API src

Found 700 results.

Related terms

Ressourceneffiziente Integration multifunktionaler Lasermaterialbearbeitungsverfahren im Prozessnetz für die Leichtbau-Fertigung, Teilvorhaben: Erforschung und Realisierung eines wirkungsgradoptimierten 2kW Diodenlasersystems bei 880nm zur Bearbeitung von Al Werkstoffen

Bedarfsgerechte Automatisierung der Freiflächen- und Tröpfchenbewässerungstechnik mittels on-site IOT-Sensorik, unterstützt durch Satellitentechnik, Teilprojekt B

Bedingt durch den Klimawandel sind landwirtschaftliche Kulturpflanzen vermehrt Wasserstress und Frostschäden ausgesetzt. Gleichzeitig prognostiziert die FAO einen Anstieg des globalen Wasserbedarfs um 55% (Landwirtschaft um 11%), bei einem Anstieg der gesamten beregneten Fläche um 6% bis 2050. Diese Problematik, kombiniert mit dem Bevölkerungsanstieg, wachsendem Energiebedarf und dem Rückgang der nutzbaren landwirtschaftlichen Fläche in den Industriestaaten, verlangt nach Lösungen. Ein bedarfsgerechter, energiesparender und effizienter Einsatz der Ressourcen Wasser und Energie ist erforderlich, um eine zukunftsfähige und nachhaltige Bewässerung zu gewährleisten und der steigenden Nutzungskonkurrenz, um die Ressource Wasser, zu begegnen. Während eine automatisierte Bewässerung im Gewächshaus bereits Stand der Technik ist, wird die Freiflächen und Tröpfchenbewässerung wie z.B. im Gemüse bzw. Obstbau überwiegend manuell auf Basis von Erfahrungswerten der Anbauer oder aufgrund fest geplanter Bewässerungsintervalle durchgeführt. Dies führt in der Regel zu zu hohen Bewässerungsgaben und kann weiterhin zu Nährstoffauswaschungen führen. Ziel dieses Projektes ist es daher, Daten aus den unterschiedlichsten Quellen auf einer intelligenten Service-Plattform miteinander zu verknüpfen, um dadurch über eine digitale Entscheidungsunterstützung, eine bedarfsgerechte und (teil-)automatisierte Bewässerung zu ermöglichen. Gerade die Integration lokaler Sensoren in einem multivariaten Ansatz, soll dabei auch der zunehmenden Entwicklung von teilabgedeckten Agrarflächen durch Agri-Photovoltaik-Anlagen, Folien und Netzen gerecht werden. Kern des Projekts ist dabei ein Cloud-basierter Bewässerungsplaner, der sich automatisiert an die on-Site gemessenen Klimaparameter, sowie den aktuellen phänologischen Bedingungen in Echtzeit anpasst. Der Planer wird dann mit den bestehenden Systemen der Projektpartner vernetzt, um die Ausführung der Bewässerung zu (teil)-automatisieren.

INSPIRE: Geoscientific Map of Germany 1:2,000,000 - Important deposits (GK2000 Lagerstätten)

The GK2000 Lagerstätten (INSPIRE) shows deposits and mines of energy resources, metal resources, industrial minerals and salt on a greatly simplified geology within Germany on a scale of 1:2,000,000. According to the Data Specifications on Mineral Resources (D2.8.III.21) and Geology (D2.8.II.4_v3.0) the content of the map is stored in three INSPIRE-compliant GML files: GK2000_Lagerstaetten_Mine.gml contains mines as points. GK2000_ Lagerstaetten _EarthResource_polygon_Energy_resources.gml contains energy resources as polygons. GK2000_ Lagerstaetten _GeologicUnit.gml contains the greatly simplified geology of Germany. The GML files together with a Readme.txt file are provided in ZIP format (GK2000_ Lagerstaetten -INSPIRE.zip). The Readme.text file (German/English) contains detailed information on the GML files content. Data transformation was proceeded by using the INSPIRE Solution Pack for FME according to the INSPIRE requirements.

Studie zur Produktion von Strohlehmsteinen

Lehmbauweisen sind die aeltesten Massivbauweisen der Welt. Vor allem in den Gegenden, in denen reichhaltige Tonvorkommen und Sande vorhanden sind, wurden in Europa bis in das 19. Jahrhundert hinein luftgetrocknete Lehmsteine fuer sehr preiswerte Wohn- und Nutzbauten eingesetzt. Erst mit der Einfuehrung der industriellen Brenntechnik wurden die Lehmsteine zunehmend durch gebrannte Ziegel abgeloest. In den letzten 20 Jahren erweckte die Lehmbauweise in Deutschland erneut das oeffentliche Interesse. Als natuerlicher Baustoff, der nur geringe Energieressourcen verbraucht, fanden die luftgetrockneten Lehmsteine besonders im Zuge der biologisch-oekologischen Bewegung bei Ingenieuren und Architekten zunehmend Beachtung. Es zeichnen sich dabei zwei Einsatzfelder fuer luftgetrocknete Lehmsteine ab: Neubau bzw. Restaurierung vornehmlich von Fachwerkbauten. Die Vorteile der Lehmbauweise fuer Mensch und Umwelt liegen auf der Hand. So koennen beispielsweise Strohleichtlehmsteine aus regional vorkommenden, nachwachsenden Rohstoffen energie- und umweltschonend hergestellt werden. Darueber hinaus zeichnen sich Lehmhaeuser durch ein hervorragendes physiologisches Raumklima aus. Die Studie 'Produktion von Strohlehmsteinen' soll im Sinne einer Pilotstudie die Voraussetzungen zur Fertigung, Qualifikation und Vermarktung von Strohlehmsteinen aufzeigen. In einer Modellentwicklung werden Chancen fuer die technische und wirtschaftliche Realisierung der Lehmbauweisen dargestellt. Fuer die Bearbeitung der Studie wird eine interdisziplinaere Zusammenarbeit der Fachhochschule Stralsund, Fachbereich Maschinenbau und der Fachhochschule Neubrandenburg, Fachbereich Bauingenieurwesen gemeinsam mit der Oekologischen Beschaeftigungsinitiative Krummenhagen e.V. (OeBIK) durchgefuehrt.

KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben CampusGenius: Automated Integration with the 5G-Core

Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs auch unter Einsatz von privaten 5G-Netzwerken entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, einem Microgrid, entworfen. Die Kommunikation zwischen und innerhalb der DER soll mittels Mobilfunktechnologie erfolgen. Dabei soll die Energieoptimierung mittels KI-Algorithmen erfolgen und auch den Energietransport mit Fahrzeugen berücksichtigen. Die softwareseitige Integration der KI-Algorithmen und des Energiemanagementsystems in das Kommunikationssystem ist ein wesentlicher Bestandteil dieses Projektes. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet.

Datengetriebene Anlagenüberwachung und -auslegung zur Sicherung der ökologischen Effizienz im Betrieb, Teilvorhaben: Effizienzmonitoring von Automatisierungseinrichtungen

Der effiziente Umgang mit Ressourcen und Energie ist eine essenziele Größe zum Erreichen der global gesetzten Klimaschutzziele. Insbesondere für die pneumatische Antriebs- und Vakuumtechnik zeigt sich ein bedeutendes Einsparpotenzial von bis zu 60 % des Druckluftverbrauchs, welches jedoch aufgrund von fehlenden Auslegungs- und Überwachungsstrategien unausgeschöpft bleibt. Des Weiteren besteht in der Automatisierungsindustrie ein Bedarf nach einer transparenten Vorgehensweise zur ökologischen Bilanzierung, die trotz der enormen Wichtigkeit kaum durchgeführt wird. Vor diesem Hintergrund ist das zentrale Vorhabenziel die Energieeffizienzsteigerung und die damit einhergehende Reduktion der Umweltauswirkungen der Antriebs- und Vakuumtechnik. Hierfür wird eine Methodik entwickelt, die den energetischen Anlagenzustand überwacht sowie Degradation und Fehlerfälle erkennt und prädiziert. Die Methodik wird durch eine ganzheitliche Bilanzierung der Umweltauswirkungen auf Anlagenebene erweitert und durch die Einbeziehung weiterer Kriterien wie Auslastung oder Robustheit einer Lösung praktisch nutzbar gemacht. Somit wird die Anlage aus ökologischer Sicht von den ersten Schritten der Planungsphase über den Betrieb bis zur Außerbetriebnahme begleitet und so der systematische Einsatz von energieeffizienten Automatisierungslösungen erleichtert. Bei TRUMPF werden Automatisierungslösungen entwickelt, welche während der gesamten Nutzungsphase die im Neuzustand vorhandenen Effizienzwerte einhalten sollen. Abweichungen und deren Ursachen sind zu ermitteln, Maßnahmen zu definieren und ein kontinuierliches Monitoring der Werte ist beim Anwender zu sichern. Damit soll erreicht werden, dass energetisch hocheffektive Systeme ihre Eigenschaften behalten und es zu keiner unbemerkten Verschlechterung kommt. Mittels gezielter Versuche und Analyse von Felddaten sollen Ansätze für Produktverbesserungen sowie eine kostengünstige Überwachung der Energieeffizienz im Feld entwickelt werden.

Datengetriebene Anlagenüberwachung und -auslegung zur Sicherung der ökologischen Effizienz im Betrieb, Teilvorhaben: Bilanzierung von Umweltauswirkungen

Der effiziente Umgang mit Ressourcen und Energie ist eine essenziele Größe zum Erreichen der global gesetzten Klimaschutzziele. Insbesondere für die pneumatische Antriebs- und Vakuumtechnik zeigt sich ein bedeutendes Einsparpotenzial von bis zu 60 % des Druckluftverbrauchs, welches jedoch aufgrund von fehlenden Auslegungs- und Überwachungsstrategien unausgeschöpft bleibt. Des Weiteren besteht in der Automatisierungsindustrie ein Bedarf nach einer transparenten Vorgehensweise zur ökologischen Bilanzierung, die trotz der enormen Wichtigkeit kaum durchgeführt wird. Vor diesem Hintergrund ist das zentrale Vorhabenziel die Energieeffizienzsteigerung und die damit einhergehende Reduktion der Umweltauswirkungen der Antriebs- und Vakuumtechnik. Hierfür wird eine Methodik entwickelt, die den energetischen Anlagenzustand überwacht sowie Degradation und Fehlerfälle erkennt und prädiziert. Die Methodik wird durch eine ganzheitliche Bilanzierung der Umweltauswirkungen auf Anlagenebene erweitert und durch die Einbeziehung weiterer Kriterien wie Auslastung oder Robustheit einer Lösung praktisch nutzbar gemacht. Somit wird die Anlage aus ökologischer Sicht von den ersten Schritten der Planungsphase über den Betrieb bis zur Außerbetriebnahme begleitet und so der systematische Einsatz von energieeffizienten Automatisierungslösungen erleichtert. An der TU Dresden wird ein lebenszyklusbasierter Ansatz zur ökologischen Bilanzierung pneumatischer und elektrischer Anlagen entwickelt und an Demonstratoranlagen der Industrieprojektpartner validiert. Somit werden eine einheitliche und transparente Betrachtung der Umweltauswirkungen pneumatischer und elektromechanischer Antriebstechnik über alle Lebensphasen sowie ihr Vergleich untereinander ermöglicht.

Datengetriebene Anlagenüberwachung und -auslegung zur Sicherung der ökologischen Effizienz im Betrieb

Der effiziente Umgang mit Ressourcen und Energie ist eine essenziele Größe zum Erreichen der global gesetzten Klimaschutzziele. Insbesondere für die pneumatische Antriebs- und Vakuumtechnik zeigt sich ein bedeutendes Einsparpotenzial von bis zu 60 % des Druckluftverbrauchs, welches jedoch aufgrund von fehlenden Auslegungs- und Überwachungsstrategien unausgeschöpft bleibt. Des Weiteren besteht in der Automatisierungsindustrie ein Bedarf nach einer transparenten Vorgehensweise zur ökologischen Bilanzierung, die trotz der enormen Wichtigkeit kaum durchgeführt wird. Vor diesem Hintergrund ist das zentrale Vorhabenziel die Energieeffizienzsteigerung und die damit einhergehende Reduktion der Umweltauswirkungen der Antriebs- und Vakuumtechnik. Hierfür wird eine Methodik entwickelt, die den energetischen Anlagenzustand überwacht sowie Degradation und Fehlerfälle erkennt und prädiziert. Die Methodik wird durch eine ganzheitliche Bilanzierung der Umweltauswirkungen auf Anlagenebene erweitert und durch die Einbeziehung weiterer Kriterien wie Auslastung oder Robustheit einer Lösung praktisch nutzbar gemacht. Somit wird die Anlage aus ökologischer Sicht von den ersten Schritten der Planungsphase über den Betrieb bis zur Außerbetriebnahme begleitet und so der systematische Einsatz von energieeffizienten Automatisierungslösungen erleichtert. An der TU Dresden wird ein lebenszyklusbasierter Ansatz zur ökologischen Bilanzierung pneumatischer und elektrischer Anlagen entwickelt und an Demonstratoranlagen der Industrieprojektpartner validiert. Somit werden eine einheitliche und transparente Betrachtung der Umweltauswirkungen pneumatischer und elektromechanischer Antriebstechnik über alle Lebensphasen sowie ihr Vergleich untereinander ermöglicht.

KI unterstützte Kommunikationstechnologien zur dynamischen Optimierung von Mobilität und Energiespeichern zur Frequenzstabilisierung und Energieversorgung, Teilvorhaben SachsenEnergie: Bidirektionales Alltagsladen

Das Ökosystem der Stromnetze ist auf dem Weg zu einem dezentralisierten Energieversorgungs- und Verteilungssystem. Haushalte können mit erneuerbaren Energiequellen wie Sonnenkollektoren oder Windgeneratoren, als verteilte Energieressourcen (DERs - Distributed Energy Resources) bezeichnet, unabhängig von den Stromanbietern operieren und Energie zurück an das Hauptnetz verkaufen. Für die Realisierung dieser Transformation des Stromnetzes wird eine kompetente Kommunikationsinfrastruktur benötigt. Die Einführung des Standards 5G in Mobilfunknetze erleichtert die Entwicklung zukünftiger Energieverwaltungslösungen. Weiterhin ermöglichen neue Technologien die Entwicklung intelligenter Algorithmen für die Steuerung zukünftiger Stromnetze. Hierzu gehören das Internet der Dinge (Internet of Things, IoT), Vernetzung über Mesh-Netzwerke zur Fernüberwachung des Netzstatus und die Künstliche Intelligenz (KI) für Management und Koordination. In Dymobat wird ein Single-User-Controller für die Verwaltung der einzelnen DERs entwickelt. Anschließend wird eine zentrale Steuerungseinheit für die Synchronisierung und Optimierung des Netzbetriebs innerhalb einer kleinen Gruppe von DERs, Microgrid, entworfen. Im Anschluss werden Mobilitätsalgorithmen für die Nutzung von batterieelektrischen Fahrzeugen als mobile Energiespeicher entwickelt, die temporäre Selbstversorgung von Teilnetzen ermöglichen. Die entwickelten Algorithmen werden virtuell in einem Testbed-Modell anhand von realen Eingangsparametern erprobt, optimiert und validiert. Im zweiten Schritt wird ein reales Testfeld konzipiert, installiert und die Leistungsfähigkeit der modellhaft erprobten Algorithmen in einer realen Testumgebung bewertet und anhand des dadurch erarbeiteten Know-hows weiter verbessert. Das übergeordnete Ziel des Projektes DymoBat ist die Entwicklung von marktfähigen Lösungen für die zukünftige Stromnetzverwaltung zur Nutzung von verteilten Energieressourcen auf Basis der Anwendung von 5G-Technologien.

Datengetriebene Anlagenüberwachung und -auslegung zur Sicherung der ökologischen Effizienz im Betrieb, Teilvorhaben: Entwicklung und Realisierung datenbasierter Ansätzen zur Überwachung, Adaption und Auslegung in der Vakuum-Handhabungstechnik

Der effiziente Umgang mit Ressourcen und Energie ist essenziell für das Erreichen der global gesetzten Klimaschutzziele. Insbesondere für die pneumatische Antriebstechnik zeigt sich ein bedeutendes Einsparpotenzial von bis zu 60 % des Druckluftverbrauchs, welches jedoch aufgrund von fehlenden Auslegungs- und Überwachungsstrategien unausgeschöpft bleibt. Darüber hinaus besteht in der Antriebstechnik ein Bedarf nach einer transparenten Vorgehensweise zur ökologischen Bilanzierung, die trotz der enormen Wichtigkeit kaum durchgeführt wird. Vor diesem Hintergrund ist das zentrale Vorhabenziel die Energieeffizienzsteigerung und die damit einhergehende Reduktion der Umweltauswirkungen der Antriebstechnik. Hierfür wird eine Methodik entwickelt, die den energetischen Anlagenzustand überwacht sowie Degradation und Fehlerfälle erkennt und prädiziert. Die Methodik wird durch eine ganzheitliche Bilanzierung der Umweltauswirkungen auf Anlagenebene erweitert und durch die Einbeziehung weiterer Kriterien wie Auslastung oder Robustheit einer Lösung praktisch nutzbar gemacht. Somit wird die Anlage aus ökologischer Sicht von den ersten Schritten der Planungsphase über den Betrieb bis zur Außerbetriebnahme begleitet und so der systematische Einsatz von energieeffizienten Automatisierungslösungen erleichtert. Dies gilt im besonderen auch für die Vakuum-Handhabungstechnik. Die Vakuumtechnik ist eine weit verbreitete Technologie in der Automationstechnik. Neben zahlreichen Vorteilen ist aber insbesondere die Energieeffizienz je nach Anwendung und Systemarchitektur kritisch zu sehen. Diesem Punkt kommt eine zentrale Bedeutung zu. Generell definieren die Anwendung und der Prozess die weiteren Auslegungsparameter des Vakuumsystems. Somit ist eine bedarfsgerechte Dimensionierung einzelner Vakuumkomponenten zwingend erforderlich. Dies beinhaltet zudem Maßnahmen zur Zustandsüberwachung.

1 2 3 4 568 69 70