Wird die Braunkohle im Land Brandenburg für eine sichere Energieversorgung im Jahr 2030 noch benötigt? Mit dieser zentralen Fragestellung fertigte das RLI gemeinsam mit der HTW Berlin eine Untersuchung über die Energiestrategie des Bundeslandes im Auftrag der Fraktion Bündnis 90/Die Grünen im Brandenburger Landtag an. Die Studie soll die Debatte um die anstehende Evaluation der Energiestrategie 2030 der Brandenburger Landesregierung inhaltlich unterstützen. Um die Auswirkungen der Strategie sowie Veränderungen der politischen und ökonomischen Rahmenbedingungen in Bezug auf die Braunkohlenutzung konkret bewerten zu können, wurde daher mit einem umfassenden Energiesystemmodell die mögliche Energieversorgung Brandenburgs 2030 berechnet. Das verwendete Modell berücksichtigt neben Wärmebedarf und -erzeugung alle Arten der Stromerzeugung und den prognostizierten Stromverbrauch. Diese Randbedingungen stellen sicher, dass in allen Szenarien der Strom- und Wärmebedarf zu jeder Zeit gedeckt werden kann. Darüber hinaus wurden die Lastflüsse für den notwendigen Stromtransport zwischen den Regionen in Brandenburg sowie den Nachbarregionen stundengenau analysiert, um einen möglichen, systemrelevanten Bedarf an Leitungsausbau auf der Übertragungsebene und Speicherung erkennbar zu machen. Dieser floss in die Beurteilung der Wirtschaftlichkeit der Szenarien mit ein. Das RLI unterstützt Transparenz und Nachvollziehbarkeit von wissenschaftlichen Ergebnissen. Die Simulationen dieser Studie basieren auf dem Open-Source Framework oemof zur Energiesystemmodellierung. Dieses ermöglicht es, verschiedenste Energiesysteme mit den gleichen Bausteinen abzubilden. Die Links zum Code und den Eingangsdaten der vorliegenden Studie finden Sie unter dem Reiter 'Open Source'.
In recent years, electricity production from distributed renewable energy generators in Germany increased significantly due to the German Renewable Energy Sources Act. Photovoltaic power plants have shown the highest growths rates in 2009 and 2010. About two thirds of photovoltaic power plants in Continental Europe are connected to low voltage networks. Related grid codes allow for distributed generation only to operate within frequency ranges that are in many cases extremely close to nominal frequency. At an abnormal system condition the frequency of a region may increase above those thresholds and distributed generators would disconnect within immediately. The paper investigates the related potential frequency stability problem and analyses mitigation measures.
Das interdisziplinäre Vorhaben verschränkt technisch-ökonomische, informationstechnische, klimatische sowie ökologische und gesellschaftlich-soziale Perspektiven auf die Energiewende. Ziel ist die Entwicklung eines ganzheitlichen Modells und einer Methodik für die Umsetzung nachhaltiger, robuster Energiesysteme, die gesellschaftlich-soziale Faktoren (Nutzerwahrnehmung von Energiesystemen) systematisch in den technisch-ökonomischen und technisch-informatorischen Prozess der Identifizierung, Planung und Realisierung von Energieszenarien integriert. Ausgehend von einem ökologisch normativen und technisch-epistemisch bestimmten Lösungsraum werden akzeptanzrelevante Faktoren in ihrem Zusammenspiel und ihrer zeitlichen Veränderung erfasst, bewertet und modelliert. Der Einbezug gesellschaftlichen Wissens erfolgt über drei Datenzugänge und ihrer Triangulation: die empirische Beschreibung und Modellierung kognitiv-affektiver Einstellungen, die Analyse von Meinungsbildungsprozessen im Internet (Social Media) sowie eine ökologisch- klimatologische Bewertung. Die Ergebnisse werden auf Zielszenarien bezogen (Zukunftsvisionen der Energiewende), die vorab anhand der Bewertung von Chancen und Risiken bestehender Energiekonzepte aufgestellt wurden. Mittels Conjoint-Analysen für diese Szenarien werden potentielle Trade-offs ermittelt -Faktorenkonstellationen für eine zumindest hinnehmende Akzeptanz- und die Ergebnisse in die Entwicklung technisch-ökonomischer Transformationsprozesse integriert. Basierend auf der Modellierung von Transformationsprozessen, die technisch-ökonomische und gesellschaftlich-soziale Perspektiven auf die Energiewende zusammenführen, werden Empfehlungen für Politik und Entscheider in Wirtschaft und Praxis sowie die kommunikative Begleitung partizipativ orientierter Transformationsprozesse abgeleitet. Bislang liegt kein derartiger ganzheitlicher Modellansatz für das komplexe gesellschaftliche Problem der nach-haltigen Entwicklung von Energietechnik vor, der technische, ökologische und ökonomische Aspekte berücksichtigt, gleichzeitig gesellschaftlich-soziale Facetten als Steuerungselemente einbezieht und damit eine belastbare Methodik zur gesellschafts-verträglichen Ausgestaltung der Energiewende für die Unterstützung nachhaltiger Entscheidungsprozesse bereitstellt.
Dieses Projekt erforscht, wie die Bereitstellung von Infrastrukturen sowie der einhergehende Landnutzungswandel durch unterschiedliche Zukunftsvisionen und Future-Making-Praktiken strukturiert werden. Es analysiert (1) die institutionellen Kontexte großskaliger erneuerbarer Energieinfrastrukturen im kenianischen Rift Valley, (2) die Planungs- und Umsetzungsprozesse sowie damit verbundene sozial-ökologische Transformationen, (3) die Akteurs-, Governance-und Konfliktkonstellationen, v.a. mit Fokus auf Investor-Community-Beziehungen.
Im Projekt 'Planungswerkzeuge für die energetische Stadtplanung sind erste Ansätze zur energetischen Stadtplanung auf Basis des Energiemodells URBS entwickelt worden. Die Analyse erlaubt eine Einteilung der Stadt in Vorranggebiete bezüglich der Wärmeversorgung. Die Arbeit basiert auf verschiedenen Analysemodulen. Der erste Schritt besteht in der Erstellung einer Gebäudedatenbank. Alle Gebäude der Stadt sollen hinsichtlich ihrer Geometrie, des Gebäudealters, der Bauweise, des aktuellen Energieverbrauches usw. enthalten sein. Diese Informationen werden dann genutzt, um den gegenwärtigen und zukünftigen Wärmeverbrauch zu bestimmen. Der zukünftige Gebrauch wird unter der Annahme verschiedener Sanierungsmaßnahmen bestimmt. Der erste Schwerpunkt der Arbeit liegt auf einer Analyse der Verdichtung und Ausweitung des bestehenden Fernwärmenetzes. Mit Hilfe der Gebäudedatenbank wird analysiert wo und zu welchen Kosten die Fernwärme ausgebaut werden könnte. Die Erhebungen aus dieser Analyse werden dann im nächsten Schritt an das Optimierungsmodell IJRBS übergeben. Im nächsten Schritt werden verschiedene Wärmeversorgungsmöglichkeiten hinsichtlich der technischen Realisierbarkeit und der wirtschaftlichen Wettbewerbsfähigkeit untersucht. Der zweite Schwerpunkt der Untersuchung liegt auf Wärmepumpen. Hierfür wurde ein eigenes Bodenmodell entworfen. Mit dem Modell kann bestimmt werden, wo welche Menge an Energie aus dem Boden entzogen werden kann, ohne bestimmte Nachhaltigkeitskriterien zu verletzten. All diese Informationen werden in das Energiemodell URBS-Augsburg eingepflegt. Neben der Warme- wird auch die Stromversorgung im Modell abgebildet. Anhand des Modells kann dann untersucht werden welche Technologien und Maßnahmen eingesetzt werden sollten um gesetzte Klimaschutzziele zu erreichen. Ein entscheidendes Ergebnis des Modells zeigt die starke Abhängigkeit der lokalen Entwicklung in Augsburg von der allgemeinen Entwicklung der Stromerzeugung in Deutschland. Wenn eine überregionale Lösung beispielsweise mit viel off-shore Wind und Ansätzen wie Desertec realisiert wird, dann wird in Augsburg durch die Optimierung wenig eigner Strom erzeugt, Kraft- Wärme-Kopplung und Fernwärme werden nicht ausgebaut. Städtische Klimaschutzziele sollten in diesem Fall durch Einsparungsmaßnahmen im Gebäude-Wärmebereich vorangetrieben werden. Ist die Entwicklung hin zu klimaneutralem Strom in Deutschland schleppend, dann muss in Augsburg viel mehr 'grüner ' Strom erzeugt werden. Hier kann dann der Kraft-Wärme-Kopplung eine zentrale Rolle zukommen. Die Ausweitung dieses Ergebnisses ist dringend notwendig, da sie für die aktuelle politische Diskussion von zentraler Bedeutung sind.
Europe needs to triple the impact of its energy efficiency policies to achieve its 2020 targets set last year, according to a new study written by Ecofys and the Fraunhofer ISI. The study reveals that the potential exists to reach the 20 percent energy saving by 2020 goal cost-efficiently, cutting energy bills by € 78 billion for European consumers and businesses annually by 2020. However, current EU policy is delivering only one-third of the potential cost-effective savings measures. Increased energy savings will also warrant easier and less expensive achievement of a 20 percent share of renewables in the EU energy mix in 2020. The study was commissioned jointly by the European Climate Foundation (ECF) and the Regulatory Assistance Project (RAP).
Introduction: By 2020, the community Wuestenrot wants to cover its energy needs through the utilization of renewable energy sources, such as biomass, solar energy, wind power and geothermal energy, within the town area of 3000 hectares. In order to elaborate a practicable scheme for realizing this idea in a 'real' community and to develop a roadmap for implementation, the project 'EnVisaGe' under the leadership of the Stuttgart University of Applied Sciences (HFT Stuttgart) was initiated. Accompanying particular demonstration projects are a) the implementation of a plus-energy district with 16 houses connected to a low exergy grid for heating and cooling, b) a biomass district heating grid with integrated solar thermal plants. Project goal: The aim of the project is to develop a durable roadmap for the energy self-sufficient and energy-plus community of Wüstenrot. The roadmap shall be incorporated in an energy usage plan for the community, that shall be implemented by 2020 and brings Wüstenrot in an energy-plus status on the ecobalance sheet. A main feature within the EnVisaGe project is the implementation of a 14,703-m2 energy-plus model district called 'Vordere Viehweide'. It consists of 16 residential houses, supplied by a cold local heating network connected to a large geothermal ('agrothermal') collector. Here PV systems for generating electricity are combined with decentralised heat pumps and thermal storage systems for providing domestic hot water as well as with batteries for storing electricity. Another demonstration project is a district heating grid fed by biomass and solar thermal energy in the neighbourhood 'Weihenbronn'. It's based on a formerly oil-fired grid for the town hall and was extended to an adjacent residential area.
| Origin | Count |
|---|---|
| Bund | 1585 |
| Land | 7 |
| Type | Count |
|---|---|
| Ereignis | 1 |
| Förderprogramm | 1577 |
| Text | 7 |
| Umweltprüfung | 3 |
| unbekannt | 3 |
| License | Count |
|---|---|
| geschlossen | 13 |
| offen | 1578 |
| Language | Count |
|---|---|
| Deutsch | 1471 |
| Englisch | 273 |
| Resource type | Count |
|---|---|
| Bild | 1 |
| Dokument | 8 |
| Keine | 626 |
| Webseite | 959 |
| Topic | Count |
|---|---|
| Boden | 814 |
| Lebewesen und Lebensräume | 761 |
| Luft | 639 |
| Mensch und Umwelt | 1591 |
| Wasser | 305 |
| Weitere | 1572 |