Atomarer Sauerstoff (O) ist ein wichtiger Bestandteil der Erdatmosphäre. Er erstreckt sich von der Mesosphäre bis zur unteren Thermosphäre (Engl.: Mesosphere and Lower Thermosphere: MLT), d. h. von etwa 80 km bis über 500 km Höhe. O wird durch Photolyse von molekularem Sauerstoff durch UV-Strahlung erzeugt. Er ist die am häufigsten vorkommende Spezies in der MLT und eine wichtige Komponente in Bezug auf dessen Photochemie. Außerdem ist O wichtig für den Energiehaushalt der MLT, da CO2-Moleküle durch Stöße mit O angeregt werden und die angeregten CO2-Moleküle im Infraroten strahlen und die MLT kühlen. Dies bedeutet, dass sich der globale Klimawandel auch auf die MLT auswirkt, denn die Erhöhung der CO2-Konzentration in der MLT führt zu einer effizienteren Kühlung und damit zu deren Schrumpfen. Die O Konzentration wird außerdem durch dynamische Bewegungen, vertikalen Transport, Gezeiten und Winde beeinflusst. Daher ist eine genaue Kenntnis der globalen Verteilung von O und seines Konzentrationsprofils sowie der täglichen und jährlichen Schwankungen unerlässlich, um die Photochemie, den Energiehaushalt und die Dynamik der MLT zu verstehen. Das Ziel dieses Projekts ist es, Säulendichten und Konzentrationsprofile von O in der MLT durch Analyse der Feinstrukturübergänge bei 4,74 THz und 2,06 THz zu bestimmen. Die zu analysierenden Daten wurden mit dem Heterodynspektrometer GREAT/upGREAT (German REceiver for Astronomy at Terahertz frequencies) an Bord von SOFIA, dem Stratospheric Observatory for Infrared Astronomy, gemessen. Dies ist eine direkte Beobachtungsmethode, die genauere Ergebnisse liefern kann als existierende indirekte satellitengestützte Methoden, die photochemische Modelle benötigen, um O Konzentrationsprofile abzuleiten. Mit GREAT/upGREAT wurden seit Mai 2014 ca. 500.000 Spektren gemessen, die vier verschiedene Weltregionen abdecken, nämlich Nordamerika, Neuseeland, Europa und Tahiti/Pazifik. Zeitliche Variationen sowie der Einfluss von Sonnenzyklen, Winden und Schwerewellen werden ebenfalls im Rahmen des Projekts untersucht. Die Ergebnisse werden mit Satellitendaten, die für Höhen von 80 bis 100 km verfügbar sind, und mit Vorhersagen eines semi-empirischen Modells verglichen. Es sei darauf hingewiesen, dass diese Daten die ersten spektral aufgelösten direkte Messungen von O in der MLT sind. Dies ist eine vielversprechende Alternative zur Bestimmung der Konzentration von O im Vergleich mit indirekten satellitengestützten Methoden, die auf photochemischen Modellen beruhen.
Der Klimawandel wirkt sich in Deutschland auf die verfügbaren Wasserressourcen und ihre regionale und saisonale Verteilung aus. Zukünftig wird es nicht nur erforderlich sein, die Prognosefähigkeit des Wasserhaushaltes hinsichtlich der verfügbaren Wassermenge regional und saisonal differenziert zu verbessern, sondern auch verbesserte Einschätzungen zur Entwicklung der Wasserbedarfe verfügbar zu haben. Die Wasserbedarfe werden neben politischen Entscheidungen, von technologischen Neuerungen, dem demografischen Wandel und vom Klimawandel beeinflusst. Aufbauend auf den Arbeiten verschiedener Refo-Plan Vorhaben (z.B. WADKlim, EE & Wasser) sowie Arbeiten anderer Institutionen wird die zukünftige Entwicklung von Wasserbedarfen in den Sektoren Haushalte, Landwirtschaft, Energie, Industrie und ggf. weiterer (z.B. Tourismus) zusammengetragen und gemeinsam analysiert. Dabei soll nach Zeithorizont und Region sowie verwendeter Datengrundlage und Methodik kategorisiert werden. Auf der Grundlage dieser zusammenfassenden Darstellung wird zunächst ein strukturierter Überblick über die zur Verfügung stehenden Methoden zur Bestimmung der Wasserbedarfe erarbeitet. Dieser Überblick zeigt die Einsatzbereiche der jeweiligen Methode, verdeutlicht aber auch methodische Grenzen und den geeigneten Zeithorizont. Weiterhin werden auf der Basis der vorangegangenen Arbeitsschritte Szenarien für zukünftige Wasserbedarfe entwickelt. Der zukünftige Wasserbedarf soll abgeschätzt und eventuelle Lücken in der Darstellung der Wasserbedarfe mit Simulationsrechnungen geschlossen werden. Die 'Wasserbedarfs-Szenarien' sollen -vergleichbar zu den Klimaszenarien- mögliche Entwicklungskorridore aufzeigen, verstärkende Effekte des Klimawandels berücksichtigen, Aussagen auf unterschiedlichen Skalen (z.B. national, aber auch regional – evtl. Ebene der Wasserversorgungskonzepte) ermöglichen, die Wirkung von Steuerungsmaßnahmen abbilden sowie die erforderlichen Daten nennen.
Entwicklung eines Computerprogramms zur Wirkungsanalyse von Energie/ CO2-Einsparmaßnahmen als diskursbegleitendes Instrument. Der Einsatzbereich soll sich auf a) Orientierungsdiskurse mit Experten (siehe Projekt 'Klimaverträgliche Energieversorgung' der Akademie), Laien (siehe Projekt 'Bürgerforen Energie' der Akademie), gesellschaftliche Gruppen und b) Lehrdiskurse in Fachschulen und Schulen erstrecken.
Buntfuß-Sturmschwalben Oceanites oceanicus sind die kleinsten endothermen Tiere, die in der Antarktis brüten. Durch ihre geringe Körpergröße und die daher eingeschränkte Möglichkeit Energie zu speichern, brauchen Buntfuß-Sturmschwalben effiziente Strategien um mit vorhersehbaren aber auch mit unvorhersehbaren Perioden von Futterknappheit zurechtzukommen. Sowohl während einer Brutsaison als auch zwischen verschiedenen Brutsaisons wurden für diese Art starke Schwankungen der Futterverfügbarkeit beobachtet. In der geplanten Studie werden wir untersuchen wie junge Buntfuß-Sturmschwalben durch Heterothermie als physiologische Strategie ihren Energieumsatz optimieren und wie Torpor als Überlebensstrategie während unvorhergesehener Futterknappheit genutzt werden kann. Wir werden untersuchen, welchen Einfluss der Ernährungszustand auf Körpertemperatur und die Energieumsatz im Ruhezustand (Ruheumsatz) hat und ob diese mit der Außentemperatur zusammenhängen. Als Anpassung an vorhersehbare Unterschiede der Futterverfügbarkeit werden wir den Tagesrhythmus der Körpertemperatur und der Ruheumsatz untersuchen. Wir werden testen, ob Buntfuß-Sturmschwalben ihre Körpertemperatur und ihren Ruheumsatz während dem Tag, wenn die adulten Vögel nicht zum Füttern kommen können, strategisch herunterfahren. Außerdem werden wir die Gründe und Folgen individueller Unterschiede im heterothermischen Verhalten der Nestlinge untersuchen. Wir erwarten, dass Körperfunktionen wie Wachstum oder die Investition in das Immunsystem mit sinkender Körpertemperatur eingeschränkt werden und dass Küken, die weniger häufig von ihren Eltern gefüttert werden, häufiger Torpor nutzen. Somit könnte Heterothermie bei Küken der Sturmschwalben durch einen Trade-off zwischen verringerten Energiekosten und der Investition in Körperfunktionen, die schlussendlich die Überlebenschancen bis zur Brutzeit bestimmen, Auswirkungen auf ihre biologische Fitness haben. Als Anpassung an vorhersehbare Unterschiede in der Futterverfügbarkeit, werden wir die Heterothermie der Küken während Unwetterperioden, wie zum Beispiel während Schneestürmen, untersuchen. Schneestürme werden nach Vorhersagen der Klimamodelle in der Region in Zukunft häufiger auftreten und in dieser Zeit sind die Eingänge der Bruthöhlen häufig blockiert. Diese Studie hat daher Auswirkungen auf die Anpassungsfähigkeit der Art an den Klimawandel, sowohl im Zusammenhang mit der verringerten Futterverfügbarkeit, die vor allem durch die Abnahme des Antarktischen Krills hervorgerufen wird, als auch durch ein vermehrtes Auftreten von Schneestürmen.
These studies are continuing the work, which was carried out within a project of the German National Climate Research Programme of the German Ministry of Research and Technology (BMFT) - part Landsurface Climatology (1986-1990). In two research areas in a subpolar environment of Northern Sweden satellite data and meteorological models are used to study the energetic processes at the soil-vegetation-atmosphere-interface and to simulate with different scenarios the effect of a change of vegetation types (possible due to a global warming) on the energy budget. Another aspect is to use high-resolution satellite data for environmental monitoring of the subpolar birch forest. One location is near the Abisko Research Station of the Swedish Academy of Natural Sciences, the other is around the Tarfala Glaciological Research Station of the University of Stockholm.
Im Vergleich zu fossilen Energien greifen erneuerbare Energien wesentlich geringer in geologische und biologische Strukturen an Land und auf See ein, beanspruchen aber dezentral viel bzw. spezifisch geeignete Fläche. Da die zur Energieproduktion verfügbare Fläche qualitativ und quantitativ begrenzt ist, gehören zum künftigen Energiemix auch flächenextensive Technologien, die besonders wenig - etwa zur Nahrungsproduktion geeignete - Fläche beanspruchen, Teil einer Mehrfachnutzung sind oder für klassische Bauformen ungeeignete Standorte nutzen können. Eine dieser flächenextensiven und standortflexiblen Technologien ist die Airborne Wind Energie (AWE) - Höhenwindenergieanlagen. Als bislang im Raum weitgehend unbekannte Technologie stellt sich trotz, möglicherweise aber auch gerade wegen ihrer besonders extensiven Rauminanspruchnahme Fragen zur künftigen gesellschaftlichen Akzeptanz dieser Technologie. Dabei spielen, neben vermitteltem Wissen und rationalen Argumenten auch visuelle und akustische Wahrnehmungen, ästhetische Empfindungen und Beurteilungen sowie soziale Diskurse und Narrative eine akzeptanzbeeinflussende Rolle. In diesem Vorhaben werden für verschiedene Designvarianten der AWE Systeme, unter Berücksichtigung der optimalen Energieausbeute, die audiovisuellen Emissionen in Abhängigkeit der vielfältigen Design- und Umwelteinflüsse identifiziert und modelliert. Durch die Erweiterung bestehender Simulationsumgebungen für AWE Systeme mit diesen Emissionsmodellen wird eine ganzheitliche Analyse und Bewertung der Technologie hinsichtlich des potentiellen Beitrags zur Energiewende und gleichzeitig der, durch die lokalen Topographie- und Wetterbedingungen bedingten, Emissionswirkungen ermöglicht. Diese physikalische Simulation dient als Grundlage für die räumliche und energetische Bilanzierung von AWE Systemen, sowie für die mediale Visualisierungssimulation, welche ein Kernelement des Gesamtvorhabens darstellt und für die empirische Befragung genutzt werden soll.
Beim UBA-CO₂-Rechner wurden in diesem Jahr nicht nur die Rechenfaktoren aktualisiert, sondern auch Verbesserungen in der Nutzerführung umgesetzt. Neben einer neuen Landingpage finden sich jetzt u. a. direkte Ausfüllhilfen bei den Abfragen. Zudem wurde auch das Tool „Meine Klimapolitik“, das die Bedeutung von politischen Maßnahmen auf den persönlichen CO₂-Fußabdruck veranschaulicht, neu umgesetzt. Seit 2019 haben über 2 Million Menschen den UBA -CO 2 -Rechner genutzt. Im Zuge der jährlichen Aktualisierungsroutine wurden jetzt einige grundlegende Verbesserungen umgesetzt. Dies fällt schon auf der Startseite direkt ins Auge: Neben dem CO 2 -Schnellcheck mit nur 12 Fragen und dem detaillierten Berechnungstool „Meine CO 2 -Bilanz“ mit integriertem Flugrechner finden Sie nun weitere Rechnerangebote wie den Veranstaltungsrechner oder verschiedene CO 2 -Rechner für Kulturbetriebe. Auch weiterführende Angebote des Umweltbundesamtes (UBA) zum nachhaltigen Konsum, wie die UBA-Umwelttipps und die Denkwerkstatt Konsum , werden vorgestellt und verlinkt. Die Ausfüllhinweise und Hintergrundinformationen wurden auf der Basis der vielfältigen Rückmeldungen von Nutzer*innen neu konzipiert und formuliert. Sie finden sich nutzerfreundlich bei den entsprechenden Eingabefeldern und erleichtern das Ausfüllen. Der Rechner berechnet jetzt auch direkt bei der Eingabe Zwischenergebnisse und weist diese sofort aus. Dies ist nicht nur praktisch, sondern fördert auch die Transparenz und das Verständnis für die Wirkung von einzelnen Maßnahmen auf den persönlichen CO 2 -Fußabdruck. Ergänzungstool „Meine Klimapolitik“ Unsere persönliche CO 2 -Bilanz ist abhängig von unserem Verhalten und von persönlichen Rahmenbedingungen (z. B. ob zur Miete oder im Eigentum, in der Stadt oder auf dem Land wohnend). Sie wird aber auch in hohem Maße durch politische und gesellschaftliche Rahmenbedingungen beeinflusst (z. B. durch Förderprogramme für energetische Sanierungen oder für erneuerbare Energien, Vorgaben für die Effizienz von Haushaltsgroßgeräten und die Emissionen von Pkw). Mit dem Tool „Meine Klimapolitik“ können Nutzende deshalb in den fünf Konsumfeldern des CO 2 -Rechners ihre eigene Klimapolitik mit entsprechenden politischen Maßnahmen zusammenstellen. Das Tool berechnet auf der Basis aktueller Politikszenarien des Umweltbundesamts den Effekt, den die gewählten Maßnahmen voraussichtlich auf den durchschnittlichen CO 2 -Fußabdruck der Gesamtbevölkerung hätten. Gleichzeitig kann geprüft werden, ob mit der gewählten Klimapolitik die deutschen Klimaschutzziele bis 2030 und 2045 erreicht werden könnten. Der persönliche Handabdruck: CO 2 -Vermeidung bei anderen Viele individuelle Handlungsmöglichkeiten für wirksamen Klimaschutz können mit dem Konzept des persönlichen CO 2 -Fußabdrucks nicht oder nur teilweise erfasst werden. Wer z.B. die energetische Sanierung eines Mehrfamilienhauses initiiert, reduziert tonnenweise Treibhausgasemissionen bei den Bewohner*innen, ohne dass sich dies im eigenen CO 2 -Fußabdruck abbildet. Gleiches gilt für Personen, die z. B. ihren Arbeitgeber motivieren, eine große Solaranlage auf das Dach des Betriebsgebäudes zu installieren, den Fuhrpark an eine Carsharingorganisation anzubinden oder ein Energiemanagementsystem einzuführen. Für die Bewertung von individuellen Klimaschutzmaßnahmen ist es daher wichtig, nicht nur die „CO 2 -Einsparung bei sich selbst“ (Fußabdruck), sondern auch die „CO 2 -Einsparung bei anderen“ (Handabdruck) zu berücksichtigen. Im UBA-CO 2 -Rechner werden deshalb in drei Fällen „CO 2 -Einsparungen bei anderen“ quantifiziert und ausgewiesen, um auf die hohe Bedeutung des persönlichen Handabdrucks zumindest in den Fällen hinzuweisen, wo eine Quantifizierung möglich ist. Konkret betrifft dies die Einspeisung des Stroms aus einer eigenen Photovoltaik-Anlage, klimafreundliche Geldanlagen und freiwillige Zahlungen zur Kompensation von Treibhausgasen. Über den UBA-CO 2 -Rechner Mit dem UBA-CO 2 -Rechner kann jede und jeder den persönlichen CO 2 -Fußabdruck mit unterschiedlicher Detailtiefe und transparenten Ergebnisdarstellungen bestimmen. Das Onlinetool wird von Bürgerinnen und Bürgern, von Medien, im Rahmen von wissenschaftlichen Studien und Bildungsveranstaltungen, aber auch zur Bestimmung von Zahlungen zur freiwilligen Kompensation intensiv genutzt. Im Factsheet „ Einsatzmöglichkeiten des UBA-CO 2 -Rechners in Kommunen “ finden sich hierzu nützliche Hinweise und Praxisbeispiele. Den Rechner gibt es seit 2008. Mit dem Aufkommen der Fridays-for-Future-Bewegung haben sich die Zugriffszahlen etwa versechsfacht. Der CO 2 -Rechner wird jährlich aktualisiert. Datengrundlage für den UBA-CO 2 -Rechner sind u. a. die jeweils aktuellen Daten der AG Energiebilanzen zum Energieverbrauch in Deutschland, Daten aus dem Emissionsberechnungsmodell TREMOD für Verkehrsemissionen sowie Daten der umweltökonomischen und volkswirtschaftlichen Gesamtrechnung. Ein direkter Vergleich mit den Werten aus der nationalen Treibhausgasberichterstattung ist nicht möglich, da der UBA- CO2 -Rechner auch den Import von Waren sowie den internationalen Flugverkehr berücksichtigt. Eine Ausführliche Darstellung der Berechnungs- und Datengrundlagen findet sich in den „ Hintergrundinformationen zur Version 5.0 “.
<p>Die Angaben über CO2-Emissionen nach Sektoren beruhen auf den Energiebilanzen für Baden-Württemberg, die zunächst nur auf Landesebene vorliegen. Bei der Berechnung der Emissionswerte auf Kreis- und Gemeindeebene wird notwendigerweise auf modellhafte und damit in den verschiedenen Sektoren zum Teil verallgemeinernde Annahmen zurückgegriffen. Insbesondere wird aufgrund fehlender primärstatistischer Angaben im Sektor Haushalte, Gewerbe, Handel, Dienstleistungen und übrige Verbraucher mit einem durchschnittlichen Energieverbrauch je Wohnung bzw. je sozialversicherungspflichtig Beschäftigtem gerechnet. Regionale Minderungsmaßnahmen in diesem Sektor werden deshalb in der Modellrechnung nicht vollständig berücksichtigt.</p> <p><strong>Jahr:</strong></p> <p>Die Jahreszahl 2011a bezieht sich auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 1987 (VZ1987)</p> <p>Die Jahreszahl 2011b auf Bevölkerungsstand zum 31.12., Fortschreibung des Zensus 2011 (VZ2011)</p> <p><strong>Gemeindekennung: </strong>335043, Konstanz</p> <p><strong>Private Haushalte, GHD und übrige Verbraucher</strong>: damit sind Gewerbe, Handel, Dienstleistungen (GHD) und übrige Verbraucher wie öffentliche Einrichtungen, Landwirtschaft und militärische Einrichtungen gemeint.</p> <p><strong>Verkehr</strong>: bezeichnet den Straßenverkehr und sonstiger Verkehr wie Schienen-, nationaler Luftverkehr, Binnenschifffahrt und Off-Road-Verkehr (landwirtschaftl. Zugmaschinen, Baumaschinen, Militär, Industriegeräte,Garten/Hobby).</p> <p><strong>Wohnbevölkerung</strong>:</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 2011 (VZ2011).</p> <p>-Bevölkerungsstand zum 31.12., Fortschreibung der Volkszählung 1987 (VZ1987).</p> <p><strong>Tonnen</strong>: Menge an CO2 Emissionen in Tonnen nach Sektoren</p> <p><strong>EW</strong>: Einwohnerzahl im jeweiligen Jahr</p> <p><strong>Tonnen Je Einwohner</strong>: Menge der CO2 Emissionen in Tonnen je Einwohner nach Sektoren</p> <p><strong>Mengenanteile der Sektoren in %:</strong> CO2 Emissionen nach Sektoren in Prozenten.</p> <p><strong>Methodische Hinweise</strong>: Änderungen Allgemein/ Methodisch CO2-Berechnung regional/ Revision ab Herbst 2019:</p> <p>- Umstellung auf die endgültige Energiebilanz 2016</p> <p>- Die Emissionsfaktoren für feuerungsbedingte CO2-Emissionen ab dem Berichtsjahr 2016 wurden mit den Daten des Umweltbundesamtes gemäß NIR 2019 aktualisiert.</p> <p>- Die bundesweiten Anteile Nationalflug an Gesamtflug wurden seitens des Umweltbundesamtes in NIR 2019 ab 1990 um durchschnittlich 10 % gesenkt. Dadurch Ändern sich alle Emissionen des nationalen Luftverkehrs und somit die Emissionen des Sektors Verkehr.</p> <p>- Die Regionalisierungsdaten aus weiteren amtlichen und nichtamtlichen Quellen wurden hinsichtlich Datenverfügbarkeit zum jeweiligen Berichtsjahr überprüft und aktualisiert, sowie die Detailberechnungen methodisch vereinheitlicht.</p> <p>- Die den regionalen Straßenverkehrsemissionen zugrundeliegenden Jahresfahrleistungen wurden ab dem Jahr 2010 einer grundlegenden Revision unterzogen. Das Verkehrszählungsjahr 2010, das die Basis für die Fortschreibung der Jahre 2011 bis 2014 bildet, greift auf deutlich veränderte Zählergebnisse nach dem neuen Verkehrsmonitoring zurück. Die Verkehrszählung 2015 bildet bis zur nächsten Zählung die Basis für künftige Fortschreibungen ab 2016. Details hierzu finden Sie im Glossar des Internetauftritts des Statistischen Landesamtes unter dem Thema "Verkehr", Unterthema "KFZ und Verkehrsbelastung", Jahresfahrleistungen im Straßenverkehr (<a href="https://www.statistik-bw.de/Glossar/456">https://www.statistik-bw.de/Glossar/456</a>)</p> <p>- Aus methodischen Gründen werden die regionalen Straßenverkehrsemissionen aus Strom erst ab Berichtsjahr 2016 ausgewiesen.</p> <p>-Die Vergleichbarkeit der Ergebnisse mit früheren Berechnungsjahren sind eingeschränkt.</p> <p>[statistisches Landesamt Baden-Württemberg]: <a href="https://www.statistik-bw.de/">https://www.statistik-bw.de/</a></p> <p><strong>Quelle der Daten</strong>: <a href="https://www.statistik-bw.de/">Statistisches Landesamt Baden-Württemberg</a></p>
Origin | Count |
---|---|
Bund | 2022 |
Land | 122 |
Wirtschaft | 2 |
Wissenschaft | 23 |
Type | Count |
---|---|
Ereignis | 1 |
Förderprogramm | 1877 |
Lehrmaterial | 2 |
Strukturierter Datensatz | 2 |
Text | 177 |
Umweltprüfung | 28 |
unbekannt | 57 |
License | Count |
---|---|
geschlossen | 198 |
offen | 1899 |
unbekannt | 47 |
Language | Count |
---|---|
Deutsch | 1983 |
Englisch | 356 |
Resource type | Count |
---|---|
Archiv | 46 |
Bild | 2 |
Datei | 57 |
Dokument | 127 |
Keine | 1320 |
Unbekannt | 2 |
Webseite | 736 |
Topic | Count |
---|---|
Boden | 1536 |
Lebewesen & Lebensräume | 1432 |
Luft | 1195 |
Mensch & Umwelt | 2144 |
Wasser | 1121 |
Weitere | 2085 |