API src

Found 4880 results.

Related terms

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Herstellung und Charakterisierung modularer Strukturen mittels Extrusion

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Energy from biomass:Linkages between the agricultural and the energy sector in the EU

Over the last three decades, real energy prices have increased relatively to real prices for agricultural products. Consequently, bioenergy as a share in total energy demand has increased worldwide and is expected to further increase. The potential supply of biomass for energy production has an impact on the future energy balance and demand for energy from biomass has an impact on agricultural markets. This interrelationship has often been analyzed based on either energy system models assuming a given biomass supply, or on agricultural sector models assuming a given biomass demand for energy. Alternatively, some studies address these market interdependencies based on general equilibrium models with a very stylized representation of the energy sector.The objective of this subproject is to analyze ex-ante the interdependence between the energy and the agricultural sector in the EU under energy as well as to analyze agricultural policy scenarios based on the combined use of two well-established partial models: the Integrated Markal Efom System (TIMES) PanEU Model, which is a bottom up dynamic energy system model and the European Simulation Model (ESIM), which is a partial equilibrium comparative static agricultural sector model.The work program includes the identification and creation of interfaces and exchange variables for both models, the conceptualization of the regional dimension of bioenergy markets, the further development of both models, as well as scenario development and analysis. Close interrelations exist with subproject 6: the interface with FARMIS allows addressing regional and farm specific effects of energy policy scenarios; and with subproject 8: the inclusion of agriculture in EU climate policy will have effects on the potential of the agricultural sector to supply biomass for energy, which will be taken into account.

Oxidations-Katalysatoren (OxKat/RCO) in der Zementklinkerproduktion: Errichtung einer erstmaligen und innovativen Anlage zur Emissionsminderung ohne Einsatz fossiler Primärenergie (KAREm)

Die Holcim (Süddeutschland) GmbH ist spezialisiert auf die Herstellung und den Vertrieb von Baustoffen. Das Unternehmen bietet ein breites Sortiment an Zement, Gesteinskörnungen, Beton sowie Dienstleistungen für Bauvorhaben an. Der Prozess der Zementklinkerherstellung ist sehr energieintensiv und verursacht sowohl brennstoff- als auch rohstoffbedingte Emissionen. Letztere resultieren aus den chemischen Zusammensetzungen der verwendeten Rohstoffe wie Kalkstein, Sand, Ton und z.B. eisenhaltigen Zusatzstoffen. Neben Staub sind insbesondere gasförmige Abgaskomponenten, wie NO X , NH 3 und SO X , organische Verbindungen sowie Schwermetalle von Bedeutung. In der 17. BImSchV, der für Zementwerke maßgeblichen Immissionsschutzregelung, gibt es jedoch für eine Vielzahl von Parametern (SO X , organische Gesamtemissionen, NH 3 , Hg) die Möglichkeit, rohmaterialbedingte Ausnahmen von den allgemeinen Grenzwerten zuzulassen. Am Standort Dotternhausen gelten derzeit Ausnahmen für die Emissionsgrenzwerte von CO, VOCs und NH 3 , da bisher keine Reduzierung der rohstoffbedingten Emissionen implementiert ist. Zur Minderung von NO X -Emissionen wird im Zementwerk Dotternhausen aktuell das Verfahren der selektiven nichtkatalytischen Reduktion (SNCR) betrieben. Im Rahmen des Vorhabens soll im Zementwerk der HOLCIM Süddeutschland GmbH in Dotternhausen eine Anlage zur kombinierten Abgasreinigung errichtet werden. Damit sollen zum einen die Emissionen des Zementwerks deutlich reduziert (z.B. NO X , NH 3 , VOCs, CO) und zum anderen der fossile Energiebedarf für die Emissionsminderung in Zementwerken deutlich gesenkt werden. Die Anlage besteht aus einem Katalysator zur selektiven katalytischen Reduktion (SCR), der mit einem Oxidationskatalysator in einer Funktionseinheit kombiniert wird. Der Oxidationskatalysator wird erstmalig in der Zementindustrie eingesetzt. Der Einsatz von Oxidationskatalysatoren wird seit langem als vielversprechende Technologie für den Einsatz in der Zementindustrie gehandelt, aufgrund des hohen technischen Risikos aber bisher noch nicht eingesetzt. Durch diese Anlagenkombination werden zukünftig sowohl brennstoffbedingte als auch rohmaterialbedingte Emissionen eingespart und gezielt insbesondere NO X , NH 3 , organische Gesamtemissionen und besonders problematische Einzelverbindungen (z. B. Benzol, PAKs, PCB) sowie CO gemindert. So sollen bei Umsetzung des Projektes im Dauerbetrieb Emissionswerte für Ammoniak unterhalb der allgemeinen gesetzlichen Anforderungen eingehalten werden: 10 Milligramm pro Kubikmeter statt 30 Milligramm pro Kubikmeter für Ammoniak im Tagesmittel. CO wird nahezu vollständig zu CO 2 oxidiert. Zusätzlich werden die Emissionen organischer Verbindungen soweit reduziert, dass keine nach 17. BImSchV allgemein zulässige rohmaterialbedingte Ausnahme für organische Emissionen erforderlich ist und ein Wert unterhalb von 10 Milligramm pro Kubikmeter im Dauerbetrieb und allen Betriebszuständen eingehalten wird. Auch bei relevanten organischen Einzelkomponenten (z. B. Benzol, Dioxine/Furane, PCB) wird eine nahezu vollständige Zerstörung erwartet. Damit werden bei erfolgreicher Umsetzung des Projektes die Emissionen unterhalb des Emissionsniveaus der aktuell fortschrittlichsten Anlagen liegen. Ziel ist, nach erfolgreicher Umsetzung des Projektes auf die Inanspruchnahme rohmaterialbedingter Ausnahmen für NH 3 , organische Gesamtemissionen und CO verzichten zu können. Darüber hinaus kann bei der innovativen Technologiekombination aus selektiver katalytischer Reduktion und einem Oxidationskatalysator auf den Einsatz fossiler Energieträger komplett verzichtet werden. Die geplante Anlagenkombination ist auf andere Anlagen der Zementindustrie und ggf. auch auf Unternehmen anderer Branchen übertragbar, da es sich bei dem Ofenabgas der Zementklinkerproduktion um ein sehr herausforderndes Umfeld für die Anwendung abgassensibler Minderungstechniken handelt. Die Demonstration der Funktionsfähigkeit des Verfahrens kann daher Hürden für andere Bereiche abbauen helfen. Weiterhin ist davon auszugehen, dass auch eine Nachrüstung von Oxidationskatalysatoren als eigenständiges Element in Werken mit Low-Dust-SCR-Anlagen und ggf. auch anderen SCR-Varianten zur weitergehenden Reduktion von organischen und CO-Emissionen möglich ist. Branche: Glas und Keramik, Verarbeitung von Steinen und Erden Umweltbereich: Luft Fördernehmer: Holcim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2025 Status: Laufend

Nachhaltige Kälte- und Wärmeversorgung urbaner Räume mittels Fernkälte- bzw. Fernwärmenetzen unter dem Einsatz energieeffizienter und HFKW-freier Techniken

Durch den Klimawandel steigt der Bedarf an Komfortklimakälte auch in Deutschland stetig an. Viele Bestandsgebäude werden mit Klimatechnik auf- oder nachgerüstet, Neubauten im Nichtwohngebäudebereich werden selten ohne maschinelle Klimatisierung errichtet. Der Bedarf wird meist gebäudeindividuell ermittelt und die entsprechende Technik installiert. Durch den Anschluss an ein Fernkältenetz entfallen wesentliche Komponenten wie Kältemaschine(n) und Rückkühlwerk, was nicht nur den Raum zur Aufstellung dieser einspart, sondern die Kunden auch von der Einhaltung der damit verbundenen Verordnungen (z.B. 42. BImSchV, F-Gas-V) befreit. Ähnliches gilt analog für Fernwärmenetze. Durch die zentrale Bereitstellung von Kaltwasser ergeben sich mehrere positive Umwelt- und Wirtschaftlichkeitseffekte: Der aggregierte Energiebedarf ist abzüglich der Leitungsverluste ca. 40-50% niedriger gegenüber der gebäudeindividuellen Lösung. Die Spitzenlast eines Fernkältenetzes ist niedriger als die der Gebäude mit eigenem System aufsummiert, dementsprechend fällt die installierte Leistung niedriger aus (Ressourcen- und Investitionskostenersparnis). Lastverschiebungen durch Eisspeicher sind in zentralen Einrichtungen mit dem nötigen Fachpersonal einfacher und effizienter zu betreiben als in den einzelnen Gebäuden. Weiterhin sind in Fernkältezentralen oftmals verschiedene Techniken zur Deckung des Kältebedarfs (Kompressionskälte, Absorptionskälte, Nutzung von natürlicher Kälte (Flüsse, Stadtbäche, Seen, Brunnenkühlung)) installiert, die je nach Situation nahe am optimalen Betriebspunkt eingesetzt werden können. Die Hürden, Kältemaschinen mit umweltfreundlichen natürlichen Kältemitteln wie z.B. Ammoniak und Kohlenwasserstoffe einzusetzen, sind in Fernkältezentralen deutlich niedriger als in den Einzelgebäuden (insbesondere im Bestand).

Entwicklung offenporiger monolithischer Perowskitstrukturen als hybride thermische Speicher, Teilvorhaben: Keramikherstellung mittels 3D-Druck und Charakterisierung

Regelbare Kraftwerke, welche Strom je nach Bedarf liefern können, indem sie ihre Leistung anpassen und kurzfristig ein- und ausgeschaltet werden können, gewinnen im Kontext der Energiewende zunehmend an Bedeutung. Bei der direkten Stromgewinnung, z.B. mittels Photovoltaik oder Windkraft, muss die gewonnene elektrische Energie sofort in das Netz eingespeist werden, oder in großen Batteriespeichersystem gespeichert werden. Dafür benötigte Speichersysteme mit langfristiger Betriebszuverlässigkeit und wettbewerbsfähigen Kosten sind noch nicht kommerziell verfügbar. Wärme kann hingegen zu wesentlich geringeren Kosten als Strom gespeichert und bei Bedarf zur Stromerzeugung genutzt werden. So kann aus überschüssigem Strom erzeugte Wärme in großem Umfang und über lange Zeiträume gespeichert werden, aber auch einem CSP (Concentrated Solar Power)-Kraftwerk die notwendige Flexibilität verleihen, Wärme und Strom dann zu liefern, wenn eine große Nachfrage besteht. Dies ist eine unabdingbare Voraussetzung für die weitere kommerzielle Nutzung von CSP. Durch leistungsfähige Wärmespeicher kann der Stromgewinnungsprozess weitestgehend von der Wärmegewinnung entkoppelt werden und so das Potential der Regelbarkeit und Flexibilität optimal genutzt werden. Kommerziell verfügbar sind im Bereich von Temperaturen über 700°C aktuell lediglich Wärmespeichersysteme, welche auf dem Prinzip der sensiblen, also nicht reaktiven, Wärmespeicherung basieren. Ein Einsatz von redoxaktiven Materialien birgt das Potential, die Speicherkapazität und Effizienz von Wärmespeichersystem bedeutend zu steigern. Bei der zyklischen Reduktion und Oxidation solcher redoxaktiver Materialien kann zusätzliche Wärme gespeichert (Reduktion) und wieder entnommen werden (Oxidation). Im Projekt Porotherm-Solar werden Speichermodule aus redoxaktivem Perowskit entwickelt und unter Realbedingungen in einem Demonstrator erprobt.

Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme, TVH: Systemintegration

Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.

Integration und Entwicklung eines skalierbaren thermochemischen Energiespeichers zur ganzjährigen Versorgung von Quartieren mit erneuerbarer Wärme

Die ganzjährige Versorgung mit erneuerbarer thermischer Energie stellt eine zentrale Herausforderung der Energiewende dar. Die Gründe sind die saisonalen Zyklen des Energiebedarfs und die eingeschränkte Möglichkeit des Transports thermischer Energie. Das Projekt 'EEW' verfolgt das Ziel einer dezentralen, ganzheitlichen Sektorenkopplung auf Quartiersebene, die ganzjährig die Versorgung mit erneuerbarer Wärme sicherstellen kann. Die Grundlage für das Projekt bilden zwei vom Projektpartner GP Joule mitentwickelte Modellregionen - eine dominiert durch PV-Strom die andere durch Wind-Strom. Für diese Modellregionen wird der vom Projektpartner DLR entwickelte thermochemische Energiespeicher auf Basis von gebranntem Kalk und Wasser weiterentwickelt. Die Vorteile des Speichers liegen im denkbar günstigen und weltweit verfügbaren Speichermaterial 'Kalk' sowie in einer verlustfreien Speicherung. Die zentrale Herausforderung der Speichertechnologie liegt in der effizienten Reaktionsführung der Be- bzw. Entladungsreaktion die im Rahmen des Projekts auf Basis der Pflugscharmischer-Technologie des Projektpartners Lödige optimiert werden soll. Das Projektziel ist daher eine kostengünstige, ressourcenschonende und effizienten Speichertechnologie zur Kopplung des Strom- und Wärmesektors für die regenerative Wärmebereitstellung in der Nahwärmeversorgung von Wohnquartieren zu entwickeln. Das Projekt verfolgt dabei einen ganzheitlichen Lösungsansatz: Die Systemintegration, die experimentelle Hardwareentwicklung als auch die industrielle Skalierung und wirtschaftliche Verwertungsmöglichkeiten aus Hersteller- und Nutzersicht. Mit Abschluss des Projekts liegt ein Integrations- und Betriebskonzept für das Speichersystems in einem realen Nahwärmenetz vor und ist anhand belastbarer Betriebsdaten techno-ökonomisch bewertet. Damit kann im Anschluss an das Projekt die Technologie direkt im Feld demonstriert und von den Partnern wirtschaftlich verwertet werden.

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt A

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

Die Auswirkungen von Innentemperatur und kühlen Dächern auf die Ernährungssicherheit und das Verhalten gefährdeter Bevölkerungsgruppen im ländlichen Burkina Faso

Der Anstieg der globalen Temperaturen und extremer Hitze haben erhebliche Auswirkungen auf die Gesundheit und das sozioökonomische Wohlergehen von Menschen, wobei einkommensschwache Länder besonders betroffen sind. Ländliche Regionen in diesen Ländern sind besonders gefährdet, da sie weniger Anpassungsmöglichkeiten haben. Besonders benachteiligte Gruppen wie arme Menschen, Frauen, Kinder, ältere Menschen und Menschen mit gesundheitlichen Vorbelastungen sind häufig eingeschränkt im Zugang zu Ressourcen, Bildung und Gesundheitsversorgung, was ihre Anpassungsfähigkeit an extreme Hitze erheblich einschränkt. Da Menschen viel Zeit in Innenräumen verbringen, ist die Senkung der Innentemperaturen eine zentrale Anpassungsstrategie gegen Hitzestress, da sie dem Körper ermöglicht, sich von hoher Außentemperaturen zu erholen. Studien zeigen, dass niedrigere Innentemperaturen die Ernährungssicherheit, Gesundheit, das Sozialverhalten und die kognitive Leistung fördern. Energieintensive Maßnahmen wie Klimaanlagen erhöhen jedoch den Energiebedarf und Emissionen und sind in ressourcenarmen, ländlichen Gebieten im Globalen Süden oft nicht realisierbar. Passive Kühltechniken, wie kühle Dächer, bieten eine kostengünstige Möglichkeit zur Senkung der Innentemperatur und können Ernährungssicherheit, Gesundheit und Wohlstand verbessern. Die Auswirkungen dieser Technologien sind jedoch weitgehend unerforscht. Um diese Wissenslücke zu schließen, verwenden wir umfassende Haushalts- und Individualdaten aus einer geclusterten randomisierten Kontrollstudie (cRCT) und feinkörnige Daten zu Innen- und Außentemperaturen, die Kausalität identifizieren lassen. Aufbauend auf einem DFG-geförderten Forschungsprogramm zu öffentlicher Gesundheit soll unsere Studie empirische Belege für die kausalen Auswirkungen von Innentemperaturen und passiven Kühltechniken auf Ernährungssicherheit, innerfamiliäre Spannungen, Humankapitalentwicklung und psychische Gesundheit liefern. Diese Themen sind sowohl wissenschaftlich relevant als auch grundlegend für das unmittelbare und langfristige Wohlbefinden, insbesondere in Ländern mit niedrigem Einkommen. Da sie miteinander verknüpft sind und sich gegenseitig verstärken, sind sie für das Verständnis der breiteren Entwicklungs- und Gesundheitsergebnisse von wesentlicher Bedeutung. Zudem werden wir die potenziellen Mechanismen, die den Einflüssen der Innentemperatur und passiven Kühlstrategien auf das Wohlergehen und Verhalten von fünf gefährdeten Gruppen (arme Menschen, Frauen, Kinder, ältere Menschen und Menschen mit psychischen Erkrankungen) zugrunde liegen, identifizieren und prüfen. Dieser Ansatz ist nicht nur entscheidend für die Quantifizierung der verschiedenen Auswirkungen der Innentemperaturen auf gefährdete Gruppen, sondern liefert auch wertvolle Erkenntnisse für die Entwicklung gezielter Interventionen und Anpassungsstrategien im Kontext des Klimawandels.

Regionalentwicklung und Energieversorgung unter Klimaschutzrestriktionen, TP1: Sozio-techno-ökonomische Analysen und Stakeholder-Dialoge

1 2 3 4 5486 487 488