API src

Found 4880 results.

Related terms

Forschungsprogramm Experimenteller Wohnungs- und Städtebau (ExWoSt), Modellprojekt Stadt Regensburg

Ausgangslage/Betroffenheit: Die Stadt Regensburg hat etwa 134.000 Einwohner (Erstwohnsitze) und ist damit die viertgrößte Stadt Bayerns. Unter den Modellvorhaben weist Regensburg das stärkste Bevölkerungswachstum auf - sowohl in der zurückliegenden Einwohnerentwicklung als auch in den Prognosen bis 2025, nach denen ein Anstieg der Bevölkerung um 5,4Prozent erwartet wird. Regensburg liegt am nördlichsten Punkt der Donau und den Mündungen der linken Nebenflüsse Naab und Regen. Es wird von den Winzerer Höhen, den Ausläufern des Bayrischen Waldes und dem Ziegetsberg umrandet, wodurch die Entstehung von Inversionswetterlagen begünstigt wird. Durch die topographische Pfortenlage weist die Stadt zudem eine hohe Nebelhäufigkeit auf und ist insbesondere in den Wintermonaten anfällig für Feinstaubbelastungen. Im Gegensatz zu vielen anderen Städten hat Regensburg einen relativ kompakt gegliederten Stadtkörper und eine insgesamt homogene Siedlungsstruktur. Prägend ist die historische Altstadt mit ca. 1.000 denkmalgeschützten Gebäuden. Diese gilt als einzige authentisch erhaltene, mittelalterliche Großstadt Deutschlands und ist seit 2006 Welterbe der UNESCO (Organisation der Vereinten Nationen für Erziehung, Wissenschaft und Kultur). Die Regensburger Altstadt wird als 'Steinerne Stadt' charakterisiert. Ihre historisch gewachsene dichte Baustruktur mit steinernen Plätzen und Gassen, wenig Bäumen im öffentlichen Raum und einer hohen Nutzungsdichte (Wohnen, Einkaufen, Arbeiten, Tourismus) erwärmt sich insbesondere im Sommer stärker als das Umland und wirkt als Hitzespeicher. So können die Temperaturunterschiede im Stadtgebiet bis zu 6 GradC betragen. Das Phänomen der Wärmeinsel, das sich im Zuge des fortschreitenden Klimawandels deutlicher ausprägt, impliziert einen sinkenden thermischen Komfort, löst zusätzliche Energiebedarfe aus und stellt u.U. veränderte Ansprüche an die Gestaltung von Freiflächen. Aufgrund der Lage an der Donau muss sich Regensburg ferner auf häufigere Schwüle und Gefährdung durch Hochwasser einstellen. Aus der Notwendigkeit zur Anpassung an den Klimawandel erwächst in Verbindung mit anderen Zielbildern einer nachhaltigen Siedlungsentwicklung ein umfassender planerischer Handlungsbedarf. Im Rahmen des Modellprojekts thematisiert die Stadt Regensburg den Widerspruch zwischen einer Stadtentwicklungs- und Bauleitplanung, die auf Flächensparsamkeit und Innenentwicklung ausgerichtet ist, und erforderlichen Anpassungsstrategien an den Klimawandel, die bei der besonderen städtebaulichen Kompaktheit der Stadt Regensburg tendenziell eine Auflockerung von Baustrukturen und Flächenentsiegelung beinhalten. Im Sinne einer klimaangepassten Stadtentwicklung galt es: - auf strategischer Ebene die Weichen für eine klimaangepasste Flächennutzung für die zukünftige Stadtentwicklung zu stellen - auf operativer Ebene Maßnahmen für restriktive bis persistente Stadt- und Freiraumstrukturen zu entwickeln.

Waermeintegrationsanalyse und Exergieanalyse als Instrument zur rationellen Energienutzung

Bei der Minimierung des Energiebedarfs technischer Prozesse spielen die Grenzen des ersten und zweiten Hauptsatzes der Thermodynamik eine einschlaegige Rolle. Dies gilt insbesonders auch fuer die Entwicklung von Waermenutzungskonzepten fuer technische Anlagen. Grundlegende thermodynamische Instrumente sind die Waermeintegrationsanalyse und die Energieanalyse. Es wird untersucht, in welcher Weise diese Instrumente in praktisch realisierbarer Weise zur rationellen Energienutzung beitragen koennen.

Branchenabhängiger Energieverbrauch des verarbeitenden Gewerbes

<p>Alle Wirtschaftsbereiche zusammen verbrauchen fast drei Viertel der in Deutschland benötigten Primärenergie. Der Anteil des verarbeitenden Gewerbes am Primärenergieverbrauch aller Produktionsbereiche lag 2022 bei rund 46 Prozent. Der Energiebedarf dieses Gewerbes blieb im Zeitraum 2010 bis 2022 etwa konstant, der spezifische Energieverbrauch pro Tonne Stahl, Glas oder Chemikalien ging aber zurück.</p><p>Der Energiebedarf Deutschlands</p><p>Der gesamte Primärenergiebedarf Deutschlands betrug im Jahr 2022 nach dem Inländerkonzept rund 11.854 Petajoule (PJ). Dabei wird der Verbrauch inländischer Wirtschaftseinheiten in der übrigen Welt in die Berechnung des Gesamtverbrauchs einbezogen, während der Verbrauch gebietsfremder Einheiten im Inland unberücksichtigt bleibt. Die privaten Haushalte in Deutschland verbrauchten rund 30 % der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠. Die Wirtschaft mit ihren vielen Produktionsbereichen benötigte die übrigen 70 %. Zu diesen Bereichen zählen das Herstellen von Waren, das Versorgen mit Energie und der Warentransport. All diese Produktionsbereiche verbrauchten im Jahr 2022 zusammen mehr als 8.170 PJ Primärenergie (siehe Abb. „Primärenergieverbrauch 2022 (Inländerkonzept)“).</p><p>Zur Begriffsklärung: Mit der Präposition „primär“ betonen Fachleute, dass der <a href="https://www.umweltbundesamt.de/daten/energie/primaerenergiegewinnung-importe">“Primär“-Energiebedarf</a> sowohl den realen Energiebedarf bei Energieverbrauchern erfasst als auch die Energieverluste, die bei der Bereitstellung und beim Transport von Energie entstehen. Und diese Verluste sind hoch: Mehr als ein Drittel aller Primärenergie geht bei der Bereitstellung und beim Transport von Energie verloren <a href="https://www.destatis.de/GPStatistik/receive/DEMonografie_monografie_00003790">(Statistisches Bundesamt 2006)</a>.</p><p>Der Energiebedarf des verarbeitenden Gewerbes</p><p>Die Firmen, die Waren herstellen, werden als „verarbeitendes Gewerbe“ bezeichnet. Sie hatten von allen Produktionsbereichen im Jahr 2022 mit circa 3.768 PJ den größten Primärenergiebedarf. Das ist ein Anteil von rund 46 % am Energieverbrauch aller Produktionsbereiche. Der nächstgrößte Energieverbraucher war die Energieversorgung mit 1.594 PJ (oder 19,5 % Anteil am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠), gefolgt vom Verkehr mit 1.121 PJ (oder 13,7 % Anteil am Primärenergieverbrauch) (siehe Abb. „Anteil wirtschaftlicher Aktivitäten am Primärenergieverbrauch aller Produktionsbereiche 2022“).</p><p>Primärenergienutzung des verarbeitenden Gewerbes</p><p>Die Primärenergienutzung innerhalb des verarbeitenden Gewerbes verteilt sich auf verschiedene Produktionssektoren (siehe Abb. „Anteile der Sektoren am ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ des verarbeitenden Gewerbes 2022“). Ein wichtiger Sektor ist dabei die Chemieindustrie. Sie benötigte im Jahr 2022 mit rund 1.592 PJ von allen Sektoren am meisten ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ zur Herstellung ihrer Erzeugnisse. Das ist ein Anteil von 42,3 % am Energieverbrauch im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=verarbeitenden_Gewerbe#alphabar">verarbeitenden Gewerbe</a>⁠. Weitere wichtige Energienutzer sind die Metallindustrie mit einem Anteil von 14,7 % sowie die Hersteller von Glas, Glaswaren, Keramik, verarbeiteten Steinen und Erden mit 7,3 % am Energieverbrauch im verarbeitenden Gewerbe.</p><p>Die Energie wird Unternehmen dabei als elektrischer Strom, als Wärme (etwa als Dampf oder Thermoöl) sowie direkt in Form von Brennstoffen (wie Erdgas, Kohle oder ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biomasse#alphabar">Biomasse</a>⁠) zur Verfügung gestellt.</p><p>Gleichbleibender Primärenergieverbrauch</p><p>Seit dem Jahr 2010 blieb der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergieverbrauch#alphabar">Primärenergieverbrauch</a>⁠ in fast allen Produktionssektoren relativ konstant (siehe Abb. „Primärenergieverbrauch ausgewählter Sektoren des verarbeitenden Gewerbes“).</p><p>Gesunkene und gestiegene Primärenergieintensität </p><p>Die Primärenergieintensität beschreibt, wie viel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Primrenergie#alphabar">Primärenergie</a>⁠ bezogen auf die erzielte Bruttowertschöpfung eines Produktionsbereichs oder Wirtschaftszweigs verbraucht wird. Die Entwicklung dieser Energieintensität über mehrere Jahre kann einen Hinweis darauf geben, ob in einem Wirtschaftszweig energieeffizient gearbeitet wird.</p><p>Die Primärenergieintensität einzelner Wirtschaftszweige entwickelte sich im Zeitraum 2010 bis 2021 unterschiedlich (siehe Abb. „Primärenergieintensität ausgewählter Sektoren des verarbeitenden Gewerbes“):</p><p>Begrenzte Aussagekraft der Primärenergieintensität</p><p>Schwankende Preise für Rohstoffe und Produkte sowie andere äußere Wirtschaftsfaktoren oder ggf. auch die Auswirkungen der weltweiten Corona-Pandemie beeinflussen zwar die Bruttowertschöpfung, nicht aber die Energieeffizienz eines Prozesses. Die Primärenergieintensität eignet sich daher nur eingeschränkt, um die Entwicklung der Energieeffizienz in den jeweiligen Herstellungsprozessen zu beschreiben. Dies ist unter anderem deutlich bei den Kokerei- und Mineralölerzeugnissen zu sehen.</p>

CO 2 Klimabilanz 1990 bis 2021

Energie- und CO2-Bilanzierung 2021 Die Stadt Aachen erstellt seit 2010 jährlich eine Energie- und CO2-Bilanz (Daten und Berechnungen von 1990 bis 2021 liegen vor). Als Basisjahr wurde das Jahr 1990 (gemäß Kyoto-Protokoll 1997) ausgewählt. Die Bilanz wird mit dem vom Klimabündnis (Climate Alliance) empfohlenen Berechnungstool ECORegion auf Basis tatsächlicher Verbräuche sowie zusätzlicher statistischer Daten ermittelt. Die Endenergiebilanz umfasst zunächst den Energiebedarf der Verbraucher innerhalb der Stadtgrenzen. Die Primärenergiebilanz (Methode LCA: Life Cycle Assessment) umfasst darüber hinaus den Energiebedarf zur Produktion, Umwandlung und Transport der Energieträger (Vorkettenanteile) und erstreckt sich somit über den Bilanzierungsraum der Stadt hinaus.

Einsatz leistungsfaehiger Methoden fuer die Analyse der Funktion von Oekosystemen und der Messung des Energie- und Informationsflusses durch solche Systeme

Es wird der Energiefluss in limniden Systemen bis zur Ebene des Phyto- und Zooplanktons im Labor und im Freiland gemessen. Hierbei wird der Energiebedarf individueller Organismen experimentell ermittelt.

Analyse der Wasserwirtschaft in Waermekraftwerken

Die Technologien thermischer Kraftwerke zur Deckung des Strombedarfs werden nach heutigem Wissensstand in absehbarer Zukunft nicht auf die Nutzung von Wasser verzichten koennen. Die dabei entstehende thermische Belastung der Gewaesser laesst sich mit geeigneten Massnahmen verringern. Diese Reduzierung ist jedoch durch die zunehmende Anwendung der nassen Rueckkuehlung mit Verdunstungsverlusten verbunden. Ein Abflussdefizit ist die Folge. Bei geringer Wasserfuehrung des Flusses kann daher die Stromerzeugung zu Nutzungseinbussen der uebrigen Anlieger fuehren. Vor diesem Hintergrund ergab sich die Notwendigkeit, neben der Kuehlung auch die uebrigen wassernutzenden Prozesse im Kraftwerk wie Verbrennung, Dampferzeugung, Zusatzwasser-Aufbereitung fuer die verschiedenen Kreislaeufe usw. auf ihre Verdunstung hin zu untersuchen, um in Abhaengigkeit von Technologie und Energiequelle ihre Einfluesse auf den Wasserhaushalt darlegen zu koennen. Durch Vergleich dieser Verluste mit der Wasserfuehrung der Fluesse werden Moeglichkeiten der Kraftwerksplanung nach wassermengenorientierten Gesichtspunkten entwickelt.

Kurzgutachten: Erreicht das integrierte Klima- und Energiepaket der Bundesregierung die gesetzten Einsparziele?

Im Auftrag der Bundestagsfraktion BÜNDNIS 90 / DIE GRÜNEN untersuchte Ecofys das Integrierte Klima- und Energieprogramm (IKEP) der Bundesregierung. Ziel der Studie war es, abzuschätzen, inwieweit durch die bisher initiierten Maßnahmen die Klima- und Energieeffizienzziele erreicht werden. Gemäß der Analyse der geplanten und eingeleiteten Maßnahmen werden nach jetzigem Umsetzungsstand die Energie- und Klimaziele verfehlt. Dabei senkt sich der Strombedarf von 2006 bis 2020 statt um 11 Prozent nur um 4 bis 6 Prozent. Auch die Treibhausgasemissionen sinken im Vergleich zu 1990 nur um rund 28 Prozent, und nicht wie angekündigt um 40 Prozent.

Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme

Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.

Ressortforschungsplan 2024, Praxis und Potentiale von Slow-Steaming zur Energieeinsparung und Vermeidung von THG-Emissionen im Seeverkehr sowie Beiträge des Luft- und Seeverkehrs im internationalen Kontext

In dem Vorhaben soll auf technische Möglichkeiten zur Effizienzverbesserung bzw. Energieeinsparung eingegangen werden (bspw. Nutzung der Windkraft) und eruiert werden, in welcher Höhe Energieeinsparungen realistisch zu erwarten sind, für welche Schiffstypen diese jeweils in Frage kommen, wie weit der Energiebedarf des internationalen Seeverkehrs sich damit senken ließe und ob bzw. unter welchen Bedingungen diese Maßnahmen wirtschaftlich sind oder einer Förderung bedürfen. In die Betrachtung sollen bestehende und zukünftige Maßnahmen auf EU- und internationaler Ebene einfließen. In einem zweiten Arbeitspaket sind die Treibhausgasminderungsmöglichkeiten durch Carbon Capture on board (OCC) zu beleuchten. Es soll (beschränkt auf das System Schiff) eine detaillierte Betrachtung des Energieaufwands zur Abscheidung, Speicherung und Transport des CO2 sowie den dadurch verursachten zusätzlichen CO2eq-Emissionen erfolgen. Darüber hinaus sollen zudem auch die Auswirkungen auf die schiffsspezifische Energieeffizienz betrachtet werden und für welche Schiffstypen dies wirtschaftlich darstellbar ist. Es sind Beratungsleistungen für die Verhandlungen unter der Klimarahmenkonvention zu dem Agendapunkt der 'bunker fuels' und ein Ad-hoc-Beratungsbudget für den See- und Luftverkehr vorzusehen.

Energieoptimierung in der Produktion von Ferrolegierungen - Entwicklungen von Bandgießprozessen, Teilprojekt: Entwicklung und Ertüchtigung eines Bandgießverfahrens für die energieeffiziente Herstellung von Ferrochrom

1 2 3 4 5486 487 488