API src

Found 1315 results.

Related terms

INSPIRE: Map of Mineral Resources of Germany 1:1,000,000 (BSK1000)

The BSK1000 (INSPIRE) provides the basic information on the spatial distribution of energy resources and mineral raw materials (‘stones and earth’, industrial minerals and ores) in Germany on a scale of 1:1,000,000. The BSK1000 is published by the Federal Institute for Geosciences and Natural Resources in cooperation with the State Geological Surveys of Germany. According to the Data Specification on Mineral Resources (D2.8.III.21) the content of the map is stored in five INSPIRE-compliant GML files: BSK1000_Mine.gml contains important mines as points. BSK1000_EarthResource_point_Energy_resources_and_mineral_raw_materials.gml contains small-scale energy resources and mineral raw materials as points. BSK1000_EarthResource_polygon_Distribution_of_salt.gml contains the distribution of salt as polygons. BSK1000_EarthResource_polygon_Energy_resources.gml contains large-scale energy resources as polygons. BSK1000_EarthResource_polygon_Mineral_raw_materials.gml contains large-scale mineral raw materials as polygons. The GML files together with a Readme.txt file are provided in ZIP format (BSK1000-INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

INSPIRE: Geoscientific Map of Germany 1:2,000,000 - Important deposits (GK2000 Lagerstätten)

The GK2000 Lagerstätten (INSPIRE) shows deposits and mines of energy resources, metal resources, industrial minerals and salt on a greatly simplified geology within Germany on a scale of 1:2,000,000. According to the Data Specifications on Mineral Resources (D2.8.III.21) and Geology (D2.8.II.4_v3.0) the content of the map is stored in three INSPIRE-compliant GML files: GK2000_Lagerstaetten_Mine.gml contains mines as points. GK2000_ Lagerstaetten _EarthResource_polygon_Energy_resources.gml contains energy resources as polygons. GK2000_ Lagerstaetten _GeologicUnit.gml contains the greatly simplified geology of Germany. The GML files together with a Readme.txt file are provided in ZIP format (GK2000_ Lagerstaetten -INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

Gasnetz Stadtwerke Uelzen

Die Stadtwerke Uelzen GmbH ist ein modernes Energieversorgungsunternehmen im Herzen der Lüneburger Heide und bietet Ihnen alle Services rund um das Thema Energie aus einer Hand. Unter der Marke mycity versorgt das Unternehmen die Stadt Uelzen neben Erdgas und Wasser mit 100 % Ökostrom. Hier wird das Gasleitungsnetz digital geführt, es werden alle Leitungen samt Gasstationen und Absperrschieber dargestellt. Die Daten werden fortlaufend aktualisiert. Die Daten können von berechtigten Personen eingesehen werden.

Schwermetall-Emissionen

<p>Hochwirksame Staubminderungsmaßnahmen und die Stilllegung veralteter Produktionsstätten in den neuen Bundesländern führten seit 1990 zu einer erheblichen Minderung der verbrennungsbedingten Schwermetall-Emissionen.</p><p>Entwicklung seit 1990</p><p>Die Emissionen der wichtigsten Schwermetalle (Cadmium, Blei und Quecksilber) sanken seit 1990 deutlich. Die Werte zeigen überwiegend Reduktionen von über 60 bis über 90 %. Der Großteil der hier betrachteten Reduktion erfolgte dabei in den frühen 1990-er Jahren, wobei wesentliche Reduktionen auch schon vor 1990 stattfanden. Vor allem die dabei angewandten hochwirksamen Staub- und Schwefeldioxid (SO2) -Minderungsmaßnahmen führten zu einer erheblichen Verringerung der Schwermetallemissionen zunächst in den alten und, nach der Wiedervereinigung, auch in den neuen Ländern, einhergehend mit Stilllegungen veralteter Produktionsstätten. In den letzten Jahren sieht man, bis auf wenige Ausnahmen, kaum weitere Verringerungen der Schwermetall-Emissionen (siehe Abb. und Tab. „Entwicklung der Schwermetall-Emissionen“).</p><p>Während die Blei-Emissionen bis zum endgültigen Verbot von verbleitem Benzin im Jahre 1997 rapide zurückgingen, folgten Zink, Kupfer und Selen im Wesentlichen der Entwicklung der Fahrleistungen im Verkehrssektor, die im langfristigen Trend seit 1990 anstieg.</p><p>Herkunft der Schwermetall-Emissionen</p><p>Schwermetalle finden sich – in unterschiedlichem Umfang – in den staub- und gasförmigen Emissionen fast aller Verbrennungs- und vieler Produktionsprozesse. Die in den Einsatzstoffen teils als Spurenelemente, teils als Hauptbestandteile enthaltenen Schwermetalle werden staubförmig oder gasförmig emittiert. Die Gesamtstaubemissionen aus diesen Quellen bestehen zwar in der Regel überwiegend aus relativ ungefährlichen Oxiden, Sulfaten und Karbonaten von Aluminium, Eisen, Kalzium, Silizium und Magnesium; durch toxische Inhaltsstoffe wie Cadmium, Blei oder Quecksilber können diese Emissionen jedoch ein hohes Gefährdungspotenzial erreichen.</p><p>Verursacher</p><p>Die wichtigste Quelle der meisten Schwermetalle ist der Brennstoffeinsatz im Energie-Bereich. Bei <em>Arsen, Quecksilber </em>und <em>Nickel</em> hat die Energiewirtschaft den größten Anteil, gefolgt von den prozessbedingten Emissionen der Industrie, vor allem aus der Herstellung von Metallen. <em>Cadmium</em> stammt sogar größtenteils aus der Metall-Herstellung. <em>Blei-, Chrom-, Kupfer- und Zink-</em>Emissionen werden überwiegend durch den Abrieb von Bremsen und Reifen im Verkehrsbereich beeinflusst: die Trends korrelieren hier direkt mit der jährlichen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fahrleistung#alphabar">Fahrleistung</a>⁠. <em>Selen</em> hingegen stammt hauptsächlich aus der Mineralischen Industrie, gefolgt von den stationären und mobilen Quellen der Kategorie Energie. Andere Quellen müssen noch untersucht werden, es wird jedoch erwartet, dass sie die Gesamtentwicklung kaum beeinflussen.</p><p>Verpflichtungen</p><p>Das 1998er <a href="http://www.unece.org/env/lrtap/hm_h1.html">Aarhus Protokoll über Schwermetalle</a> unter dem CLRTAP ist Ende 2003 in Kraft getreten. Es wurde im Dezember 2012 revidiert und an den Stand der Technik angepasst. Es zielt auf drei besonders schädliche Metalle ab: Cadmium, Blei und Quecksilber. Laut einer der grundlegenden Verpflichtungen muss Deutschland seine Emissionen für diese drei Metalle unter das Niveau von 1990 reduzieren. Das Protokoll betrachtet die Emissionen aus industriellen Quellen (zum Beispiel Eisen- und Stahlindustrie, NE-Metall-Industrie), Verbrennungsprozessen (Stromerzeugung, Straßenverkehr) und aus Müllverbrennungsanlagen. Es definiert Grenzwerte für Emissionen aus stationären Quellen (zum Beispiel Kraftwerken) und verlangt die besten verfügbaren Techniken (BVT) für diese Quellen zu nutzen, etwa spezielle Filter oder Wäscher für die stationäre Verbrennung oder Quecksilber-freie Herstellungsprozesse. Das Protokoll verpflichtet die Vertragsparteien weiterhin zur Abschaffung von verbleitem Benzin. Es führt auch Maßnahmen zur Senkung von Schwermetall-Emissionen aus Produkten auf (zum Beispiel Quecksilber in Batterien) und schlägt Management-Maßnahmen für andere quecksilberhaltige Produkte wie elektrische Komponenten (Thermostate, Schalter), Messgeräte (Thermometer, Manometer, Barometer), Leuchtstofflampen, Amalgam, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pestizide#alphabar">Pestizide</a>⁠ und Farben vor.</p><p>Viele dieser Maßnahmen wurden in Deutschland jedoch schon deutlich früher umgesetzt, so dass bereits in den frühen 90er Jahren deutliche Reduktionen der wichtigen Schwermetalle zu verzeichnen sind.</p>

Biotechnologische Umwandlung von Methanol (C1) in Tocochromanole, Teilvorhaben B

Schwerpunktprogramm (SPP) 1788: Study of Earth system dynamics with a constellation of potential field missions, Kopplung der solaren und geomagnetischen Aktivität mit der räumlichen Verteilung von Trends in Treibhausgasen in der oberen Atmosphäre

Die Struktur und Zusammensetzung des Thermosphäre-Ionosphäre Systems (T-I) wird stark durch die solare EUV-Strahlung beeinflusst. Die andere wichtige externe Quelle von Variabilität in dieser Atmosphärenregion ist das geomagnetische Feld, das geladene Teilchen in die Atmosphäre leitet wo sie insbesondere um die Pole herum ihre Energie abgeben. Wie neue Daten zeigen, können auch interne Antriebsprozesse sowohl auf kurzen (Tage) als auch langen (Jahre) Zeitskalen die T-I Variabilität dominieren. Eine wesentliche Rolle wird dabei dem langsamen aber kontinuierlichen Anstieg von CO2 in der Mesosphäre und unteren Thermosphäre (MLT) zugeschrieben, der zu verstärkter Strahlungskühlung und damit einhergehender Kontraktion der Atmosphäre führt. Auch andere Treibhausgase können auf kürzeren Zeitskalen die T-I Variabilität stark modulieren, u.a. O3 und NO. Das Hauptziel dieses Projektes ist zu untersuchen, wie die räumliche Verteilung von Langzeittrends in MLT Treibhausgasen mit der T-I Langzeit Variabilität gekoppelt ist. Dabei sollen sowohl bodengebundene als auch Satellitendaten von CO2, O3, NO, H2O sowie Elektronendichten herangezogen werden. Durch Kombination von Daten der Satelliten CHAMP, GRACE, SWARM, COSMIC, GOMOS, ACE-FTS, MLS, SABER, MIPAS, HALOE und AIM soll eine nahezu globale Abdeckung über einen Zeitraum von 2 Sonnenzyklen erreicht werden. Aus diesen Daten soll eine globale Klimatologie erstellt werden als Grundlage für die Ableitung von Langzeittrends und ihrer Korrelation in Zeit, Raum und T-I Parametern, einschließlich der Untersuchung von möglichen zeitlichen Verzögerungen in der Variabilität. Ferner sollen chemische und dynamische Wirkmechanismen der T-I Reaktion auf diese Variabilität identifiziert sowie zum ersten Mal echte Abkühlungs- und Aufheizraten aus der globalen Klimatologie und ihre Korrelationen in der T-I Region berechnet werden. Diese können direkt in allgemeinen Zirkulationsmodellen anstatt der aus Volumenemissionsraten gewonnenen Abkühlraten verwendet werden.

Reaktivierung der Doelitzer Wassermuehle (Vorplanung und landschaftspflegerischer Begleitplan)

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Prozesse der Wasserstoffgenese während seismischer Zyklen in aktiven Störungszonen (ProHydroGen)

Wir planen die Nutzung eines U-Tube-KASMA Systems, welches von Prof. Tullis Onstott (Princeton University) in einem 600 m tiefen Bohrloch installiert wird, das eine aktive Störungszone im Roodepoort Quarzit in 3400 m Tiefe in der 'Moab Khotsong gold mine' antrifft. Das Bohrloch ist Teil des ICDP-finanzierten Projektes DSeis und dient der Beobachtung von seismisch ausgelösten in situ geochemischen und isotopischen Änderungen tiefer Fluide sowie mikrobiellen Aktivitäten. Die Kombination unsers Gas-Monitoring-Systems mit der U-Tube-KASMA Installation ergibt die einmalige Möglichkeit, minimal veränderte Geofluide aus einer tiefen aktiven Störungszone zu beproben.Während seismischer Ereignisse entlang der Verwerfungszone erwarten wir die Freisetzung von Geogasen, insbesondere H2, der als Energiequelle für tiefes mikrobielles Leben dienen kann. Das Geogas (inkl. H2 und O3) sollen kontinuierlich mit spezifischen Sensoren eines portablen gasanalytischen Systems detektiert werden, welches direkt an den Gasseparator des automatischen U-Tube-KASMA angeschlossen ist. Durch die chemische und isotopische Charakterisierung der Fluide vor und nach seismischer Aktivität hoffen wir die Herkunft und Genese von H2 aufklären zu können; letztere beruht auf Spaltung der O-H Bindungen von Wasser. In Kombination mit Daten zur Permeabilität und Porosität der Störungszone werden diese Ergebnisse helfen, verschiedene Migrationsmechanismen des Fluids, vom Entstehungsort bis zum Zielhorizont, zu verstehen. Dabei stellt sich die Frage, ob schwache seismische Ereignisse die Konnektivität isoliert bestehender Fluide durch Bildung neuer Wegsamkeiten erhöhen, oder ob frische Mineraloberflächen für Wasser-Gesteinsreaktionen erzeugt werden, die mechano-chemisch neu synthetisierten H2 freisetzen. Die Echtzeit-Analyse der U-Tube Proben vor Ort kann zeigen, wie schnell Änderungen in der Untergrund Gaschemie aufgrund seismischer Aktivität stattfinden. Ein weiteres Ziel ist die Identifizierung der seismischen Momente und der Abstand und die Orientierung des Erdbebenherdes zur Störungszone und dem Bohrloch. Die Probenahme und Analyse in Isotopen-Laboratorien ermöglicht die Abschätzung, in welchem Ausmaß sich die H/D-Isotopie von H2 und CH4, sowie 13CCO2 und 13CCH4 ändert. Es soll geprüft werden, ob sie aus der gleichen Quelle stammen und ob der Isotopenaustausch zwischen diesen Spezies im thermodynamischen Gleichgewicht ist.Edelgasisotopenmessungen erlauben es, die Residenzzeiten der Kluftfluide zu berechnen und könnten die Frage lösen, ob gemessene H2/He-Verhältnisse mit der berechneten radiolytisch/radiogenen Produktionsrate übereinstimmen. Die Daten der gaschemischen Messungen sind wichtige Eingangsparameter für physikalisch-chemische Modelle zur Beschreibung des geochemischen Verhaltens der Fluide. In Kombination mit seismischen Karten tragen sie zur genaueren Bestimmung des globalen Vorkommens von gas-chemischen Produktionsprozessen in Störungszonen bei.

Solargestützte Feldbewässerung in Nicaragua

Die GS Blankenese blickt auf eine langjährige und reiche Erfahrung mit Nord-Süd-Schulpartnerschaften zurück, am intensivsten haben wir bisher sicherlich mit verschiedenen Bildungsorganisationen der nicaraguanischen Stadt Leon (unter anderem Universität UNAN), Technik-Schule La Salle) zusammengearbeitet. Unser gemeinsames Thema ist seit nunmehr drei Jahren die solargestützte Feldbewässerung. Die Festlegung auf dieses Thema folgte einer Anregung des Universitätspräsidenten von Leon, Dr. Ernesto Medina. Seit Jahren kann man an der Pazifikküste Nicaraguas eine dramatische Verkürzung der Regenzeit beobachten, in manchen Jahren von sechs auf drei Monate. Für den landwirtschaftlichen Anbau in Nicaragua wird die künstliche Bewässerung zur Überlebensfrage. Das Agrarinstitut der UNAN arbeitet eng an den Fragen des Landes und verfügt über landwirtschaftliche Versuchsfelder. Es lag also nahe, die Bedingungen der solargestützten Feldbewässerung auf ihre Tauglichkeit für die landwirtschaftliche Produktion zu untersuchen. Im Jahr 2002 machte ein Physikkurs des 11. Jahrgangs nach reiflicher Diskussion mit den nicaraguanischen Partnern den Anfang. Er installierte auf dem Gelände der Universität von Leon eine Demonstrations- und Versuchsanlage mit solarbetriebenen Wasserpumpen - gemeinsam mit nicaraguanischen Studierenden und Wissenschaftlern. Im Mai 2003 folgte der nächste Kurs. Ziel dieses Kurses bestand in dem Aufbau zweier solargestützter Pumpen zu Feldbewässerung, die direkt auf Bauernhöfen zum Einsatz kamen. Ein Jahr später wurden die vierte Pumpe in dem Dorf San Pedro installiert, inzwischen hatten sich uns als weitere Kooperationspartner Schüler und Lehrer der Tecnico La Salle angeschlossen. Die Pumpsysteme der Jahre 2003 und 2004 dienen unmittelbar der Produktivitätssteigerung - Ernten sind nunmehr auch während der Trockenzeit möglich, alle fünf Systeme sind mit einer Messstrecke ausgestattet, um ihre Leistungsfähigkeit fortlaufend untersuchen und bewerten zu können, sie dienen somit auch der wissenschaftlichen Betrachtung. Als Physikkurs steht man vor scheinbar unlösbaren Problemen, wenn die Grenzen des Fachgebiets überschritten werden. Gerade solche Projekte, wie wir sie realisieren, treiben immer über ihre ursprüngliche Fragestellung hinaus und treffen auf Nahtstellen zu anderen Disziplinen (in unserem Fall handelt es sich um Ökonomie, Klimageographie und vor allem Biologie). In solchen Fällen ist es oft unausweichlich, kluge Geister zu Rate zu ziehen, die mit Ihrem Spezialwissen unsere Lernprozesse außerordentlich bereichern. Wir bedanken uns in diesem Zusammenhang bei Herrn Dr. Sorell, Mitarbeiter der Forschungsanstalt für Landwirtschaft (FAL) in Braunschweig, der uns für einen Tag in sein Institut eingeladen hat, um uns mit dem aktuellen Stand der Bewässerungstechnik und mit der Methodik der Wasserbedarfsberechnung vertraut gemacht hat. usw.

Optimierung der Waldhackgutbereitstellung

Zur Strom- und Wärmeerzeugung aus erneuerbaren Ressourcen wird in Zukunft mehr Energieholz notwendig sein. Als Hauptquellen kommen in Frage: Holz minderwertiger Qualitäten, Schlagrücklass sowie Holz aus Durchforstungen, aus Niederwäldern und von Kurzumtriebsflächen. Die Herausforderung besteht in einer effizienten Bereitstellung des Brennstoffes, wobei technische und logistische Verbesserungen bei Ernte, Hacken und Transport Schlüsselfaktoren sind. Basierend auf Arbeitsstudien (klassische Zeitstudien aber auch automatische Maschinen-aufzeichnungen) und statistischen Analysen sollen Produktivitätsmodelle entwickelt werden. Diese Modelle erlauben eine Analyse des Arbeitsablaufes, eine Prognose der Produktivität und können Eingang in Kostenkalkulationen liefern. Untersucht werden einzelne Maschinen (z.B. Moipu 300 ES, Silvatec u.a) aber auch gesamte Produktionssysteme. Als Ergebnis liegen Evaluierungen von Maschinen und gesamten Produktionssystemen vor. Über Kostenträgerrechnungen können unterschiedlichste Wertschöpfungsketten miteinander verglichen werden. Basierend auf Literaturstudien im Bereich der Energieholz- und Waldhackgutbereitstellung wird der Bedarf an notwendigen Feldstudien zur Verbesserung der Datengrundlage abgesteckt und der Test von neuen Verfahren bzw. Maschinen vorgeschlagen. Zur Dokumentation der Praxiseinsätze werden Zeitstudien durchgeführt. Für die wesentlichen Prozesse werden Produktivitätsmodelle erstellt. Der Evaluierung neuer Bereitstellungsketten in Praxisversuchen bzw. der Einsatz alternativer Transportsysteme unter österreichischen Verhältnissen wird bei den Versuchseinsätzen besondere Bedeutung beigemessen. Dabei soll sich zeigen, ob diese Verfahren geeignet bzw. welche Rahmenbedingungen für deren Einsatz notwendig sind. Die Ermittlung geeigneter Standorte für einen Biomassehof erfolgt mit Hilfe eines Geographischen Informationssystems und unter Berücksichtigung diverser Nebenbedingungen. Lage, Größe und Ausstattung sind im Hinblick auf das Energieholzpotenzial, der infrastrukturellen Voraussetzungen sowie Standort und Bedarf der Heizwerke zu optimieren. Erwartete Resultate sind eine bessere Optimierung verschiedener Bereitstellungssysteme, eine Minimierung der Transportkosten durch Reduktion von Wartezeiten und Ausnutzen der Transportkapazität sowie eine Reduktion des administrativen Aufwandes für die Steuerung und Abwicklung der Geschäftstätigkeiten. Weiters wird die Ermittlung der Kosten, der notwendigen infrastrukturellen Ausstattung sowie die logistische Optimierung der Lage von potenziellen Biomassehöfen erwartet. Die Ergebnisse werden in Verfahrenshandbüchern sowie in einem Pflichtenheft dargestellt.

1 2 3 4 5130 131 132