aus dem chemisch verbrauchten Wasser (450 kg, z.B. für die Bildung von Wasserstoff), dem Lösungswasser (24 kg, Lösung von NaCl und Bildung der wässrigen NaOH), dem Niederdruckdampf (222 kg), dem Prozeßwasser (1463 kg) und dem Kühlwasser (88652 kg) zusammen [aus #1, umgerechnet auf 1 t NaOH und 0,887 t Cl2]. Die Abwassermenge wird in #1 mit 0,3 bis 1,0 m3 pro Tonne produzierten Chlor angegeben. Der Wasserbedarf wurde anteilig unter den beiden Prozeßeinheiten der Chlor- und Natronlaugenherstellung aufgeteilt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 132% Produkt: Grundstoffe-Chemie Verwendete Allokation: Allokation durch Gutschriften

Chem-Anorg\Soda-DE-2020

Herstellung von Soda (Natriumcarbonat), einem wichtigen Grundstoff der anorganischen Chemie. Es wird sowohl aus natürlichen Vorkommen gewonnen, als auch synthetisch hergestellt. In Deutschland wird ausschließlich die synthetische Herstellung betrieben. Ausgangsstoffe für das betrachtete Ammoniaksoda- oder Solvay-Verfahren sind Steinsalz bzw. Natriumchlorid (nach Solereinigung) und Kalkstein bzw. (nach Brennen und Löschen) Calciumhydroxid. Der in dieser Bilanz untersuchte Gesamtprozess umfaßt folgende Einzelprozesse: 1. Herstellung einer gesättigten Salzlösung: NaCl + H2O 2. Brennen des Kalksteins (das freigesetzte CO2 wird in Teilprozess 4 benötigt): CaCO3 => CaO + CO2 3. Sättigung der Salzlösung mit Ammoniak: NaCl + H2O + NH3 4. Ausfällen von Bicarbonat durch Einleiten von CO2 in die Lösung: NaCl + H2O + NH3 + CO2 à NH4Cl + NaHCO3 5. Filtern und Waschen des ausgefällten Bicarbonats 6. Thermische Zersetzung des Bicarbonats zu Soda (das freigesetzte CO2 wird in Stufe 4 zurückgeführt): 2 NaHCO3 à Na2CO3 + H2O + CO2 7. Herstellung von Kalkmilch: CaO + H2O => Ca(OH)2 8. Rückgewinnung des Ammoniaks durch Destillation der Mutterlösung aus Teilprozess 4 mit Kalkmilch (das freigesetzte Ammoniak wird in Stufe 3 wieder eingesetzt): 2 NH4Cl + Ca(OH)2 => 2NH3 + CaCl2 + 2H2O Die nach der Destillation verbleibende Lösung wird meist in ihrer Gesamtheit verworfen, da - abhängig von der Nachfrage - nur ein kleiner Teil zur Herstellung von CaCl2 genutzt werden kann. Vereinfacht kann der gesamte Prozess durch die folgende Summengleichung beschrieben werden: 2 NaCl + CaCO3 => Na2CO3 + CaCl2 Dabei verläuft die Reaktion in wässriger Lösung aufgrund der geringen Löslichkeit des Calciumcarbonats von rechts nach links. Daher wird Ammoniak als Promotor der Bildung von Natriumbicarbonat über das Zwischenprodukt Ammoniumbicarbonat eingesetzt (vgl. #2). Im Jahr 1992 standen einer Inlandsproduktion von über 1,2 Mio t (alte Bundesländer) ein Import von 0,25 Mio t (60 % davon aus den USA) und ein Export von ca. 0,02 Mio t gegenüber. Vor diesem Hintergrund wird es als legitim angesehen, bei der Sachbilanz des Soda für Deutschland lediglich die Daten für die synthetische Sodaherstellung zu verwenden. Bilanziert wurde die Soda-Herstellung von der Firma Solvay Alkali GmbH, die nach der ETH zitiert wird (#1). In dieser Bilanz wird der gesamte Prozeß der Sodaherstellung einschließlich der Teilanlagen der Solereinigung, dem Kalkofen und der Energieerzeugung in einem industriellen Kraftwerk mit Kraft-Wärme-Kopplung bilanziert. Dabei werden Steinkohle und Erdgas als Energieträger eingesetzt. Allokation: keine Massenbilanz: Als Rohstoffe zur Soda-Herstellung werden bezogen auf eine Tonne Soda ca. 1550 kg Steinsalz und 1130 kg Kalkstein benötigt (#1). Energiebedarf: Der Energiebedarf der Sodaherstellung, wie sie in diesem Projekt bilanziert wird, wird über Erdgas, Steinkohle und Steinkohlenkoks gedeckt. Da die Energieumwandlung bereits in der Bilanzierung enthalten ist, ist lediglich die Bereitstellung de Energieträger noch zu bilanzieren. Der Energiebedarf nach Solvay setzt sich folgendermaßen zusammen: Energiebedarf der Sodaherstellung (nach #1) Energieträger m³ bzw. kg/ t Produkt GJ/t Produkt Erdgas 28,2 (m³) 1,094 Steinkohle (Vollwert) 270 (kg) 7,938 Steinkohlenkoks 80 (kg) 2,224 Summe 11,256 Die Prozesse zur Sodaherstellung haben folglich einen Energiebedarf von 11,26 GJ/t Soda. Für die Sodaherstellung in Europa kann eine Spannweite von 10-14 GJ/t angegeben werden. Bei den deutschen Herstellern besteht das Bestreben die Energiebereitstellung mehr und mehr über Gas zu decken (Solvay 1996). Prozessbedingte Luftemissionen: Die Luftemissionen werden zum größten Teil durch die Bereitstellung bzw. Umwandlung der Energie verursacht. Dabei werden von Solvay folgende Emissionsfaktoren angegeben: Schadstoff Menge in kg/t Produkt CO2 800 CO 7 SO2 2 NOx 1,8 Staub 0,25 Zusätzlich wird noch CO2 beim Brennen des Kalkes freigesetzt, das nicht im chemisch im Soda gemäß Gleichung 4. gebunden werden kann. Die Menge wird von Solvay mit 176 kg/t Produkt angegeben (#1). Dieser Wert wird in GEMIS übernommen. Wasserinanspruchnahme: Wasser wird vorwiegend zur Bereitstellung von Prozeßdampf und als Kühlwasser in einer Reihe von Einzelprozessen eingesetzt. Der Wasserbedarf ist dadurch relativ hoch. Pro Tonne Soda werden 62,6 m³ Wasser benötigt (#1). Abwasserparameter: Eine organische Belastung des Abwassers, die sich mit den in GEMIS bilanzierten Summenparametern messen läßt, ist nicht zu rechnen. In der Bilanz von Solvay werden ausschließlich anorganische Verunreinigungen aufgeführt. Vor allem die Chloridfracht über das Abwasser ist bemerkenswert. Pro Tonne Natriumcarbonat werden über Calciumchlorid ca. 950 kg Chlorid über das Abwasser emittiert (#1). Reststoffe: Als Reststoffe aus den Prozessen um die Sodaherstellung fällt Asche aus der Verbrennung der Kohle an (6 kg/t P). Weiterhin verbleiben Rückstände des Kalksteins (20 kg/t P) und sog. Downcyclate (22 kg/t P). Bei den Downcyclaten handelt es sich um Produktionsrückstände, die teilweise im Straßenbau eingesetzt werden können. Sie werden in GEMIS allerdings als Reststoff und nicht als Produkt verbucht. Insgesamt fallen somit ca. 48 kg Reststoffe pro Tonne Soda an (#1). Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 64,5% Produkt: Grundstoffe-Chemie

Aufbereitung\Gas-DZ-2020

Gasreinigung in Algerien: Der Energiebedarf wird in Anlehnung an die deutsche und holländische Förderung abgeschätzt (vgl. dort). Die direkten Methanverluste werden aufgrund der ungünstiger angenommenen Wartung und Instandhaltung mit 0,25 % doppelt so hoch wie in der EU angenommen. Alle anderen Werte beruhen auf #1. Auslastung: 7000h/a Brenn-/Einsatzstoff: Brennstoffe-fossil-Gase Flächeninanspruchnahme: 100000m² gesicherte Leistung: 100% Jahr: 2020 Lebensdauer: 20a Leistung: 1000MW Nutzungsgrad: 100% Produkt: Brennstoffe-fossil-Gase

Steine-Erden\Steinwolle-DE-2010

Herstellung von Steinwolle: Das Dämmaterial Steinwolle besteht zum größten Teil aus Basalt und Dolomit. Diese Rohstoffe werden zusammen mit verschiedenen Produktionsabfällen und Rezyklaten, die in Formsteine eingebunden sind, in einen schachtartigen Kupolofen mit Koks als Energieträger und mit O2-angereicherter Luft bei ca. 1500°C zum Schmelzen gebracht (#1+#2). Der Strahl flüssigen Gesteins wird im Anschluß mit einer Spinnmaschine meistens nach dem Kaskadenschleuderverfahren zerfasert und anschließend mit Bindemitteln (Harze) und Imprägniermitteln (Ölprodukte) besprüht. Der mittlere Faserdurchmesser beträgt 3-6 µm bei einer mittleren Länge von 3 mm (#3). Die losen Fasern werden auf einem Förderband zu einem Vlies gesammelt und auf die gewünschte Stärke gepreßt (#1). Anschließend werden sie in einem Ofen ausgehärtet (#2). Die internen Produktionsabfälle inklusive der Filterabfälle werden gesammelt, soweit wie nötig zerkleinert und mit Zement als Bindemittel zu Formkörpern verpreßt, die anschließend erneut aufgeschmolzen werden (#2). Als Quellen für die vorliegende Bilanzierung wurden die Studien #1-#3 untersucht. Die beiden letztgenannten stützen sich auf Primärdaten Deutscher und Schweizer marktbestimmender Hersteller mit dem Basisjahr ca. 1992. Ein Vergleich Deutscher und Schweizer Daten zeigt keine wesentlichen Unterschiede. Einen vollständigen Datensatz, der auch mit der Systematik von GEMIS kompatibel ist, stellt #1 (EMPA 1995) zur Verfügung. Dieser diente als Basis für die vorliegende Bilanzierung und wurde durch weitere Studien verifiziert und ergänzt. Die Datenqualität ist insgesamt als gut zu bezeichnen. Die Unsicherheit der Daten ist nach dem Vergleich der Studien als gering anzusehen. Verbesserungen des Datensatzes sind vor allen Dingen auf dem Wasserpfad, teilweise auch beim Rohstoffbedarf wünschenswert. Allokation: Als Nebenprodukte der Steinwollen-Herstellung fallen in geringen Mengen an Eisen und Granulat. Sie werden in dieser Studie nicht als Koppelprodukte betrachtet. Weder bei der Betrachtung physischer Parameter der Allokation noch bei der Betrachtung ökonomischer Parameter ergibt sich eine Signifikanz der Nebenprodukte. Daher wird keine Allokation zwischen den Steinwolle-Matten und den angesprochenen Nebenprodukten vorgenommen. Sämtliche betrachteten Prozeßparameter werden daher voll der Steinwolle angerechnet. Genese der Kennziffern Massenbilanz: Als Roh- und Hilfsstoffe werden massenmäßig vorwiegend Dolomit und Basalt in den Prozeß eingebracht (in GEMIS werden beide Stoffe mit den Daten der Extraktion des Kalksteins bilanziert). Neben den Primärrohstoffen werden auch Mineralien über Recyclingmaterial eingebracht. Dabei handelt es sich sowohl um interne Abfälle aus der Zerfaserung als auch um div. Wollabfälle von Baustellen und produktionsinterne Stäube (sie tauchen in der Input/Output-Bilanz von GEMIS nicht auf). Diese werden zusammen mit Zusatzsteinen (Felsbrocken/Kies) in Zement eingebunden als Briketts in den Prozeß eingebracht (#1). Bei der Aufstellung der einzelnen Rohstoffe bestehen leichte Abweichungen zwischen den deutschen und Schweizer Quellen (#2, #1). In der Gesamtsumme stimmen die Quellen jedoch sehr gut überein. Die Unterschiede beruhen auf Differenzen bei der Deklaration. In dieser Studie werden die Angaben der Schweizer Studie übernommen. Roh- und Hilfsstoffe, die weit weniger als 1 Masse% ausmachen (Ammoniumbicarbonat, Kalkhydrat, Salzsäure und Silan) werden aufgrund geringerer Relevanz und fehlender Vorketten nicht mitbilanziert. Zusätzlich zum aufgeführten Roh- und Hilfsstoffbedarf werden ca. 28 kg reiner Sauerstoff pro Tonne Steinwolle in den Prozeß eingebracht, um die Verbrennungsluft im Kupolofen anzureichern (#2). Nebenprodukte: Neben den Steinwollenmatten fällt ein Granulat der Steinwolle an, das nicht vollständig aufgefasert werden kann. Es wird jedoch nicht wieder in den Prozeß eingebracht, sondern als Schüttdämmstoff verwendet (#1). Außerdem fällt im Sumpf des Kupolofens Eisen an. Dieses ist als Eisen(II)- oder als Eisen(III)-Oxid in den Mineralien Basalt und Diabas enthalten. Als Folge der reduzierenden Ofenatmosphäre sammelt es sich in Ofensumpf und wird dort diskontinuierlich abgezogen (#2). Energiebedarf: Der Energiebedarf für die Herstellung der Steinwolle beträgt ca. 8170 MJ/t Steinwolle. Dabei gliedert er sich folgendermaßen nach den einzelnen Energieträgern: Tab.: Anteile Energieträger zur Energiebereitstellung bei der Herstellung von Steinwolle (#1+#3) Energieträger Menge in MJ/t Steinwolle Anteil in % Steinkohlenkoks 5115 63 Heizöl EL 1970 24 Strom 1085 13 Summe 8170 100 Steinkohlenkoks wird direkt im Schachtofen zum Schmelzen der Mineralien eingesetzt. Heizöl EL wird jeweils ungefähr zur Hälfte im Schmelzofen und in den Härteöfen eingesetzt. Der Strom wird unter anderem für Transportprozesse und die Rauchgasreinigung benötigt (#3). Prozessbedingte Luftemissionen: Prozeßbedingte Luftemissionen entstammen dem Kupolofen, dem Härteofen mit Kühlzone und der Sägeanlage. Die Abgase laufen alle über Filter im Falle des Kupolofens über eine weitergehende Rauchgasreinigung. Die besten verfügbaren Daten finden sich in #1 für die Schweiz. Sie werden in der vorliegenden Form in dieser Studie übernommen. Ein Vergleich mit #2 zeigt keine signifikanten Abweichungen. Wasserinanspruchnahme: Wasser wird vor allen Dingen und in großen Mengen zu Kühlzwecken eingesetzt. Von den 12,7 m³/t Steinwolle eingesetzten Wassers fallen 11,2 m³ als nicht oder nur gering verunreinigtes Abwasser an. Lediglich das in dieser Studie nicht betrachtete Sanitärwasser wird stärker verunreinigt einer Abwasserreinigung zugeführt (#1). Abwasserinhaltsstoffe: Da das Wasser vorwiegend zu Kühlzwecken eingesetzt wird, tritt keine nennenswerte stoffliche Verunreinigung auf. Reststoffe: Der mengenmäßig größte Teil der Reststoffe kann wieder in den Prozeß eingebracht werden. Weitere Abfälle wie Lösungsmittelabfälle, Altöle und Filtermaterial fallen nicht in nennenswerten Mengen an (#1). Sie werden in GEMIS nicht weiter betrachtet. Auslastung: 5000h/a Brenn-/Einsatzstoff: Rohstoffe gesicherte Leistung: 100% Jahr: 2010 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 160% Produkt: Baustoffe

Xtra-Tiefbau\Steinkohle-DE-Vollwert-2005

Steinkohle-Tiefbau inkl. Aufbereitung in Westdeutschland, Energiebedarf nach #1, CH4-Emissionen aktualisiert nach #4 inkl. diffuser Emissionen aus Lagerung und Transport, alle anderen Daten nach #2, ergänzt um Angaben für feste Reststoffe (Abraum) und Wasserbedarf (Sümpfungswasser): 2,25 m3 Wasser und 0,9 m3 Abraum je t Förderung nach #3. Die Wassermengen beinhalten Sümfpungswässer und Wasser für die Aufbereitung der Rohkohle. Auslastung: 7000h/a Brenn-/Einsatzstoff: Ressourcen Flächeninanspruchnahme: 100000m² gesicherte Leistung: 100% Jahr: 2005 Lebensdauer: 25a Leistung: 2000MW Nutzungsgrad: 100% Produkt: Brennstoffe-fossil-Kohle

Edelmetall\PGM-Konzentrat-CA-INCO

Der gesamte Strombedarf der Prozeßkette ist mit der letzten Prozeßeinheit, der Raffinierung und Trennung des PGM-Konzewntrats bilanziert. In dieser Prozeßeinheit zur Gewinnung des zu raffinierenden PGM-Konzentrats wird der Erdgasbedarf und die damit verbundenen Luft-Emissionen dieser Prozeßeinheit und der Verhüttung des Erzkonzentrats zusammengefaßt. Auslastung: 5000h/a Brenn-/Einsatzstoff: Metalle - Edel gesicherte Leistung: 100% Jahr: 2000 Lebensdauer: 20a Leistung: 1t/h Nutzungsgrad: 0,00069% Produkt: Metalle - Edel

100 % erneuerbare Energien in Deutschland. Kann der Energiebedarf 2050 im Einklang mit Mensch und Natur gedeckt werden?

Die Energiewende genießt in Deutschland sehr hohe Zustimmung in der Bevölkerung. Allerdings sind bei diesem Transformationsprozess auch andere Belange wie der Schutz der biologischen Vielfalt und die Interessen der Anwohnerinnen und Anwohner zu berücksichtigen. Die vorliegende Studie zeigt mit Szenarien Wege zur Lösung dieser Konflikte. Dazu wurde ein GIS-Modell entwickelt, das die Empfindlichkeiten von Mensch und Natur berücksichtigt und flächenkonkret sowie summativ für Deutschland Potenziale für erneuerbare Energien berechnet und einem für 2050 projizierten Bedarf gegenüberstellt. Das Modell dient der Entscheidungsunterstützung: Sowohl der Energiebedarf als auch die eingegebenen Daten können als Variablen behandelt werden. Die Projektionen zeigen, dass der Strombedarf von 1500 Terawattstunden(TWh)/a im Jahr 2050 bei einer intelligenten Verteilung von On-Shore-Windenergieanlagen und einer sehr ambitionierten Nutzung von Dachflächen mit Photovoltaik gedeckt werden kann. Das Modell liefert die Grundlage für ein Werkzeug, das einer wissensbasierten Lenkung der Energiewende dient und in Zukunft bereitgestellt werden kann.

Markt für Gold

technologyComment of gold mine operation and refining (SE): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. References: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp technologyComment of gold production (US): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. BENEFICIATION: Bald Mountain Mines: The ore treatment method is based on conventional heap leaching technology followed by carbon absorption. The loaded carbon is stripped and refined in the newly commissioned refinery on site. Water is supplied by wells located on the mine property. Grid power was brought to Bald Mountain Mine in 1996. For this purpose, one 27-kilometre 69 KVA power line was constructed from the Alligator Ridge Mine substation to the grid. Golden Sunlight Mines: The ore treatment plant is based on conventional carbon-in-pulp technology, with the addition of a Sand Tailings Retreatment (STR) gold recovery plant to recover gold that would otherwise be lost to tailings. The STR circuit removes the heavier gold bearing pyrite from the sand portion of the tailings by gravity separation. The gold is refined into doré at the mine. Tailing from the mill is discharged to an impoundment area where the solids are allowed to settle so the water can be reused. A cyanide recovery/destruction process was commissioned in 1998. It eliminates the hazard posed to wildlife at the tailings impoundment by lowering cyanide concentrations below 20 mg/l. Fresh water for ore processing, dust suppression, and fire control is supplied from the Jefferson Slough, which is an old natural channel of the Jefferson River. Ore processing also uses water pumped from the tailings impoundment. Pit water is treated in a facility located in the mill complex prior to disposal or for use in dust control. Drinking water is made available by filtering fresh water through an on-site treatment plant. Electric power is provided from a substation at the south property boundary. North-Western Energy supplies electricity the substation. Small diesel generators are used for emergency lighting. A natural gas pipeline supplies gas for heating buildings, a crusher, air scrubber, boiler, carbon reactivation kiln, and refining furnaces. Cortez Mine: Three different metallurgical processes are employed for the recovery of gold. The process used for a particular ore is determined based on grade and metallurgical character of that ore. Lower grade oxide ore is heap leached, while higher-grade non-refractory ore is treated in a conventional mill using cyanidation and a carbon-in-leach (“CIL”) process. When carbonaceous ore is processed by Barrick, it is first dry ground, and then oxidized in a circulating fluid bed roaster, followed by CIL recovery. In 2002 a new leach pad and process plant was commissioned; this plant is capable of processing 164 million tonnes of heap leach ore over the life of the asset. Heap leach ore production is hauled directly to heap leach pads for gold recovery. Water for process use is supplied from the open pit dewatering system. Approximately 90 litres per second of the pit dewatering volume is diverted for plant use. Electric power is supplied by Sierra Pacific Power Company (“SPPC”) through a 73 kilometre, 120 kV transmission line. A long-term agreement is in place with SPPC to provide power through the regulated power system. The average power requirement of the mine is about 160 GWh/year. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. OTHER MINES: Information about the technology used in the remaining mines is described in the References. WATER EMISSIONS: Water effluents are discharged into rivers. References: Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Barrick (2006b) Environment: Performance Tables from http://www.barrick. com/Default.aspx?SectionID=8906c4bd-4ee4-4f15-bf1b-565e357c01e1& LanguageId=1 Newmont (2005b) Now & Beyond: Sustainability Reports. Newmont Mining Corporation. Retrieved from http://www.newmont.com/en/social/reporting/ index.asp technologyComment of gold production (CA): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. BENEFICIATION: In the Porcupine Mines, gold is recovered using a combination of gravity concentration, milling and cyanidation techniques. The milling process consists of primary crushing, secondary crushing, rod/ball mill grinding, gravity concentration, cyanide leaching, carbon-in-pulp gold recovery, stripping, electrowinning and refining. In the Campbell Mine, the ore from the mine, after crushing and grinding, is processed by gravity separation, flotation, pressure oxidation, cyanidation and carbon-in-pulp process followed by electro-winning and gold refining to doré on site. The Musselwhite Mine uses gravity separation, carbon in pulp, electro¬winning and gold refining to doré on site. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Effluents are discharged into the ocean. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (AU): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. UNDERGROUND MINING: Some ore bodies are more economically mined underground. In this case, a tunnel called an adit or a shaft is dug into the earth. Sort tunnels leading from the adit or shaft, called stopes, are dug to access the ore. The surface containing the ore, called a face, is drilled and loaded with explosives. Following blasting, the broken ore is loaded onto electric trucks and taken to the surface. Once mining is completed in a particular stope, it is backfilled with a cement compound. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. LEACHING: The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: Some types of ore require further processing before gold is recovered. In this case, the slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. REFINING: Wohlwill electrolysis. It is assumed that the gold doré-bars from both mines undergo the treatment of Wohlwill electrolysis. This process uses an electrolyte containing 2.5 mol/l of HCl and 2 mol/l of HAuCl4 acid. Electrolysis is carried out with agitation at 65 – 75 °C. The raw gold is intro-duced as cast anode plates. The cathodes, on which the pure gold is deposited, were for many years made of fine gold of 0.25 mm thickness. These have now largely been replaced by sheet titanium or tantalum cathodes, from which the thick layer of fine gold can be peeled off. In a typical electrolysis cell, gold anodes weighing 12 kg and having dimensions 280×230×12 mm (0.138 m2 surface) are used. Opposite to them are conductively connected cathode plates, arranged by two or three on a support rail. One cell normally contains five or six cathode units and four or five anodes. The maximum cell voltage [V] is 1.5 V and the maximum anodic current density [A] 1500 A/m2. The South African Rand refinery gives a specific gold production rate of 0.2 kg per hour Wohlwill electrolysis. Assuming a current efficiency of 95% the energy consumption is [V] x [A] / 0.2 [kg/h] = 1.63 kWh per kg gold refined. No emissions are assumed because of the purity and the high value of the material processed. The resulting sludge contains the PGM present in the electric scrap and is sold for further processing. WATER EMISSIONS: Water effluents are discharged into rivers. REFERENCES: Newmont (2004) How gold is mined. Newmont. Retrieved from http://www.newmont.com/en/gold/howmined/index.asp Renner H., Schlamp G., Hollmann D., Lüschow H. M., Rothaut J., Knödler A., Hecht C., Schlott M., Drieselmann R., Peter C. and Schiele R. (2002) Gold, Gold Alloys, and Gold Compounds. In: Ullmann's Encyclopedia of Industrial Chemistry. Online version, posting date: September 15, 2000 Edition. Wiley-Interscience, Online-Version under: http://dx.doi.org/10.1002/14356007.a12_ 499. Auerswald D. A. and Radcliffe P. H. (2005) Process technology development at Rand Refinery. In: Minerals Engineering, 18(8), pp. 748-753, Online-Version under: http://dx.doi.org/10.1016/j.mineng.2005.03.011. technologyComment of gold production (TZ): The mining of ore from open pit and underground mines is considered. technologyComment of gold refinery operation (ZA): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold refinery operation (RoW): REFINING: The refinery, which provides a same day refining service, employs the widely used Miller Chlorination Process to upgrade the gold bullion it receives from mines to at least 99.50% fine gold, the minimum standard required for gold sold on the world bullion markets. It also employs the world’s leading silver refining technology. To further refine gold and silver to 99.99% the cost-effective once-through Wohlwill electrolytic refining process is used. MILLER CHLORINATION PROCESS: This is a pyrometallurgical process whereby gold dore is heated in furnace crucibles. The process is able to separate gold from impurities by using chlorine gas which is added to the crucibles once the gold is molten. Chlorine gas does not react with gold but will combine with silver and base metals to form chlorides. Once the chlorides have formed they float to the surface as slag or escape as volatile gases. The surface melt and the fumes containing the impurities are collected and further refined to extract the gold and silver. This process can take up to 90 minutes produces gold which is at least 99.5% pure with silver being the main remaining component. This gold can be cast into bars as 99.5% gold purity meets the minimum London Good Delivery. However some customers such as jewellers and other industrial end users require gold that is almost 100% pure, so further refining is necessary. In this case, gold using the Miller process is cast into anodes which are then sent to an electrolytic plant. The final product is 99.99% pure gold sponge that can then be melted to produce various end products suited to the needs of the customer. WOHLWILL PROCESS - The electrolytic method of gold refining was first developed by Dr. Emil Wohlwill of Norddeutsche Affinerie in Hamburg in 1874. Dr. Wohlwill’s process is based on the solubility of gold but the insolubility of silver in an electrolyte solution of gold chloride (AuCl3) in hydrochloric acid. Figure below provide the overview of the refining process (source Rand Refinery Brochure) imageUrlTagReplace7f46a8e2-2df0-4cf4-99a8-2878640be562 Emissions includes also HCl to air: 7.48e-03 Calculated from rand refinery scrubber and baghouse emmission values Metal concentrators, Emmision report 2016 http://www.environmentalconsultants.co.za/wp-content/uploads/2016/11/Appendix-D1.pdf technologyComment of gold-silver mine operation with refinery (PG): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. ORE AND WASTE HAULAGE: The haul trucks transport the ore to various areas for processing. The grade and type of ore determine the processing method used. Higher-grade ores are taken to a mill. Lower grade ores are taken to leach pads. Some ores may be stockpiled for later processing. HEAP LEACHING: The recovery processes of the Misima Mine are cyanide leach and carbon in pulp (CIP). The ore is crushed or placed directly on lined leach pads where a dilute cyanide solution is applied to the surface of the heap. The solution percolates down through the ore, where it leaches the gold and flows to a central collection location. The solution is recovered in this closed system. The pregnant leach solution is fed to electrowinning cells and undergoes the same steps as described below from Electro-winning. ORE PROCESSING: Milling: The ore is fed into a series of grinding mills where steel balls grind the ore to a fine slurry or powder. Oxidization and leaching: The recovery process in the Porgera Mine is pressure oxidation and cyanide leach. The slurry is pressure-oxidized in an autoclave before going to the leaching tanks or a dry powder is fed through a roaster in which it is oxidized using heat before being sent to the leaching tanks as a slurry. The slurry is thickened and runs through a series of leaching tanks. The gold in the slurry adheres to carbon in the tanks. Stripping: The carbon is then moved into a stripping vessel where the gold is removed from the carbon by pumping a hot caustic solution through the carbon. The carbon is later recycled. Electro-winning: The gold-bearing solution is pumped through electro-winning cells or through a zinc precipitation circuit where the gold is recovered from the solution. Smelting: The gold is then melted in a furnace at about 1’064°C and poured into moulds, creating doré bars. Doré bars are unrefined gold bullion bars containing between 60% and 95% gold. WATER SUPPLY: For Misima Mine, process water is supplied from pit dewatering bores and in-pit water. Potable water is sourced from boreholes in the coastal limestone. For Porgera Mine, the main water supply of the mine is the Waile Creek Dam, located approximately 7 kilometres from the mine. The reservoir has a capacity of approximately 717, 000 m3 of water. Water for the grinding circuit is also extracted from Kogai Creek, which is located adjacent to the grinding circuit. The mine operates four water treatment plants for potable water and five sewage treatment plants. ENERGY SUPPLY: For Misima Mine, electricity is produced by the mine on site or with own power generators, from diesel and heavy fuel oil. For Porgera Mine, electricity is produced by the mine on site. Assumed with Mobius / Wohlwill electrolysis. Porgera's principal source of power is supplied by a 73-kilometre transmission line from the gas fired and PJV-owned Hides Power Station. The station has a total output of 62 megawatts (“MW”). A back up diesel power station is located at the mine and has an output of 13MW. The average power requirement of the mine is about 60 MW. For both Misima and Porgera Mines, an 18 MW diesel fired power station supplies electrical power. Diesel was used in the station due to the unavailability of previously supplied heavy fuel oil. technologyComment of gold-silver mine operation with refinery (CA-QC): One of the modelled mine is an open-pit mine and the two others are underground. technologyComment of gold-silver mine operation with refinery (RoW): The mining of ore from open pit mines is considered. technologyComment of platinum group metal, extraction and refinery operations (ZA): The ores from the different ore bodies are processed in concentrators where a PGM concentrate is produced with a tailing by product. The PGM base metal concentrate product from the different concentrators processing the different ores are blended during the smelting phase to balance the sulphur content in the final matte product. Smelter operators also carry out toll smelting from third part concentrators. The smelter product is send to the Base metal refinery where the PGMs are separated from the Base Metals. Precious metal refinery is carried out on PGM concentrate from the Base metal refinery to split the PGMs into individual metal products. Water analyses measurements for Anglo Platinum obtained from literature (Slatter et.al, 2009). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” Water share between MC and EC from Mudd (2010). Mudd, G., 2010. Platinum group metals: a unique case study in the sustainability of mineral resources, in: The 4th International Platinum Conference, Platinum in Transition “Boom or Bust.” technologyComment of primary zinc production from concentrate (RoW): The technological representativeness of this dataset is considered to be high as smelting methods for zinc are consistent in all regions. Refined zinc produced pyro-metallurgically represents less than 5% of global zinc production and less than 2% of this dataset. Electrometallurgical Smelting The main unit processes for electrometallurgical zinc smelting are roasting, leaching, purification, electrolysis, and melting. In both electrometallurgical and pyro-metallurgical zinc production routes, the first step is to remove the sulfur from the concentrate. Roasting or sintering achieves this. The concentrate is heated in a furnace with operating temperature above 900 °C (exothermic, autogenous process) to convert the zinc sulfide to calcine (zinc oxide). Simultaneously, sulfur reacts with oxygen to produce sulfur dioxide, which is subsequently converted to sulfuric acid in acid plants, usually located with zinc-smelting facilities. During the leaching process, the calcine is dissolved in dilute sulfuric acid solution (re-circulated back from the electrolysis cells) to produce aqueous zinc sulfate solution. The iron impurities dissolve as well and are precipitated out as jarosite or goethite in the presence of calcine and possibly ammonia. Jarosite and goethite are usually disposed of in tailing ponds. Adding zinc dust to the zinc sulfate solution facilitates purification. The purification of leachate leads to precipitation of cadmium, copper, and cobalt as metals. In electrolysis, the purified solution is electrolyzed between lead alloy anodes and aluminum cathodes. The high-purity zinc deposited on aluminum cathodes is stripped off, dried, melted, and cast into SHG zinc ingots (99.99 % zinc). Pyro-metallurgical Smelting The pyro-metallurgical smelting process is based on the reduction of zinc and lead oxides into metal with carbon in an imperial smelting furnace. The sinter, along with pre-heated coke, is charged from the top of the furnace and injected from below with pre-heated air. This ensures that temperature in the center of the furnace remains in the range of 1000-1500 °C. The coke is converted to carbon monoxide, and zinc and lead oxides are reduced to metallic zinc and lead. The liquid lead bullion is collected at the bottom of the furnace along with other metal impurities (copper, silver, and gold). Zinc in vapor form is collected from the top of the furnace along with other gases. Zinc vapor is then condensed into liquid zinc. The lead and cadmium impurities in zinc bullion are removed through a distillation process. The imperial smelting process is an energy-intensive process and produces zinc of lower purity than the electrometallurgical process. technologyComment of processing of anode slime from electrorefining of copper, anode (GLO): Based on typical current technology. Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, copper telluride cement and crude selenium to further processing. technologyComment of silver-gold mine operation with refinery (CL): OPEN PIT MINING: The ore is mined in four steps: drilling, blasting, loading and hauling. In the case of a surface mine, a pattern of holes is drilled in the pit and filled with explosives. The explosives are detonated in order to break up the ground so large shovels or front-end loaders can load it into haul trucks. BENEFICIATION: The processing plant consists of primary crushing, a pre-crushing circuit, (semi autogenous ball mill crushing) grinding, leaching, filtering and washing, Merrill-Crowe plant and doré refinery. The Merrill-Crowe metal recovery circuit is better than a carbon-in-pulp system for the high-grade silver material. Tailings are filtered to recover excess water as well as residual cyanide and metals. A dry tailings disposal system was preferred to a conventional wet tailings impoundment because of site-specific environmental considerations. technologyComment of silver-gold mine operation with refinery (RoW): Refinement is estimated with electrolysis-data. technologyComment of treatment of precious metal from electronics scrap, in anode slime, precious metal extraction (SE, RoW): Anode slime treatment by pressure leaching and top blown rotary converter. Production of Silver by Möbius Electrolysis, Gold by Wohlwill electrolysis, Palladium to further processing

Transformationsprozess zum treibhausgasneutralen und ressourcenschonenden Deutschland - GreenEe

Das Umweltbundesamt (UBA) untersucht schon seit vielen Jahren, wie eine nachhaltige Entwicklung sowie eine treibhausgasneutrale und ressourcenschonende Lebensweise erreicht werden kann. Hierfür wurde ein interdisziplinäres Projekt gestartet: "RESCUE" (Wege in eine ressourcenschonende Treibhausgasneutralität). Dieses Projekt ist mit einem hohen Anteil an "Eigenforschung" des UBA und einer intensiven Einbindung externer Wissenschaftler über das hier berichtete Forschungsvorhaben (FKZ 3715411150) gelungen. Dabei wurden sechs Szenarien zur Transformation entwickelt. Die Green-Szenarien beschreiben unterschiedlich ambitionierte Transformationspfade zu einem ressourcenschonenden und treibhausgasneutralen Deutschland bis 2050. Die beiden GreenEe-Szenarien stehen für "Germany -resource efficient and greenhouse gas neutral -Energy efficiency" und fokussieren die Erschließung der Energieeffizienzpotenziale über alle Anwendungsbereiche hinweg. In GreenEe1 sind Produktionsmengen vorgegeben, Produkte, die aufgrund einer rückläufigen Nachfrage in Deutschland nicht mehr nachgefragt werden, werden exportiert. In GreenEe2 werden die Produktionsmengen entlang der Dynamik der inländischen Nachfrage ermittelt. Beide Szenarien beinhalten die grundlegende Transformation des Energiesystems einschließlich des Ausstiegs aus fossilen Rohstoffen und einer tiefgreifender Sektorkopplung mittels Elektrifizierung. Der Endenergiebedarf kann von 2.737 TWh in 2015 auf nur 1.609 TWh in GreenEe1 reduziert werden, der Anteil der erneuerbaren Energien im Strombereich steigt bereits auf 75 % in 2030 und 100 % in 2050. Der EE-Anteil der Brenn- und Kraftstoffe ist aufgrund des langsameren Markthochlaufes für PtX im Jahre 2040 bei 40 %. Im GreenEe2-Szeanrio wird der Endenergiebedarf dabei sogar auf 1.540 TWh reduziert, bei einer vergleichbaren Dekarbonisierung der Stromerzeugung, aber etwas höheren Dekarbonisierung der Brenn- und Kraftstoffe in 2040 von 42 %. Im Ergebnis wird in GreenEe1 (GreenEe2) im Jahr 2050 der Rohmaterialkonsum gegenüber 2010 um 60,6 % (61,8 %) reduziert. Der Anteil der Sekundärmaterialien am gesamten (primär- und sekundär-) Rohstoffbedarf/-verbrauch steigt auf 32 % (33 %). Pro Person werden nur noch 7,5 (7, 3) Tonnen Rohstoffe konsumiert, davon 2,2 Tonnen Biomasse, die überwiegend für die Ernährung gebraucht werden. Die technologischen Änderungen einschließlich Substitutionen (wie die der fossilen Rohstoffe durch erneuerbare Energien, der Steigerungen der Rohstoffeffizienz und des Recyclings) reduzieren die Nachfrage nach einer Vielzahl von Rohstoffen, ausgenommen davon sind Rohstoffe, die in Schlüsseltechnologien für die Transformation gebraucht werden. Die Treibhausgasemissionen können in GreenEe1 (GreenEe2) bis 2050 um 95,8 % (96,3 %) gegenüber 1990 reduziert werden, bis 2030 liegt der Rückgang der THG-Emissionen bei 60,2 % (61,3 %) . Allerdings können nur im Energie- und Verkehrssektor die Treibhausgase bis 2050 vollständig vermieden werden. In den anderen Quellgruppen Industrie, Landwirtschaft, Abfall und LULUCF verbleiben Emissionen, die nach dem heutigen Wissensstand noch nicht vollständig vermeidbar sind. Quelle: Forschungsbericht

1 2 3 4 5481 482 483